AD in Fortran
Part 1: Design
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Abstract We propose extensions t@RTRAN which integrate forward and reverse
Automatic Differentiation (AD) directly into the prograning model. Irrespective
of implementation technology, embedding AD constructsatly into the language
extends the reach and convenience of AD while allowing abstn of concepts
of interest to scientific-computing practice, such as raudifig, optimization, and
finding equilibria of continuous games. Multiple differesubprograms for these
tasks can share common interfaces, regardless of whettidroanthey use AD in-
ternally. A programmer can maximize a functibiy calling a library maximizer,
XSTAR=ARGMAX(F, X0) which internally constructs derivatives by AD, with-
out having to learn how to use any particular AD tool. We ilfate the utility of
these extensions by example: programs become much moreseara closer to
traditional mathematical notation. A companion paper dees how these exten-
sions can be implemented by a program that generates inpuising FORTRAN-
based AD tools.

Key words. Nesting, multiple transformation, forward mode, reverssle TAPE-
NADE, ADIFOR, programming-language design

1 Introduction

The invention of ®RTRAN was a major advance for numeric computing, allowing
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Ba Xa—le—Bx
r(a)
to be transcribed into a natural but unambiguous notation

FUNCTI ON G(X,ALPHA BETA)
G=BETA* ALPHA/GAMMA(ALPHA) Xx+ (ALPHA-1) * EXP(-BETA*X)
END

gxa,B) =

which could be automatically translated into an executpldgram. However, tran-
scribing

Xip1=x—f04)/'(x)
to FORTRAN N

FUNCTI ON RAPHSN(F, FPRIME, X0, N)
EXTERNAL F, FPRIME

X = X0
DO 1690 I=1,N

1690 X = X-F(X)/FPRIME(X)
RAPHSN = X
END

requires that thealler provide bothF andrFPRIME. Manually coding the latter from
the former is, in most cases, a mechanical process, butiediad error prone.

This problem has traditionally been addressed by arranfgingn AD prepro-
cessor to producePRIME [12, 14]. That breakthrough technology not only relieves
the programmer of the burden of mechanical coding of deévieatalculation codes,
it also allows the derivative code to be updated automafjeisuring consistency
and correctness. However, thaaller derives discipline has several practical diffi-
culties. First, the user must learn how to use the AD premsmewhich constitutes
a surprisingly serious barrier to adoption. Second, it makeery difficult to ex-
periment with the use of different sorts of derivatives (eadding a Hessian-vector
product step in an optimization) in such called subprograms experiment with
different AD preprocessors. Third, although preprocessdght be able to process
code which has already been processed in order to implenestead derivatives,
the maneuvers required by current tools can be somewhateaft@]. Fourth, soft-
ware engineering principles of locality and atomicity aedny violated: knowl-
edge of what derivatives are needed is distributed in a numblecations which
must be kept consistent; and redundant information, whiaktralso be kept con-
sistent, is being passed, often down a long call chain. Wargit to solve these
problems, making the use of AD more concise, convenientjgndive to the sci-
entific programmer, while keeping to the spirit dbRTRAN. This is done using the
Forward And Reverse Fortran Extension Language or FARFEL, a small set of ex-
tensions to BRTRAN, in concert with an implementation strategy which levesage
existing FORTRAN compilers and AD preprocessors [2, 5].

The remainder of the paper is organized as follows: Sectibes2ribes kERFEL.
Section 3 describes a concrete exampleFEL program to both motivate and illu-
minate the proposed extensions. Section 4 situates thisiwdts broader context.
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Section 5 summarizes this work’s contributions. A comparpaper [9] describes
how FARFEL can be implemented by generating input to existing AD tools.

2 Language Extensions

FARFEL consists of two principal extensions t@RTRAN: syntax for AD and for
nested subprograms. We currently support ordrFRAN77, but there is no barrier,
in principle, to adding ERFEL to more recent dialects.

Extension 1: AD Syntax
Traditional mathematical notation allows one to specify

/=3 (7o 3(F))

By analogy, we extend RTRAN to encode this as

PHI = 1/SQRT(2 * Pl * SIGMAw+ 2) * EXP(-0.5 *((X-XBAR)/SIGMA) ** 2)
END ADF(PHIPRM = TANGENT(PHI))

ADF( TANGENT(SIGMA) = 1) (

which computes the derivativediPRMof PHI with respect tsIGMAby forward AD.
For syntactic details see companion paper [9].

An analogous ERFEL construct supports computing the same derivative with

reverse AD:

PHI = 1/SQRT(2 * Pl * SIGMAx 2) * EXP(-0.5 *((X-XBAR)/SIGMA) # 2)
END ADR(PHIPRM = COTANGENT(SIGMA))

ADR( COTANGENT (PHI) = 1) (

Note that with thenDR construct, thelependent variable appears at the beginning of

the block and théndependent variable at the end—the variables and assignments in

the opening and closing statements specify the desiredsripiand outputs from
the reverse phase, whereas the statements inside the ledkeg forward phase.

These constructs allow not just convenient expression gftAibalso modularity
and encapsulation of code which employs AD. For instancesamewrite a general
scalar-derivative subprograbERIV1 at user level

FUNCTI ON DERIVL(F, X)
EXTERNAL F

ADF(X)

Y = F(X)

END ADF(DERIV1 = TANGENT(Y))
END

which could be used in, for example,

FUNCTI ON PHI(SIGMA)

PHI = 1/SQRT(2 * Pl * SIGMAw+ 2) * EXP(-0.5 *((X-XBAR)/SIGMA) ** 2)
END

PHIPRM = DERIV1(PHI, SIGMA)
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DERIV1 can be changed to use reverse AD without changing its API:

FUNCTI ON DERIVL(F, X)

EXTERNAL F

ADR(Y)

Y = F(X)

END ADR(DERIV1 = COTANGENT(X))
END

allowing codes written wittDERIV1 to readily switch between using forward and
reverse AD.

To take a more elaborate example, we can write a generalegactlculation
GRADusing repeated forward AD:

SUBROUTI NE GRAD(F, X, N, DX)
EXTERNAL F
DO 1492 I=1,N
ADF( TANGENT(X(J)) = 1-MINO(IABS(I-J),1), J=1,N)
Y = F(X
1492 END ADF(DX(I) = TANGENT(Y))
END

(Note that thexDF andADR constructs support impliedo syntax for arrays.)
This can be modified to instead use reverse AD without charthie API:

SUBROUTI NE GRAD(F, X, N, DX)
EXTERNAL F

ADR(Y)

Y = F(X)

END ADR(DX(I) = COTANGENT(X(I)), I=1,N)
END

Although not intended to support checkpoint-reverse AD,@nstructs are suffi-
ciently powerful to express a reverse checkpoint:

C CHECKPO NT REVERSE F->G. BOTH 1ST ARG IN, 2ND ARG OUT
CALL F(X, V)
ADR( COTANGENT(Z(l)) = ..., I=1,NZ)
CALL G(Y, 2)

END ADR(DY(I) = COTANGENT(Y(l)), 1=1,NY)
ADR( COTANGENT(Y(l)) = DY(I), I=1,NY)

CALL F(X, Y)

END ADR(DX(I) = COTANGENT(X(I)), 1=1,NX)

This sort of encapsulation empowers numeric programmegsrtgeniently ex-
periment with the choice of differentiation method, or witlie use of various sorts
of derivatives, including higher-order derivatives, vaith tedious modification of
lengthy call chains.

Extension 2: Nested Subprograms
We borrow from AL.GoL 60 [1] and generalize thedRTRAN “statement function”
construct by allowing subprograms to be defined inside oghbprograms, with
lexical scope.

For example, given a univariate maximizéRGMAXwe can express the idea of
line search as follows:
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C MAXIM ZE F ALONG THE LI NE PARALLEL TO XDI R THROUGH X
SUBROUTI NE LINMAX(F, X, XDIR, LENX, N, XOUT)
EXTERNAL F

DI MENSI ON' Y(50)
FUNCTI ON ALINE(DIST)
DO 2012 I=1,LENX
2012 Y(l) = X()+DIST  *XDIR()
ALINE = F(Y)
END
BESTD = ARGMAX(ALINE, 0.0, N)
DO 2013 I=1,LENX
2013 XOUT(l) = X(I)+BESTD *XDIR(l)
END

Here we are using a library univariate maximizer to maxintiee univariate func-
tion ALINE, which maps the distance along the given direction to theevaf our
multidimensional function of interestat that point. Note thaiLINE refers to vari-
ables defined in its enclosing scope, nankl¥, XDIR, LENX, andY. Note that if
ARGMAXises derivative information, AD will be performed autornaliy onALINE .

3 Concrete Example

We employ a concrete example to show the convenience of theeaibnstructs.
We will also illustrate the implementation on this exampig9]. Let two compa-
nies, Apple and Banana, be engaged in competition in a confastion acces-
sories market. Each chooses a quantity of their respeative tp produce, and sells
all produced units at a price determined by consumer demastdus model the
goods as being distinct, but partial substitutes, so thaitahility of products of A
decreases demand for products of B and vice versa (thouglapenot the same
amount). We model both companies as having market powehngsprice each gets
will depend on both their own output and their competitoEach company faces
(different) production costs and seeks to maximize its predi we can model this
situation as a two player game. Let us further assume thajubatities involved
are large enough that discretization effects can be disleda

An equilibrium(a*, b*) of a two-player game with continuous scalar strategies
andb and payoff function#\(a, b) andB(a, b) must satisfy a system of equations:

a" = argmax(a,b*) b* = argmaB(a*,b) (1)
a b
Equilibria can be sought by finding roots of

a" = argmaXA(a,argmaxB(a“, b)) (2)
a b

which is the technique we shall emplbJranslated into computer code in the most
natural way, solving this equation involves a call to an wj#ation subprogram
within the function passed to an optimization subprograselfiwithin the function
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passed to a root-finding subprogram. If said optimizatios oot-finding subpro-
grams need derivative information, this gives rise to dgepkted AD.

Note that in (2), the payoff functioB is bivariate but argmax takes a univariate
(in the variable of maximization) objective function. Taevariable passed tB is
free in the innermost argmax expression. Free variables ocduraily in mathe-
matical notation, and we support them by allowing nestegmadram definitions.

We can use our extensions to code finding the roots of (2) inwalsstyle:

C ASTAR & BSTAR: GUESSES IN, OPTIM ZED VALUES OUT
SUBROUTI NE EQLBRM(BIGA, BIGB, ASTAR, BSTAR, N)
EXTERNAL BIGA, BIGB

FUNCTI ON F(ASTAR)
FUNCTI ON' G(A)
FUNCTI ON H(B)
H = BIGB(ASTAR, B)
END
BSTAR = ARGMAX(H, BSTAR, N)
G = BIGA(A, BSTAR)
END
F = ARGMAX(G, ASTAR, N)-ASTAR
END
ASTAR = ROOT(F, ASTAR, N)
END

where we implement just the minimal cores of one-dimendiopémization and
root finding to illustrate the essential point — root findingthe Rhapson method:

FUNCTI ON ROOT(F, X0, N)

X = X0

DO 1669 I=1,N

CALL DERIV2(F, X, Y, YPRIME)
1669 X = X-Y/YPRIME

ROOT = X

END

SUBROUTI NE DERIV2(F, X, Y, YPRIME)
EXTERNAL F

ADF(X)

Y = F(X)

END ADF(YPRIME = TANGENT(Y))

END

and optimization by finding the root of the derivative:

FUNCTI ON ARGMAX(F, X0, N)
FUNCTI ON' FPRIME(X)
FPRIME = DERIVL(F, X)
END
ARGMAX = ROOT(FPRIME, X0, N)
END

1 The existence or uniqueness of an equilibrium is not in gereeraranteed, but our particular
andB have a unique equilibrium. Coordinate descent (altergaiptimization ofa* andb*) would
require less nesting, but has inferior convergence priggerlthough this example involves AD
through iterative processes, we do not address that isshisiwork: it is beyond the scope of this
paper, and used here only in a benign fashion, for vividness.
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On our concrete objective functions these converge rapsaiyor clarity we skip
the clutter of convergence detection.

This strategy impels us to compute derivatives nested figp,de a more compli-
cated pattern than just a fifth-order derivative of a singlection. This undertaking
is nontrivial with current AD tools [10], but becomes straifiprward with the pro-
posed extensions—embedded AD syntax and nested subprograke it straight-
forward to code sophisticated methods that require compdgterns of derivative
information.

4 Discussion

The FARFEL AD extensions hew to the spirit of dRTRAN, which tends to prefer
blocks rather than higher-order operators for semantistcocts. The most straight-
forward implementation technology involves changing $farmed blocks into sub-
programs that capture their lexical variable context anduale-converting these into
top-level subprograms, rendering them amenable to priogessth existing tools
[9]. Since the machinery for nested subprograms is preatotying them imposes
little additional implementation effort. Moreover, as sée the example above, that
extension makes code that involves heavy use of higherdudetions, which is
encouraged by the availability of the AD constructs, moraightforward. In this
sense AD blocks and nested subprograms interact syneedjigti

These new constructs are quite expressive, but this vemessipeness can tax
many implementations, which might not support some contlwna or usages. For
instance, code which makes resolution of the AD at compiteetimpossible (an
n-th derivative subprogram, say) would be impossible to suppithout a dynamic
run-time AD mechanism. This would typically not be avaimbAnother common
restriction would be that many tools do not support reverselerat all and even
those that do typically do not allow nesting over reverse ey@ither reverse-over-
reverse or forward-over-reverse. It is the responsibiitythe implementation to
reject such programs with a cogent error.

The FARFEL extensions are implemented by theRFALLEN preprocessor [9],
which generates input for and invokes existing AD tools.sTleverages existing
AD systems to provide the differentiation functionalityaruniform and integrated
way, extending the reach of AD by making its use easier, materal, and more
widely applicable.

Such a prepreprocessor can target different AD systems QikiFOR [2] and
TAPENADE [5]), allowing easy porting of code from one AD system to deot It
could even mix AD systems, for example usingPENADE to reverse-transform
code generated by usingDAFoR in forward mode, capturing their respective ad-
vantages for the application at hand. The effort of impletimgnsuch retargetings
and mixings could then be factored to one developer (of tapneiprocessor) instead
of many end users of AD.
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A more important benefit of extendingdRTRAN with AD syntax and nested
subprograms is that a host of notions become reusable efi@ts—not just first-
order derivatives, but also their variations, combinatiaand uses, e.g., Jacobians,
Hessians, Hessian-vector products, filters, edge degdtourier transforms, con-
volutions, Hamiltonians, optimizations, integrationffeliential-equation solvers.
The interfaces to different methods for these tasks can loemaich more uniform
because, as oWRGMAXIid, they can accept subprograms that just accept the vari-
ables of interest (in this case, the argument of maximinatmd take any needed
side information from their lexical scope; and subprograoch as\RGMAXan ob-
tain any derivative information they wish from AD withoutviag to demand it be
passed in as arguments. So different maximization methaadse tried out on the
same objective function with ease, regardless of how mudkat&e information
they require; and at the same time, different objectivetions, that carry different
side information, can be maximized by the same maximizatidoprogram without
having to adjust it to transmit the needed side informatissentially, derivatives
are requested where they are needed, and the implemendatsnthe necessary
bookkeeping.

These modularity benefits are illustrated by our examplgnano: the RRFEL
input is only 63 lines of code, whereas the amount of codepgaass into, which
is comparable to what would need to be written by hand withloese extensions,
weighs in at a much more substantial 164 fetPENADE and 315 for ADIFOR,
including the configuration data needed to run the AD preggsars to produce
the needed derivatives. Manually performing the 5 nestg@diagtions of AD this
example calls for is a tedious, error prone, multi-hour ffavhich must be un-
dertaken separately for each preprocessor one wishes&xigting AD tools do
already save the major labor of manually implementing @gine and gradient sub-
programs, and keeping them in sync with the subprogramgli#fiierentiated. The
further preprocessing step outlined above leverages thekeinto being even more
useful. For larger programs, the savings of implementadimh maintenance effort
would be considerable.

The present suggestion is not, of course, limited GRFRAN. Nested subpro-
grams have gained wide adoption in programming-languag@ue from A -
GOL 60 and beyond, and have yielded proven gains in programnogiuptivity.
Their advantages for code expressiveness have led to dmsotiith lexical scope
being used as a mathematical formalism for reasoning almwapating [4], to pro-
gramming languages organized around the function as tineapyiprogram con-
struct [7], and to compilers that specialize in the efficiegresentation and use of
functions [6, 13].

One can also adebr- andADR-like constructs to other languages that have pre-
processor implementations of AD, for exampteand Abic [3]. One would not
even need to add nested subprograms in the preprocessauskecc already im-
plements them foeNuU c. Doing so would expand the convenience (and therefore
reach) of existing AD technology even further.

2 A detailed step-by-step discussion of the transformaticthie example along with all interme-
diate code is available attp://www.bcl.hamilton.ie/ ~ qgobi/fortran/
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Fig. 1 Performance com- CPU Time (seconds)
parison. Smaller is faster. 10|
Numeric solution of (2) 8.92

with above RRFEL code,
N = 1000 iterations at each

. 6.97
level, FARFALLEN targeting
two FORTRAN-based AD 5.83
tools; for comparison, the
same computation is coded I 1
in VLAD [8] and compiled
with STALINGRAD [11].
Computer: Intel i7 870 @
2.93GHz, GORTRAN4.6.2-
9, 64-bit Debian sid;Ofast
-fwhole-program , single

precision. See [9] for details. TAPENADE ADIFOR  STALINGRAD

[

o

Retrofitting AD onto existing languages by preprocessingiswithout its limi-
tations, however. Efficient AD preprocessors must constawall graph in order to
determine which subprograms to transform, along with aetaef other tasks al-
ready performed by the compiler. Moreover, optimizing cderp cannot be relied
upon to aggressively optimize intricate machine-gendretele, as such code often
exceeds heuristic cutoffs in various optimization transfations. This imposes a
surprisingly serious limitation on AD preprocessors. (@gr, these also imply a
significant duplication of effort, while providing room feemantic disagreements
between AD preprocessors and compilers which can lead teduims.) This leads
us to anticipate considerable performance gains from diggjgan optimizing com-
piler with integrated AD. Indeed, translating our concrexample intovLAD [8]
and compiling with SALINGRAD [11], our prototype AD-enabled compiler, justi-
fies that suspicion (see Fig. 1). We therefore plan to makena back-end available
in version 2 of ARFALLEN.

5 Conclusion

We have defined and motivated extensions GrRFRAN for convenient, modular
programming using automatic differentiation. The extensican be implemented
as a prepreprocessor [9]. This strategy enables moduleibléeuse of AD in the
context of an existing legacy language and tool chain, witlsacrificing the desir-
able performance characteristics of these tools: only e2@—50% slower than a
dedicated AD-enabled compiler, depending on whiclRFRAN AD system is used.
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