AD in Fortran
Part 2: Implementation

Alexey Radul, Barak A. Pearlmutter, and Jeffrey Mark Sigkin

Abstract We describe an implementation of theHFeL AD extensions to BR-
TRAN [6]. The extensions serve to integrate forward and reveBealiectly into
the programming model, with attendant benefits to flexipilihodularity, and ease
of use. The BRFALLEN FARFEL FORTRAN implementation is a “prepreprocessor”
that generates input to existingpRTRAN-based AD tools. In essence, blocks of
code which are targeted for AD byaARFEL constructs are put into subprograms
which capture their lexical variable context and these #wsuce-converted into
top-level subprograms, rendering them amenable to egigtin preprocessors.

Key words: Nesting, multiple transformation, forward mode, reverssle TAPE-
NADE, ADIFOR, programming-language implementation

1 Introduction

The Forward And Reverse Fortran Extension Language (FARFEL) extensions to
FORTRAN enable smooth and modular use of AD [6]. Here, we discuss hamy F
FEL can be implemented through the use of existimRIFRAN-based AD tools and
compilers. A prepreprocessor transform®FEL input into FORTRAN, and invokes
an existing AD system [2, 3] to generate the needed derastiWhen the ARFEL
program involves nested AD, this prepreprocessing becajis involved. This
process automates the task of applying AD, including thaildet maneuvers re-
quired for nested application of existing tools, therebiearing the reach and util-

Alexey Radul
Hamilton Institute, National University of Ireland Mayribg Ireland,ar adul @ui m i e

Barak A. Pearimutter
Hamilton Institute, National University of Ireland Mayribg Ireland,bar ak@s. nui mi e

Jeffrey Mark Siskind
Electrical and Computer Engineering, Purdue Universily,USA, qobi @ur due. edu

2 Alexey Radul, Barak A. Pearlmutter, and Jeffrey Mark Sigki

ity of AD. The process can also make use of a variety of exjsiaRTRAN-based
AD preprocessors, making it easy for the programmer to svigtween them.

The remainder of the paper is organized as follows: Sectgpezifies, in detall,
the language extensions from [6] we will be implementing. Miesent a complete
example program on page 4 to illustrate their use and impi¢atien. Section 3
describes, in detail, our implementation by preprocesaaostation to existing tools.
Section 4 summarizes this work’s contributions.

2 Language Extensions

FARFEL provides two principal extensions tcoRTRAN: syntax for AD and for
nested subprograms.

Extension 1: AD Syntax
FARFEL adds therDF construct for forward AD:
ADF(TANGENT(var) = expr ...)

statements
END ADF(var = TANGENT(var) ...

Multiple opening and closing assignments are separatesiyras. Independent
variables are listed in the “calls” tpANGENT on the left-hand sides of the opening
assignments and are given the specified tangent valuesnBepevariables appear
in the “calls” to TANGENT on the right-hand sides of the closing assignments and
the corresponding tangent values are assigned to the tadidastination variables.
The ADF construct uses forward AD to compute the directional déxieaof the
dependent variables at the point specified by the vectordeiandent variables in
the direction specified by the vector of tangent values feritidependent variables
and assigns it to the destination variables.

An analogous ERFEL construct supports reverse AD:

ADR(COTANGENT(Var) = expr ...)
statements
END ADR(var = COTANGENT(var) ...

Dependent variables are listed in the “calls” taCOTANGENT on left-hand sides of
the opening assignments and are given the specified cotav@ers as inputs to
the reverse phaskndependent variables appear in the “calls” t@OTANGENT on the
right-hand sides of the closing assignments and the carneipg cotangent values
at the end of the reverse phase are assigned to the indicasédation variables.
The ADR construct uses reverse AD to compute the gradient with ot$pehe in-
dependent variables at the point specified by the vectord&iandent variables in-
duced by the specified gradient with respect to the dependeiables, and assigns
it to the destination variables. The expressions usedtialize the cotangent inputs
to the reverse phase are evaluated at the end of the forwasg peven though they
appear textually prior to the statements specifying thedod phase. This way, the
direction input to the reverse phase can depend on the adshk forward phase.

AD in Fortran: Implementation 3

For bothADF andADR, implied-DO syntax is used to allow arrays in the opening
and closing assignments. By special dispensation, thenséattADF(var) is inter-
preted asADF(TANGENT(var) =1) andADR(var) asADR(COTANGENT(var) =1) . We
have not yet introduced syntax for, or implemented, veofeangent-vectors and
vector-of-cotangent-vectors modes.

Extension 2: Nested Subprograms

In order to conveniently support distinctions betweenedéht variables of differ-
entiation for distinct invocations of AD, as in the exampéddw, we borrow from
ALGOL 60 [1] and generalize thedRTRAN “statement function” construct by al-
lowing subprograms to be defined inside other subprograritls, lexical scope.
As in ALGOL 60, the scope of parameters and declared variables is thkedob-
program, and these may shadow identifiers from the surrogrstiope. Implicitly
declared variables have the top-level subprogram as thaires

Concrete Example

In order to describe the implementation of the above coottywe employ the
concrete example from the companion paper [6]. The taskaregample is to find
an equilibrium(a*, b*) of a two-player game with continuous scalar strategiasd
b and given payoff functiond andB. The method is to find roots of

a" = argmaXA(a,argmaxB(a“, b)) (1)
a b

We encode this example imRFEL as we did in the companion [6]—the full pro-
gram is given, for reference, in Listing 1. The heart of thegsam is the implemen-
tation EQLBRM of (1). Note that this whole program is only 63 lines of codé&hw

plenty of modularity boundaries. This code is used as a ngnekample for the

remainder of the paper.

3 Implementation

FARFEL is implemented by the ARFALLEN preprocessor. The current version is
merely a proof of concept, and not production quality: it slo@t accept the en-
tire FORTRAN77 language, and does not scale. However, its principlegpefas
tion will be unchanged in a forthcoming production-qualityplementation. Here
we describe the reduction oRRFEL constructs to BRTRAN, relying on existing
FORTRAN-based AD tools for the actual derivative transformations.

FARFEL introduces two new constructs int@RTRAN: nested subprograms and
syntax for requesting AD. We implement nested subprograymsxtracting them
to the top level, and communicating the free variables froeenclosing subpro-
gram by passing them as arguments into the new top-leversgtam. This is an
instance oflosure conversion, a standard class of techniques for converting nested
subprograms to top-level ones [4]. In order to accommodassipg formerly-free

4 Alexey Radul, Barak A. Pearlmutter, and Jeffrey Mark Sigki

Listing1l Complete exampleARFEL program: equilibria of a continuous-strategy game.

C ASTAR & BSTAR: GUESSES IN, OPTI M ZED VALUES OUT
SUBROUTI NE EQLBRM(BI GA, BI GB, ASTAR, BSTAR N
EXTERNAL Bl GA, BIGB

FUNCTI ON F(ASTAR)
FUNCTI ON' G(A)
FUNCTI ON' H(B)
H = Bl GB(ASTAR, B)
END
BSTAR = ARGVAX(H, BSTAR N)
G = BIGA(A BSTAR)
END
F = ARGVAX(G ASTAR N)- ASTAR
END
ASTAR = ROOT(F, ASTAR N)
END

FUNCTI ON ROOT(F, X0, N)

X = X0

DO 1669 |1=1, N

CALL DERIV2(F, X, Y, YPRI ME)
1669 X = X- Y/ YPRI ME

ROOT = X

END

SUBROUTI NE DERI V2(F, X, Y, YPRIME)
EXTERNAL F

ADF(X)

Y = F(X)

END ADF(YPRI ME = TANGENT(Y))

END

FUNCTI ON ARGMAX(F, X0, N)
FUNCTI ON FPRI ME(X)
FPRI ME = DERI V1(F, X)
END
ARGVAX = ROOT(FPRIME, X0, N)
END

FUNCTI ON DERI V1(F, X)
EXTERNAL F

ADF(X)

Y = F(X)

END ADF(DERI V1 = TANGENT(Y))
END

FUNCTI ON G\VBI GA(A, B)
PRICE = 20-0.1*A-0.1*B
COSTS = Ax(10- 0. 05+ A)
GVBI GA = AxPRI CE- COSTS
END

FUNCTI ON GVBI GB(A, B)

PRI CE = 20-0. 1+ B- 0. 0999+ A
COSTS = B (10. 005- 0. 05+ B)
GVBI GB = B PRI CE- CCSTS
END

PROGRAM MAI N

READ *, ASTAR

READ *, BSTAR

READ *, N

CALL EQLBRM GVBI GA, G\BI GB, ASTAR, BSTAR, N)
PRINT %, ASTAR, BSTAR

END

AD in Fortran: Implementation 5

variables as arguments, we must adjust all the call sitdsedfidrmerly-nested sub-
program; we must specialize all the subprograms that atisapsubprogram as an
external to also accept the extra closure parameters; gastadl call sites to all
those specialized subprograms to pass those extra paramete

We implement the AD syntax by constructing new subroutihas¢orrespond to
the statements inside eagbF or ADR block, arranging to call the AD tool of choice
on each of those new subroutines, and transforming the litiedkinto a call to the
appropriate tool-generated subroutine.

Nested Subprogramsin Detail
Let us illustrate closure conversion on our example. RegiAX in our example
program:

FUNCTI ON ARGMAX(F, X0, N)
FUNCTI ON FPRI VE(X)
FPRIME = DERIVL(F, X)
END
ARGVAX = ROOT(FPRIME, X0, N)
END

This contains the nested functieRRI ME. We closure convert this as follows. First,
extractFPRI ME to the top level:
FUNCTI ON ARGVAX_FPRI ME(X, F)

ARGVAX_FPRI ME = DERIVL(F, X)
END

FUNCTI ON ARGVAX(F, X0,
ARGVAX = ROOT_1(ARGVAX_FPRIME, F, X0, N)
END

Note the addition of a closure argument Fagince it is freely referenced #PRI MVE,
and the addition of the same closure argument at the calkgiteeFPRI ME is passed
as an external taooT. Then we specializROOT to create a version that accepts the
needed set of closure arguments (in this case one):

FUNCTI ON ROOT_1(F, F1, X0, N)

X = X0

DO 1669 |=1, N

CALL DERIV2_1(F, F1, X, Y, YPR ME)
1669 X = X- Y/ YPRI ME

ROOT 1 = X

END

SinceROOT contained a call t®ERI V2, passing it the external passedrRooT, we
must also specializeeRl V2:

SUBROUTI NE DERIV2_1(F, F1, X, Y, YPRINE)
EXTERNAL F

ADF(X)

Y = F(X, F1)

END ADF(YPRI ME = TANGENT(Y))

END

We must, in general, copy and specialize the portion of thlegcaph where the
nested subprogram travels, which in this case is just twpgsams. During such

6 Alexey Radul, Barak A. Pearlmutter, and Jeffrey Mark Sigki

copying and specialization, we propagate external cotss{erg.,FPRI M through
the call torooT_1, the call tobERI V2_1, and the call site therein) allowing the
elimination of theEXTERNAL declaration for these values. This supports AD tools
that do not allow taking derivatives through calls to exésubprograms.

That is the process for handling one nested subprogram. irexample, the
same is done foF in EQLBRM, Gin F, andH in G. Doing so causes the introduction
of a number of closure arguments, and the specializationrafraber of subpro-
grams to accept those arguments; including perhaps fusfiemializing things that
have already been specialized. The copying also allows igelinfiorm of subpro-
gram reentrancy: even if recursion is disallowed (as initi@thl FORTRAN77) our
nested uses @fRGVAX will cause no difficulties because they will end up callingptw
different specializations ofRGVAX.

Note that we must take care to prevent this process fromdatiog spurious
aliases. For example, BQLBRM, the internal functioF that is passed tROOT closes
over the iteration coum, which is also passed ®oOOT separately. When specializ-
ing ROOT to accept the closure parametergpfve must not passto the specializa-
tion of ROOT twice, lest we run afoul of BRTRAN's prohibition against assigning to
aliased values. Fortunately, such situations are syntdlstiapparent.

Finally, specialization leaves behind unspecialized (marspecialized) versions
of subprograms, which may now be unused, and if so can berglted. In this
case, that includeRooT, DERI V2, ARGVAX, FPRI ME, andDERI V1 from the original
program, as well as some intermediate specializationsafier

AD Syntax in Detail
We implement the AD syntax by first canonicalizing eaci or ADR block to be
a single call to a (new, internal) subroutine, then extrerthose subroutines to the
top level, then rewriting the block to be a call to an AD-trlmmmed version of the
subroutine, and then arranging to call the AD tool of choinesach of those new
subroutines to generate the needed derivatives.

Returning to our example program, closure conversion ofedesubprograms
produced the following specialization DERI V1:

FUNCTI ON DERI V1_1(ASTAR BIGA, BIGB, BSTAR N, X)
ADF(X)

Y = EQLBRM F_G(X, ASTAR, BIGA BIGB, BSTAR N
END ADF(DERIV1_1 = TANGENT(Y))

END

which contains amDF block. We seek to convert this into a form suitable for invok-
ing the AD preprocessor. We first canonicalize by introdg@mew subroutine to
capture the statements in ther block, producing the following:

FUNCTI ON DERI V1 _1(ASTAR, BIGA, BIGB, BSTAR N, X)
SUBROUTI NE ADF1()
Y = EQLBRM F_G(X, ASTAR, BIGA, BIGB, BSTAR N)
END

ADF(X)

CALL ADF1()

END ADF(DERIV1 1 = TANGENT(Y))

END

AD in Fortran: Implementation 7

Extracting the subroutinedr1 to the top level as before yields the following:

SUBRQUTI NE DERI V1_1_ADF1(X, ASTAR, BIGA, BIGB, BSTAR, N, V)
Y = X, ASTAR, BIGA, BIGB, BSTAR N
END

FUNCTI ON DERI V1 _1(ASTAR, BIGA, BIGB, BSTAR N, X)
ADF(X)

CALL DERIV1_1 ADF1(X, ASTAR BIGA, BIGB, BSTAR N, Y)
END ADF(DERIVI 1 = TANGENT(Y))

END

Now we are properly set up to rewrite th®F block into a subroutine call—
specifically, to a subroutine that will be generated froBRl V1_1_ADF1 by AD.
The exact result depends on the AD tool that will be used teitant the derivative
of DERI V1_1_ADF1; for TAPENADE, the generated code looks like this:

FUNCTI ON DERI V1_1(ASTAR, BI GA, BIGB, BSTAR N, X

X Gl =1
ASTAR GL = 0
BSTAR GL = 0

CALL DERIV1_1 ADF1 _GL(X, X Gl, ASTAR ASTAR Gl, BIGA, BIGB,
+BSTAR, BSTAR Gl, N, Y, DERIV1_1)
END

Different naming conventions are used R V1_1_ADF1_GL when generating
code for ADIFOR; the parameter passing conventions aPENADE and ADIFOR
agree in this case.ARFALLEN maintains the types of variables in order to know
whether to generate variables to hold tangents and coté&nyehnich are initialized
to zero if they were not declared in the opening assignmewes gn theADF or ADR
block).

The same must be repeated for eabh andADR block; in our example there are
five in all: two in specializations abERI V1 and three in specializations DERI V2.
We must also specializzg). BRMand its descendants in the call graph, by the process
already illustrated, to remove external calls to the objedtinctions, for the reasons
described earlier.

Finally, we must invoke the user’s preferred AD tool to gextterall the needed
derivatives. Here, ARFALLEN might invoke TAPENADE as follows:

#!' / bin/sh

tapenade -root derivl 2 adf2 -d -o eqlbrmd2 -diffvarnane " _g2"\
-di fffuncnane "_g2" eql brmi2.f

tapenade -root deriv2 1 2 adf4 -d -o eqlbrmi2 -diffvarnane "_g4"\
-di fffuncnane " _g4" eql brm42{, g2}.f

tapenade -root derivl 1 adfl -d -o eqlbrmd2 -diffvarnane " _gi"\
-di fffuncnane " _gl1" eql brm42{, g2, g4}.f

tapenade -root deriv2 1 1 adf3 -d -o eqlbrmi2 -diffvarnane "_g3"\
-di fffuncnane "_g3" eqgl brm42{, g2, g4, gl}.f

tapenade -root deriv2 2 adf5 -d -o eqlbrmd2 -diffvarnane " _g5"\
-di fffuncnane " _g5" eql brm42{, g2, g4, gl, g3}.f

We must take care that multiple invocations of the AD tool émerate the various
derivatives occur in the proper order, which is computabdenfthe call graph of

the program, to ensure that generated derivative codearthatsed in subprograms
to be differentiated are available to be transformed. Famgle, all the derivatives

8 Alexey Radul, Barak A. Pearlmutter, and Jeffrey Mark Sigki

of EQLBRM F_G_H needed for its optimizations must be generated before géngr
derivatives of (generated subprograms that @&afl)BRM F_G. We must also take
care to invoke the AD tool with different prefixes/suffixes, that variables and
subprograms created by one differentiation do not claghtiviisse made by another.

Performance

We tested the performance of code generatedABFELLEN in conjunction with
TAPENADE and with ADIFOR. We executed ARFALLEN once to generate dR-
TRANT77 source using APENADE for the automatic differentiation, and separately
using ADIFOR for the AD. In each case, we compiled the resulting program
(gf ortran4.6.2-9, 64-bit Debian sid,Of ast - f whol e- pr ogr am single pre-
cision) withN = 1000 iterations at each level and timed the execution of itmer

on a 2.93GHz Intel i7 870. For comparison, we translated &mescomputation
into vLAD [5] (Fig. 1), compiled it with SALINGRAD [7], and ran it on the same
machine. SALINGRAD has the perhaps unfair advantage of being an optimizing
compiler with integrated support for AD, so we are pleased FARFALLEN was
able to achieve performance that was nearly competitive.

TAPENADE ADIFOR STALINGRAD
6.97 8.92 5.83

ThevLAD code in Fig. 1 was written with the same organization, vaeiabmes,
subprogram names, and parameter names and order as th&poodi;g BRFEL
code in Listing 1 to help a reader unfamiliar witlt SEME, the language on which
VLAD is based, understand howRFEL andVvLAD both represent the same essen-
tial notions of nested subprograms and the AD disciplineeqliesting derivatives
precisely where they are needed. Because functional-pmoging languages, like
ScHEME andVLAD, prefer higher-order functions (i.e. operators) over tloek

. . . . — =
based style that is prevalent iORTRAN, AD is invoked via theJ and J oper-
ators rather than via theDF and ADR statements. However, there is a one-to-one
correspondence between
T xxxk— y Xy

an operator that takes a functidnas input, along with a primal argumextand
tangent argumentdnd returns both a primal resyland a tangent resuft and the
following:

ADF(TANGENT(X) = X)

y = (X

END ADF(y = TANGENT(Y))

Similarly, there is a one-to-one correspondence between
< § §
J fXXXy—=yxX

an operator that takes a functidnas input, along with a primal argumextand
cotangent resuit and returns both a primal resyland a cotangent argumegtand
the following:

AD in Fortran: Implementation 9

EQLBRM(A, B, 0, bo, n) £ let f (&) 2 let g(a) £ let h(b) £ B(a/,b)
in A(a, ARGMAX (h,bg, n))
in ARGMAX(g,&,n) — &
a* = RoOT(f,ap,n)
inlet h(b) 2 B(a", b)
b* = ARGMAX (h, b, n)
ina*, b*
A
rRoOT(f,x,n)=ifn=0
then x
elseletyy = DERIV2(f,X)
inRoOT(f,x—3,n—1)

DERIV2(f,X) (f,x,1)
ARGMAX(f, g, N) 2et f/(x) 2 DERIV(f,X)
in ROOT(f’,Xo,N)
DERIVI(f,X) 2 et Xy = 7(f,x, 1)
iny
A(a,b) S price=20—0.1xa—0.1xb
costs=ax (10— 0.05x a)
inax price— costs
B(a,b) 2 let price= 20— 0.1x b— 0.0999x a
costs= b x (10.005— 0.05 x b)
in b x price — costs
let ag = READREAL()
bp = READREAL()
n= READREAL()
a*,b* = EQLBRM(A, B, ag, bp, n)
in WRITEREAL(&")
WRITEREAL(b*)

—
£73

Fig. 1 CompletevLAD program for our concrete example with the same organizatiwhfunc-
tionality as the RRFEL program in Listing 1.

ADR(COTANGENT(y) =Y)

y=f(x)
END ADR(X = COTANGENT(X))

The strong analogy between how the callee-derives AD digeijs represented in
both FARFEL andvLAD serves two purposes: it enables the use of thre BIGRAD
compiler technology for compiling ARFEL and facilitates the migration of users
from legacy languages likedRTRAN to more modern ones.

10 Alexey Radul, Barak A. Pearlmutter, and Jeffrey Mark Bigk

4 Conclusion

We have illustrated an implementation of theRFEL extensions to BRTRAN—
nested subprograms and syntax for AD [6]. These extensinakle convenient,
modular programming using a callee-derives paradigm afraatic differentiation.
Our implementation is a preprocessor that translatesEL FORTRAN extensions
into input suitable for an existing AD tool. This strategyables modular, flexible
use of AD in the context of an existing legacy language and ¢bein, without
sacrificing the desirable performance characteristichede tools: in the concrete
example, only 20%—-50% slower than a dedicated AD-enabletpier, depending
on which FORTRAN AD system is used.

Acknowledgements This work was supported, in part, by Science Foundatioramelgrant
09/IN.1/12637, National Science Foundation grant CCF880®, the Naval Research Laboratory
under Contract Number N00173-10-1-G023, and the Army Rekeaaboratory accomplished
under Cooperative Agreement Number W911NF-10-2-0060. VAews, opinions, findings, con-
clusions, or recommendations contained or expressedstiiument or material are those of the
author(s) and do not necessarily reflect or represent thieswe official policies, either expressed
or implied, of SFI, NSF, NRL, the Office of Naval Research, ARL the Irish or U.S. Govern-
ments. The U.S. Government is authorized to reproduce astdhdite reprints for Government
purposes, notwithstanding any copyright notation herein.

References

1. Backus, J.W., Bauer, F.L., Green, J., Katz, C., McCadhyaur, P., Perlis, A.J., Rutishauser,
H., Samelson, K., Vauquois, B., Wegstein, J.H., van Wijnden, A., Woodger, M.: Revised
report on the algorithmic language ALGOL 60. The Computerdal 5(4), 349-367 (1963).
DOI 10.1093/comjni/5.4.349

2. Bischof, C.H., Carle, A., Corliss, G.F., Griewank, A.,\Hand, P.D.: ADIFOR: Generating
derivative codes from Fortran programs. Scientific Prognamg 1(1), 11-29 (1992)

3. Hascoét, L., Pascual, V.: TAPENADE 2.1 user’s guide. foaptechnique 300, INRIA, Sophia
Antipolis (2004). URLhttp: //www. inria.fr/rrrt/rt-0300. htni

4. Johnsson, T.: Lambda lifting: Transforming programsetoursive equations. In: Functional
Programming Languages and Computer Architecture. Sprivigigag, Nancy, France (1985)

5. Pearlmutter, B.A., Siskind, J.M.: Using programminggaage theory to make automatic dif-
ferentiation sound and efficient. In: C.H. Bischof, H.M. &®r, P.D. Hovland, U. Nau-
mann, J. Utke (eds.) Advances in Automatic Differentiatitvecture Notes in Computa-
tional Science and Engineering, vol. 64, pp. 79-90. Springer, Berlin (2008). DOI 10.1007/
978-3-540-68942-B

6. Radul, A., Pearlmutter, B.A., Siskind, J.M.: AD in ForiraPart 1: Design. In: Advances in
Automatic Differentiation, Lecture Notes in ComputatibSaience and Engineering. Springer,
Berlin (2012)

7. Siskind, J.M., Pearlmutter, B.A.: Using polyvariant amifree flow analysis to compile a
higher-order functional-programming language with a-itass derivative operator to efficient
Fortran-like code. Tech. Rep. TR-ECE-08-01, School of &iesl and Computer Engineering,
Purdue University, West Lafayette, IN, USA (2008). URLt p://docs. |i b. purdue.
edu/ ecetr/ 367

