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Abstract

Iterative gradient methods like Levenberg-Marquardt (LM)are in
widespread use for source localization from electroencephalographic
(EEG) and magnetoencephalographic (MEG) signals. Unfortunately
LM depends sensitively on the initial guess, particularly (and counter-
intuitively) at higher signal-to-noise ratios, necessitating repeated runs.
This, combined with LM’s high per-step cost, makes its computational
burden quite high. To reduce this burden, we trained a multilayer per-
ceptron (MLP) as a real-time localizer. We used an analytical model
of quasistatic electromagnetic propagation through the head to map ran-
domly chosen dipoles to sensor activities, and trained an MLP to invert
this mapping in the presence of various sorts of noise.With realistic
noise, our MLP is about five hundred times faster thann-start-LM with
n = 4 to match accuracies, while our hybrid MLP-start-LM is aboutfour
times more accurate and thirteen times faster than 4-start-LM.

1 Introduction

Source localization of EEG and MEG signals is important in medical diagnosis of con-
ditions like epilepsy, in surgical planning, and in neuroscience research. Assuming dipo-
lar sources, there are a number of localization methods in use (Hämäläinen et al., 1993).
Among them, optimization using an iterative gradient method like LM (Levenberg, 1944;
Marquardt, 1963) is one of the best, in terms of accuracy and computational burden. How-
ever, gradient methods require both a differentiable forward model and an initial guess.
As we shall see, the efficiency and accuracy of the most popular gradient method for this
problem, LM, depends sensitively on the initial guess, particularly at higher S/N ratios.

There is therefore motivation to build faster and more accurate source localizers. This is
particularly important for our real time MEG brain-computer interface system, as we need
to localize BSS-separated components in real time.

Since it is easy to create synthetic data consisting of pairsof corresponding dipole locations
and sensor signals, it is tempting to train a universal approximator to solve the inverse
problem directly,i.e. to map sensor signals directly to the dipole location and moment. The
multilayer perceptron (MLP) of Rumelhart et al. (1986) has been popular for this purpose.



MLPs were first used for EEG dipole source localization and presented as feasible source
localizers by Abeyratne et al. (1991), and a MLP structure composed of six separate net-
works was later used for EEG dipole localization by Zhang et al. (1998). Kinouchi et al.
(1996) first used MLPs for MEG source localization by training on a noise-free dataset in
spherical shell, while Yuasa et al. (1998) studied the two-dipole case for EEG dipole source
localization under the assumption that each source dipole is in a restricted region. Hoey
et al. (2000) investigated EEG measurements for both spherical and realistic head models,
trained on a randomly generated noise-free dataset, and presented a comparison between
MLP and iterative methods for localization with noisy signals at three fixed dipole loca-
tions. Sun and Sclabassi (2000) adapted an MLP to calculate forward EEG solutions from
a spheroidal head model.

Here we train an MLP to localize dipoles from MEG measurements, and measure the effi-
cacy of the resulting network under a variety of conditions.Its most interesting use is as a
generator of the initial parameter values for LM, a role in which it excels.

2 Synthetic data

The synthetic data used in our experiments consists
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of corresponding pairs of dipole locations and mo-
ments, and sensor activations. The sensor activa-
tions are calculated by adding the results of a for-
ward model and a noise model.

Dipoles within the training and testing set were
drawn uniformly from a spherical region with a
slice removed, as shown on the right. The train-
ing set used dipoles from the larger region, while
the test set contained only dipoles from the smaller
inner region.

2.1 Forward model

We use a standard analytic forward model of quasistatic electromagnetic propagation in a
spherical head model (Sarvas, 1987; Mosher et al., 1999), with the sensor geometry of a
4D Neuroimaging Neuromag-122 gradiometer.

2.2 Noise model

For single trial data, the sensors in MEG systems have poor S/N ratios since MEG data is
strongly contaminated not only by intrinsic sensor noise, but also by external fields, fields
generated by various parts of the body (heart, eye muscles, retina), and parts of the brain
not under study. Blind source separation of MEG data can drastically improve the situation
by segregating noise from signal (Vigário et al., 1998; Tang et al., 1999), and the sensor
attenuation vectors of the BSS-separated components can bewell localized to equivalent
current dipoles (Tang et al., 2000). However, the recoveredfield maps can be quite noisy,
and conventional localization techniques require manual interaction.

In order to properly compare the performance of various localizers, we need a dataset for
which we know the ground truth, but which contains the sorts of noise encountered in actual
MEG recordings (Kwon et al., 2000). To this end, we created three noise processes with
which to additively contaminate synthetic sensor readings. These are: uncorrelated Gaus-
sian noise, correlated noise, and actual noise. The uncorrelated Gaussian noise is generated
by simply drawing a Gaussian-distributed random number foreach sensor. Correlated noise
is made using the method of Lütkenhöner (1994),



1. equally well distribute 900 dipoles on a spherical surface, with dipole moments
drawn from a zero-mean spherical Gaussian.

2. calculate a sensor activation through the analytic forward model for each dipole
for each sensor and sum over all dipoles at each sensor.

3. scale the resultant sensor activation vector to yield a suitable RMS power.

4. use this vector as the noise.

Actual noise was taken from MEG recordings during periods inwhich the brain region
of interest in the experiment was quiescent. These signals were not averaged. The actual
noise, without scaling, has an RMS of roughlyP

n

= 50–100 fT/cm.

We scaled the additive noise to make the RMS power of the various sorts of noise equal.
We measured the S/N ratio of a data set using the ratios of the powers in the signal and the
noise: S/N (in dB)= 10 log

10

P

s

=P

n whereP s is the RMS (square root of mean square)
of the sensor readings from the dipole andP

n is the RMS of the sensor readings from the
noise.

3 Multilayer Perceptron

The MLP charged with approximating the inverse mapping had an input layer of 122 units,
one for each sensor; two hidden layers withn

1

andn
2

units respectively, and an output
layer of 6 units, representing the dipole location(x; y; z) and moment(m

x

;m

y

;m

z

). The
output units had a linear activation functions, while the hidden units had hyperbolic tangent
activation functions to accelerate training (LeCun et al.,1991). All units had bias inputs,
adjacent layers were fully connected, and there were no cut-through connections.

The 122 MEG sensor activations were scaled so that the RMS value was 0.5, and the corre-
sponding dipole moment was scaled by the same factor. Dipolelocation and dipole moment
parameters were further scaled down to ensure that they wereunder 80% of saturation of
the output units.

The network weights were initialized with uniformly distributed random values between
�0:1. Vanilla online backpropagation was used for training. No momentum was used, and
� was chosen empirically.

3.1 MLP structural optimization

Beginning with intuitions drawn from the explorations of suitable numbers of hidden units
by Hoey et al. (2000) for EEG localization, we empirically measured the tradeoff between
approximation accuracy and computation time. Generalization was not a serious consid-
eration, since training sets of arbitrary size could be easily constructed: our training sets
ranged from 5,000–20,000, as circumstances dictated.

For practical reasons, we constrained our experiments to networks with no more than 110
hidden units in either hidden layer. We varied the number of hidden units in each layer
from 10 to 110, in steps of 10, withn

1

� n

2

. Each MLP was trained with a noise-free
training dataset of 5,000 training exemplars, and the mean localization error for a noise-
free test dataset of 2,500 was measured after 500 epochs of training. Training each network
took up to two hours on an 800 MHz AMD Athlon computer. For eachsize, five runs were
performed and the errors averaged.

The calculation time was measured in terms of equivalent adds for a forward pass,i.e.a lo-
calization. The number of equivalent additions per addition, multiplication, and hyperbolic
tangent were about 1, 3, and 33, as measured on the above CPU. The equivalent floating



points additions for the 122–n
1

–n
2

–6 MLP structure is therefore(122n
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1
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+6n
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)+
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1

n

2

+ 123n

1

+ 7n

2
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1
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2

).

Figure 1 shows both average lo-

122−60−20−6

Training result
Testing result

Each point depicts a different MLP structure.
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Figure 1: Mean localization error versus calculation
time, as a parametric function of MLP structure. A
noise-free synthetic dataset was used for both training
and testing.

calization error for training and
testing versus calculation time
for a localization. Each point
in the figure describes a different
network architecture. When the
number of additions is small lo-
calization error is high. Increas-
ing the computation reduces the
localization error. The accuracy
levels off after a while, probably
due to incomplete convergence
of the network training. From
this result we choose the suit-
able MLP size as 122–60–20–6,
as indicted in Figure 1. For our
purposes this seemed a reason-
able tradeoff between computa-
tion and accuracy.

We constructed four training datasets, each with 20,000 exemplars, differing only in the
type of noise: none, gaussian white, correlated, and actual(Section 2.2). No matter what a
network was trained with, we always tested using actual noise. As described in Section 2,
the S/N ratio was controlled by scaling the additive noise.

It took 500 epochs and about four hours on an 800 MHz AMD Athlon, to train a network
of the selected architecture on a noisy dataset.

4 Effect of the initial guess on LM Localization

To see how the initial guess effects the LM localizer, we measured the localization per-
formance of LM as a function of the distance from the initial dipole location to the actual
location. The initial guess was chosen randomly on a sphere of radiusd centered on the
target.

For each S/N ratio, 300 noisy exemplars were created. The S/Nranged from 0–11 dB,
and the distanced from 0–6 cm in steps of 1 cm. For each sensor activation and initial
guess, LM finds the dipole parameters that minimize a quadratic function (Hämäläinen
et al., 1993) of the difference between the predicted and input sensor activations,

(x) = jjB(x;Q(x)) �B

m

jj

2

�

�1

(1)

wherejjvjj2
A

= v

T

Av, we defineB(x;Q) = F(x)Q, andx andQ denote a source dipole
location vector and a source dipole moment vector, andQ can be expressed by the least
square method as:Q(x) = (F

T

F)

�1

F

T

B

m

.

B

m

andB(x;Q(x)) are 122-element vectors with measured and calculated sensor activa-
tions through the forward model, respectively, andF(x) is the kernel of a spherical head
model (Mosher et al., 1999).� is the noise covariance matrix, which is an identity matrix
for spherical zero mean unit variance gaussian noise. If thenoise is known, the covariance
matrix can be easily calculated. However noise is generallyunknown, so in reality people
often assume a spherical covariance matrix. Alternatively, one can measure the sensor ac-
tivations before stimulation or long after stimulation, and calculate the covariance matrix
of those measurements. Since both of these techniques are popular, we simulate each. Fig-
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Figure 2: Mean localization error of 1-start-LM as a function of S/N at varying distances
d between the initial guess and the actual source dipole. Left: spherical covariance matrix.
Right: measured covariance matrix.

ure 2 shows the mean localization error for 300 test sets of varying S/N, for both spherical
and empirical covariance matrices.

Figure 3 shows the mean localization error
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Figure 3: Localization error versus distanced

between LM using spherical covariance and
LM using measured covariance. S/N ranges
from 0–11 dB.

for 3,300 activations with various S/N as
the distance between the target and the ini-
tial guess is varied. Figure 2 shows that the
closer the initial guess, the better the per-
formance, for the both covariance assump-
tions. With a good initial guess the empir-
ical covariance yields much better local-
ization performance, but at the expense of
performance when the initial guess is fur-
ther from the target.

These experiments show that signals hav-
ing high S/N show a greater degradation
as the initial guess is moved away from
the target! One can attempt to compensate
for this effect by trying multiple random
restarts, for ann-start-LM algorithm. Localization performance of this levels out quickly,
with the point of diminishing returns at aboutn = 4.

These results motivated us to construct a hybrid system, in which the MLP’s output is used
as the initial guess for LM. As we shall see in the next section, this MLP-start-LM performs
very well indeed.

5 Comparative Performance: MLP, LM, MLP-start-LM

We tuned LM for good performance. We settled on LM with four re-starts at the fixed
initial points(0:;�6:9282; 1:), (�6:; 3:4641; 1:), (6:; 3:4641; 1:), and(0:01; 0:01; 6:1962),
in units of cm. The covariance matrix was calculated from actual noise. We call this tuned
system “4-start-LM.” Modestly increasing the number of restarts increases the computa-
tional burden without much decreasing localization error.

Each of the MLP localizers from Section 3 was used as an LM initializer, for four variant
MLP-start-LM localizers. The performance of all three localization systems, trained with
various sorts of noise, is shown as a function of S/N in Figure4. MLP-start-LM shows
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Figure 4: Mean localization error versus S/N for 4-start-LM, MLP, and MLP-start-LM.
Four different sorts of training noise are shown. In all cases, testing used actual noise.

algorithm 4-start-LM MLP MLP-start-LM
trained noise — N W C B N W C B
time (ms) 448.6 0.5 0.5 0.5 0.5 57.4 42.1 45.6 34.6
error (mm) 11.6 29.2 17.7 19.5 11.9 10.9 5.0 6.1 2.8

Table 1: Comparison of performance on actual-noise test setof conventional Levenberg-
Marquardt source localizer; trained MLP; and hybrid system. Each number is an average
over 4,500 localizations, so the error bars are negligible.The training used various sorts of
noise (N=None, W=White, C=Correlated, B=Actual). Naturally performance is best when
the training noise is drawn from the same distribution as thetesting noise.

the best localization performance across a broad range of training noise and S/N. A grand
summary, averaged across various S/N conditions, is shown in Table 1.

6 Conclusion

We showed that initial guess is very important for the Levenberg-Marquardt localization
method, and that LM performs much better with a good initial guess. The multilayer per-
ceptron was shown to give good performance with reasonable accuracy across a range of
mismatches between training and testing noise.

The MLP’s localization accuracy was comparable to 4-start-LM’s, at one five hundredth
the computational burden. This motivated us to construct a hybrid system, MLP-start-LM,
which improves the localization accuracy beyond any other practical techniques available
to us (by a factor of about four) while reducing the computational burden to less than a
tenth that of 4-start-LM.1

A number of extensions are planned in the immediate future: we will integrate a more
sophisticated forward model already developed in our laboratory, we will experiment with

1The reason the computational burden is reduced by more than afactor of four, even though there
is one LM instead of four, is that the initial guess is closer so the LM optimization is much faster.



secondary dipoles as the noise, and we will do a post-LM cleanup pass with an MLP trained
to remove the bias that LM can introduce.
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