
AD in Fortran
Part 2: Implementation

Alexey Radul, Barak A. Pearlmutter, and Jeffrey Mark Siskind

Abstract We describe an implementation of the FARFEL AD extensions to FOR-
TRAN [6]. The extensions serve to integrate forward and reverse AD directly into
the programming model, with attendant benefits to flexibility, modularity, and ease
of use. The FARFALLEN FARFEL FORTRAN implementation is a “prepreprocessor”
that generates input to existing FORTRAN-based AD tools. In essence, blocks of
code which are targeted for AD by FARFEL constructs are put into subprograms
which capture their lexical variable context and these are closure-converted into
top-level subprograms, rendering them amenable to existing AD preprocessors.

Key words: Nesting, multiple transformation, forward mode, reverse mode, TAPE-
NADE, ADIFOR, programming-language implementation

1 Introduction

The Forward And Reverse Fortran Extension Language (FARFEL) extensions to
FORTRAN enable smooth and modular use of AD [6]. Here, we discuss how FAR-
FEL can be implemented through the use of existing FORTRAN-based AD tools and
compilers. A prepreprocessor transforms FARFEL input into FORTRAN, and invokes
an existing AD system [2, 3] to generate the needed derivatives. When the FARFEL

program involves nested AD, this prepreprocessing becomesquite involved. This
process automates the task of applying AD, including the detailed maneuvers re-
quired for nested application of existing tools, thereby extending the reach and util-
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ity of AD. The process can also make use of a variety of existing FORTRAN-based
AD preprocessors, making it easy for the programmer to switch between them.

The remainder of the paper is organized as follows: Section 2specifies, in detail,
the language extensions from [6] we will be implementing. Wepresent a complete
example program on page 4 to illustrate their use and implementation. Section 3
describes, in detail, our implementation by preprocessor translation to existing tools.
Section 4 summarizes this work’s contributions.

2 Language Extensions

FARFEL provides two principal extensions to FORTRAN: syntax for AD and for
nested subprograms.

Extension 1: AD Syntax
FARFEL adds theADF construct for forward AD:
✞

ADF(TANGENT(var) = expr . . .)
statements
END ADF(var = TANGENT(var) . . .)

Multiple opening and closing assignments are separated by commas. Independent
variables are listed in the “calls” toTANGENT on the left-hand sides of the opening
assignments and are given the specified tangent values. Dependent variables appear
in the “calls” to TANGENT on the right-hand sides of the closing assignments and
the corresponding tangent values are assigned to the indicated destination variables.
The ADF construct uses forward AD to compute the directional derivative of the
dependent variables at the point specified by the vector of independent variables in
the direction specified by the vector of tangent values for the independent variables
and assigns it to the destination variables.

An analogous FARFEL construct supports reverse AD:
✞

ADR(COTANGENT(var) = expr . . .)
statements
END ADR(var = COTANGENT(var) . . .)

Dependent variables are listed in the “calls” toCOTANGENT on left-hand sides of
the opening assignments and are given the specified cotangent values as inputs to
the reverse phase.Independent variables appear in the “calls” toCOTANGENT on the
right-hand sides of the closing assignments and the corresponding cotangent values
at the end of the reverse phase are assigned to the indicated destination variables.
TheADR construct uses reverse AD to compute the gradient with respect to the in-
dependent variables at the point specified by the vector of independent variables in-
duced by the specified gradient with respect to the dependentvariables, and assigns
it to the destination variables. The expressions used to initialize the cotangent inputs
to the reverse phase are evaluated at the end of the forward phase, even though they
appear textually prior to the statements specifying the forward phase. This way, the
direction input to the reverse phase can depend on the resultof the forward phase.
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For bothADF andADR, implied-DO syntax is used to allow arrays in the opening
and closing assignments. By special dispensation, the statementADF(var) is inter-
preted asADF(TANGENT(var)=1) andADR(var) asADR(COTANGENT(var)=1). We
have not yet introduced syntax for, or implemented, vector-of-tangent-vectors and
vector-of-cotangent-vectors modes.

Extension 2: Nested Subprograms
In order to conveniently support distinctions between different variables of differ-
entiation for distinct invocations of AD, as in the example below, we borrow from
ALGOL 60 [1] and generalize the FORTRAN “statement function” construct by al-
lowing subprograms to be defined inside other subprograms, with lexical scope.
As in ALGOL 60, the scope of parameters and declared variables is the local sub-
program, and these may shadow identifiers from the surrounding scope. Implicitly
declared variables have the top-level subprogram as their scope.

Concrete Example
In order to describe the implementation of the above constructs, we employ the
concrete example from the companion paper [6]. The task in the example is to find
an equilibrium(a∗,b∗) of a two-player game with continuous scalar strategiesa and
b and given payoff functionsA andB. The method is to find roots of

a∗ = argmax
a

A(a,argmax
b

B(a∗,b)) (1)

We encode this example in FARFEL as we did in the companion [6]—the full pro-
gram is given, for reference, in Listing 1. The heart of the program is the implemen-
tationEQLBRM of (1). Note that this whole program is only 63 lines of code, with
plenty of modularity boundaries. This code is used as a running example for the
remainder of the paper.

3 Implementation

FARFEL is implemented by the FARFALLEN preprocessor. The current version is
merely a proof of concept, and not production quality: it does not accept the en-
tire FORTRAN77 language, and does not scale. However, its principles of opera-
tion will be unchanged in a forthcoming production-qualityimplementation. Here
we describe the reduction of FARFEL constructs to FORTRAN, relying on existing
FORTRAN-based AD tools for the actual derivative transformations.

FARFEL introduces two new constructs into FORTRAN: nested subprograms and
syntax for requesting AD. We implement nested subprograms by extracting them
to the top level, and communicating the free variables from the enclosing subpro-
gram by passing them as arguments into the new top-level subprogram. This is an
instance ofclosure conversion, a standard class of techniques for converting nested
subprograms to top-level ones [4]. In order to accommodate passing formerly-free
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Listing 1 Complete example FARFEL program: equilibria of a continuous-strategy game.
✞

C ASTAR & BSTAR: GUESSES IN, OPTIMIZED VALUES OUT
SUBROUTINE EQLBRM(BIGA, BIGB, ASTAR, BSTAR, N)
EXTERNAL BIGA, BIGB

FUNCTION F(ASTAR)
FUNCTION G(A)

FUNCTION H(B)
H = BIGB(ASTAR, B)
END

BSTAR = ARGMAX(H, BSTAR, N)
G = BIGA(A, BSTAR)
END

F = ARGMAX(G, ASTAR, N)-ASTAR
END

ASTAR = ROOT(F, ASTAR, N)
END

FUNCTION ROOT(F, X0, N)
X = X0
DO 1669 I=1,N
CALL DERIV2(F, X, Y, YPRIME)

1669 X = X-Y/YPRIME
ROOT = X
END

SUBROUTINE DERIV2(F, X, Y, YPRIME)
EXTERNAL F
ADF(X)
Y = F(X)
END ADF(YPRIME = TANGENT(Y))
END

FUNCTION ARGMAX(F, X0, N)
FUNCTION FPRIME(X)
FPRIME = DERIV1(F, X)
END

ARGMAX = ROOT(FPRIME, X0, N)
END

FUNCTION DERIV1(F, X)
EXTERNAL F
ADF(X)
Y = F(X)
END ADF(DERIV1 = TANGENT(Y))
END

FUNCTION GMBIGA(A, B)
PRICE = 20-0.1*A-0.1*B
COSTS = A*(10-0.05*A)
GMBIGA = A*PRICE-COSTS
END

FUNCTION GMBIGB(A, B)
PRICE = 20-0.1*B-0.0999*A
COSTS = B*(10.005-0.05*B)
GMBIGB = B*PRICE-COSTS
END

PROGRAM MAIN
READ *, ASTAR
READ *, BSTAR
READ *, N
CALL EQLBRM(GMBIGA, GMBIGB, ASTAR, BSTAR, N)
PRINT *, ASTAR, BSTAR
END
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variables as arguments, we must adjust all the call sites of the formerly-nested sub-
program; we must specialize all the subprograms that acceptthat subprogram as an
external to also accept the extra closure parameters; and adjust all call sites to all
those specialized subprograms to pass those extra parameters.

We implement the AD syntax by constructing new subroutines that correspond to
the statements inside eachADF or ADR block, arranging to call the AD tool of choice
on each of those new subroutines, and transforming the blockitself into a call to the
appropriate tool-generated subroutine.

Nested Subprograms in Detail
Let us illustrate closure conversion on our example. RecallARGMAX in our example
program:
✞

FUNCTION ARGMAX(F, X0, N)
FUNCTION FPRIME(X)
FPRIME = DERIV1(F, X)
END

ARGMAX = ROOT(FPRIME, X0, N)
END

This contains the nested functionFPRIME. We closure convert this as follows. First,
extractFPRIME to the top level:
✞

FUNCTION ARGMAX_FPRIME(X, F)
ARGMAX_FPRIME = DERIV1(F, X)
END

FUNCTION ARGMAX(F, X0, N)
ARGMAX = ROOT_1(ARGMAX_FPRIME, F, X0, N)
END

Note the addition of a closure argument forF since it is freely referenced inFPRIME,
and the addition of the same closure argument at the call site, sinceFPRIME is passed
as an external toROOT. Then we specializeROOT to create a version that accepts the
needed set of closure arguments (in this case one):
✞

FUNCTION ROOT_1(F, F1, X0, N)
X = X0
DO 1669 I=1,N
CALL DERIV2_1(F, F1, X, Y, YPRIME)

1669 X = X-Y/YPRIME
ROOT_1 = X
END

SinceROOT contained a call toDERIV2, passing it the external passed toROOT, we
must also specializeDERIV2:
✞

SUBROUTINE DERIV2_1(F, F1, X, Y, YPRIME)
EXTERNAL F
ADF(X)
Y = F(X, F1)
END ADF(YPRIME = TANGENT(Y))
END

We must, in general, copy and specialize the portion of the call graph where the
nested subprogram travels, which in this case is just two subprograms. During such
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copying and specialization, we propagate external constants (e.g.,FPRIME through
the call toROOT_1, the call toDERIV2_1, and the call site therein) allowing the
elimination of theEXTERNAL declaration for these values. This supports AD tools
that do not allow taking derivatives through calls to external subprograms.

That is the process for handling one nested subprogram. In our example, the
same is done forF in EQLBRM, G in F, andH in G. Doing so causes the introduction
of a number of closure arguments, and the specialization of anumber of subpro-
grams to accept those arguments; including perhaps furtherspecializing things that
have already been specialized. The copying also allows a limited form of subpro-
gram reentrancy: even if recursion is disallowed (as in traditional FORTRAN77) our
nested uses ofARGMAX will cause no difficulties because they will end up calling two
different specializations ofARGMAX.

Note that we must take care to prevent this process from introducing spurious
aliases. For example, inEQLBRM, the internal functionF that is passed toROOT closes
over the iteration countN, which is also passed toROOT separately. When specializ-
ing ROOT to accept the closure parameters ofF, we must not passN to the specializa-
tion of ROOT twice, lest we run afoul of FORTRAN’s prohibition against assigning to
aliased values. Fortunately, such situations are syntactically apparent.

Finally, specialization leaves behind unspecialized (or underspecialized) versions
of subprograms, which may now be unused, and if so can be eliminated. In this
case, that includesROOT, DERIV2, ARGMAX, FPRIME, andDERIV1 from the original
program, as well as some intermediate specializations thereof.

AD Syntax in Detail
We implement the AD syntax by first canonicalizing eachADF or ADR block to be
a single call to a (new, internal) subroutine, then extracting those subroutines to the
top level, then rewriting the block to be a call to an AD-transformed version of the
subroutine, and then arranging to call the AD tool of choice on each of those new
subroutines to generate the needed derivatives.

Returning to our example program, closure conversion of nested subprograms
produced the following specialization ofDERIV1:
✞

FUNCTION DERIV1_1(ASTAR, BIGA, BIGB, BSTAR, N, X)
ADF(X)
Y = EQLBRM_F_G(X, ASTAR, BIGA, BIGB, BSTAR, N)
END ADF(DERIV1_1 = TANGENT(Y))
END

which contains anADF block. We seek to convert this into a form suitable for invok-
ing the AD preprocessor. We first canonicalize by introducing a new subroutine to
capture the statements in theADF block, producing the following:
✞

FUNCTION DERIV1_1(ASTAR, BIGA, BIGB, BSTAR, N, X)
SUBROUTINE ADF1()
Y = EQLBRM_F_G(X, ASTAR, BIGA, BIGB, BSTAR, N)
END

ADF(X)
CALL ADF1()
END ADF(DERIV1_1 = TANGENT(Y))
END
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Extracting the subroutineADF1 to the top level as before yields the following:
✞

SUBROUTINE DERIV1_1_ADF1(X, ASTAR, BIGA, BIGB, BSTAR, N, Y)
Y = G(X, ASTAR, BIGA, BIGB, BSTAR, N)
END

FUNCTION DERIV1_1(ASTAR, BIGA, BIGB, BSTAR, N, X)
ADF(X)
CALL DERIV1_1_ADF1(X, ASTAR, BIGA, BIGB, BSTAR, N, Y)
END ADF(DERIV1_1 = TANGENT(Y))
END

Now we are properly set up to rewrite theADF block into a subroutine call—
specifically, to a subroutine that will be generated fromDERIV1_1_ADF1 by AD.
The exact result depends on the AD tool that will be used to construct the derivative
of DERIV1_1_ADF1; for TAPENADE, the generated code looks like this:
✞

FUNCTION DERIV1_1(ASTAR, BIGA, BIGB, BSTAR, N, X)
X_G1 = 1
ASTAR_G1 = 0
BSTAR_G1 = 0
CALL DERIV1_1_ADF1_G1(X, X_G1, ASTAR, ASTAR_G1, BIGA, BIGB,
+BSTAR, BSTAR_G1, N, Y, DERIV1_1)
END

Different naming conventions are used forDERIV1_1_ADF1_G1 when generating
code for ADIFOR; the parameter passing conventions of TAPENADE and ADIFOR

agree in this case. FARFALLEN maintains the types of variables in order to know
whether to generate variables to hold tangents and cotangents (which are initialized
to zero if they were not declared in the opening assignments given in theADF or ADR
block).

The same must be repeated for eachADF andADR block; in our example there are
five in all: two in specializations ofDERIV1 and three in specializations ofDERIV2.
We must also specializeEQLBRM and its descendants in the call graph, by the process
already illustrated, to remove external calls to the objective functions, for the reasons
described earlier.

Finally, we must invoke the user’s preferred AD tool to generate all the needed
derivatives. Here, FARFALLEN might invoke TAPENADE as follows:

#! /bin/sh
tapenade -root deriv1_2_adf2 -d -o eqlbrm42 -diffvarname "_g2"\

-difffuncname "_g2" eqlbrm42.f
tapenade -root deriv2_1_2_adf4 -d -o eqlbrm42 -diffvarname "_g4"\

-difffuncname "_g4" eqlbrm42{,_g2}.f
tapenade -root deriv1_1_adf1 -d -o eqlbrm42 -diffvarname "_g1"\

-difffuncname "_g1" eqlbrm42{,_g2,_g4}.f
tapenade -root deriv2_1_1_adf3 -d -o eqlbrm42 -diffvarname "_g3"\

-difffuncname "_g3" eqlbrm42{,_g2,_g4,_g1}.f
tapenade -root deriv2_2_adf5 -d -o eqlbrm42 -diffvarname "_g5"\

-difffuncname "_g5" eqlbrm42{,_g2,_g4,_g1,_g3}.f

We must take care that multiple invocations of the AD tool to generate the various
derivatives occur in the proper order, which is computable from the call graph of
the program, to ensure that generated derivative codes thatare used in subprograms
to be differentiated are available to be transformed. For example, all the derivatives
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of EQLBRM_F_G_H needed for its optimizations must be generated before generating
derivatives of (generated subprograms that call)EQLBRM_F_G. We must also take
care to invoke the AD tool with different prefixes/suffixes, so that variables and
subprograms created by one differentiation do not clash with those made by another.

Performance
We tested the performance of code generated by FARFALLEN in conjunction with
TAPENADE and with ADIFOR. We executed FARFALLEN once to generate FOR-
TRAN77 source using TAPENADE for the automatic differentiation, and separately
using ADIFOR for the AD. In each case, we compiled the resulting program
(gfortran 4.6.2-9, 64-bit Debian sid,-Ofast -fwhole-program, single pre-
cision) withN = 1000 iterations at each level and timed the execution of the binary
on a 2.93GHz Intel i7 870. For comparison, we translated the same computation
into VLAD [5] (Fig. 1), compiled it with STALINGRAD [7], and ran it on the same
machine. STALINGRAD has the perhaps unfair advantage of being an optimizing
compiler with integrated support for AD, so we are pleased that FARFALLEN was
able to achieve performance that was nearly competitive.

TAPENADE ADIFOR STALINGRAD

6.97 8.92 5.83

TheVLAD code in Fig. 1 was written with the same organization, variable names,
subprogram names, and parameter names and order as the corresponding FARFEL

code in Listing 1 to help a reader unfamiliar with SCHEME, the language on which
VLAD is based, understand how FARFEL andVLAD both represent the same essen-
tial notions of nested subprograms and the AD discipline of requesting derivatives
precisely where they are needed. Because functional-programming languages, like
SCHEME andVLAD , prefer higher-order functions (i.e. operators) over the block-
based style that is prevalent in FORTRAN, AD is invoked via the

−→
J and

←−
J oper-

ators rather than via theADF andADR statements. However, there is a one-to-one
correspondence between

−→
J : f × x× x́→ y× ý

an operator that takes a functionf as input, along with a primal argumentx and
tangent argument ´x and returns both a primal resulty and a tangent result ´y, and the
following:
✞

ADF(TANGENT(x) = x́)
y = f(x)
END ADF(ý = TANGENT(y))

Similarly, there is a one-to-one correspondence between

←−
J : f × x× ỳ→ y× x̀

an operator that takes a functionf as input, along with a primal argumentx and
cotangent result `y and returns both a primal resulty and a cotangent argument `x, and
the following:
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EQLBRM(A,B,a0,b0,n)
△
= let f (a′)

△
= let g(a)

△
= let h(b)

△
= B(a′,b)

in A(a,ARGMAX(h,b0,n))
in ARGMAX(g,a′,n)−a′

a∗ = ROOT( f ,a0,n)

in let h(b)
△
= B(a∗,b)

b∗ = ARGMAX(h,b0,n)
in a∗,b∗

ROOT( f ,x,n)
△
= if n = 0

then x
else let y,y′ = DERIV2( f ,x)

in ROOT( f ,x− y
y′ ,n−1)

DERIV2( f ,x)
△
=
−→
J ( f ,x,1)

ARGMAX( f ,x0,n)
△
= let f ′(x)

△
= DERIV1( f ,x)

in ROOT( f ′,x0,n)

DERIV1( f ,x)
△
= let x, ý =

−→
J ( f ,x,1)

in ý

A(a,b)
△
= let price = 20−0.1×a−0.1×b

costs = a× (10−0.05×a)
in a×price− costs

B(a,b)
△
= let price = 20−0.1×b−0.0999×a

costs = b× (10.005−0.05×b)
in b×price− costs

let a0 = READREAL()
b0 = READREAL()
n = READREAL()
a∗,b∗ = EQLBRM(A,B,a0,b0,n)

in WRITEREAL(a∗)
WRITEREAL(b∗)

Fig. 1 CompleteVLAD program for our concrete example with the same organizationand func-
tionality as the FARFEL program in Listing 1.

✞

ADR(COTANGENT(y) = ỳ)
y = f(x)
END ADR(x̀ = COTANGENT(x))

The strong analogy between how the callee-derives AD discipline is represented in
both FARFEL andVLAD serves two purposes: it enables the use of the STALINGRAD

compiler technology for compiling FARFEL and facilitates the migration of users
from legacy languages like FORTRAN to more modern ones.



10 Alexey Radul, Barak A. Pearlmutter, and Jeffrey Mark Siskind

4 Conclusion

We have illustrated an implementation of the FARFEL extensions to FORTRAN—
nested subprograms and syntax for AD [6]. These extensions enable convenient,
modular programming using a callee-derives paradigm of automatic differentiation.
Our implementation is a preprocessor that translates FARFEL FORTRAN extensions
into input suitable for an existing AD tool. This strategy enables modular, flexible
use of AD in the context of an existing legacy language and tool chain, without
sacrificing the desirable performance characteristics of these tools: in the concrete
example, only 20%–50% slower than a dedicated AD-enabled compiler, depending
on which FORTRAN AD system is used.
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