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Abstrat

The blind soure separation problem is to extrat the underlying

soure signals from a set of their linear mixtures, where the mixing

matrix is unknown. This situation is ommon, eg in aoustis, ra-

dio, and medial signal proessing. We exploit the property of the

soures to have a sparse representation in a orresponding (possi-

bly overomplete) signal ditionary. Suh a ditionary may on-

sist of wavelets, wavelet pakets, et., or be obtained by learning

from a given family of signals. Starting from the maximum poste-

riori framework, whih is appliable to the ase of more soures

than mixtures, we derive a few other ategories of objetive fun-

tions, whih provide faster and more robust omputations, when

there are an equal number of soures and mixtures. Our experi-

ments with arti�ial signals and with musial sounds demonstrate

signi�antly better separation than other known tehniques.



1 Introdution

We onsider the problem of blind separation of soure signals from a set of

their linear mixtures, inluding the ase when the number of soures is larger

than the number of mixtures. This work an be onsidered a natural gener-

alization of the Bell-Sejnowski Infomax [2℄ and maximum posteriori [13, 15℄

methods of blind soure separation. We assume that the soure signals have a

sparse representation in a orresponding (possibly overomplete) signal di-

tionary. In this way independene and sparsity are not required from the

signals themselves, but rather from their deomposition oeÆients, whih is

more natural in many pratial ases. On the other hand our approah may

be onsidered an extension of basis pursuit [7℄ to the ase of signal mixtures.

This paper is organized as follows. Setion 2 gives the problem formu-

lation and assumptions. In Setion 3 we present the maximum posteriori

approah, whih is appliable to the ase of more soures than mixtures.

In Setion 4 we derive another objetive funtion, whih provides more ro-

bust omputations when there are an equal number of soures and mixtures.

Setion 5 presents sequential soure extration using quadrati programming

with non-onvex quadrati onstraints. Finally, in Setion 6 we derive a faster

method for non-overomplete ditionaries and demonstrate high-quality sep-

aration of synthetially mixed musial sounds.

2 Problem Formulation and Assumptions

Let x(t) be an N -dimensional vetor of sensor signals whih is an instan-

taneous linear mixture of M unknown \independent" soures s(t), possibly

orrupted by additive noise �(t):

x(t) = As(t) + �(t) (1)

We will estimate the unknown mixing matrix of real numbers A (up to row

permutation and saling) and the soure signal s(t) (up to omponent per-

mutation and saling.)

We take advantage of the fat that many natural soures of signal have
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sparse representation in the proper signal ditionary ':

s

i

(t) =

K

X

k=1

C

ik

'

k

(t) (2)

The funtions '

k

(t) are alled atoms or elements of the ditionary. These

elements do not have to be linearly independent, and instead may form an

overomplete ditionary. Important examples are wavelet-related ditionaries

(wavelet pakets, et.) [7, 16℄. Sparsity means that only a small number of

the oeÆients C

ik

di�er signi�antly from zero.

In the disrete time ase t = 1; 2; : : : ; T we will use matrix notation. For

example, X will be a N � T matrix, with the signal x

i

(t) in row i. S will

be an M � T matrix with underlying soure s

j

(t) in row j, and � a K � T

matrix with atom '

k

(t) in row k, so that

X = AS + � (3)

S = C� (4)

We suppose that the oeÆients C

ik

are statistially independent random

variables with a probability density funtion (pdf) of an exponential type

p

i

(C

ik

) / e

��

i

h(C

ik

)

(5)

This kind of distribution is widely used for modeling sparsity [15, 18℄. A

reasonable hoie of h() may be

h() = jj

1=

 � 1 (6)

or its smooth approximations. In our omputations we use a family of onvex

smooth approximations to the absolute value

h

1

() = jj � log(1 + jj) (7)

h

�

() = �h

1

(=�) (8)

where � is a proximity parameter: h

�

()! jj when �! 0.

We also suppose a priory that the matrix A is uniformly distributed over

the range of interest, and that the noise �(t) is a spatially and temporally

unorrelated Gaussian proess

1

with zero mean and variane �

2

.

1

The assumption of the noise whiteness is for simpliity of exposition and an be easily

removed.
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3 Maximum Posteriori Approah

We wish to maximize the posterior distribution P (A;C j X)

max

A;C

P (A;C j X) / max

A;C

P (X j A;C)P (A)P (C) (9)

where P (X j A;C) is the onditional probability of observing X given A and

C. Taking into aount (3), (4), and the white Gaussian noise, we get

P (X j A;C) /

Y

i;t

exp�

(X

it

� (AC�)

it

)

2

2�

2

(10)

By the statistial independene of the oeÆients C

jk

and (5), the prior pdf

of C is

P (C) /

Y

j;k

exp(��

j

h(C

jk

)) (11)

If the prior pdf P (A) is uniform, it an be dropped

2

from (9). In this way

we are left with the problem

max

A;C

P (X j A;C)P (C): (12)

By substituting (10) and (11) into (12), taking the logarithm, and inverting

the sign, we obtain the following optimization problem

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j;k

�

j

h(C

jk

) (13)

where kAk

F

=

q

P

i;j

A

2

ij

is the Frobenius matrix norm.

One an onsider this objetive as a generalization of [18, 17℄ by inorpo-

rating the matrix �, or as a generalization of [7℄ by inluding the matrix A.

One problem with suh a formulation is that it an lead to the degenerate

solution C = 0 and A =1. We an overome this diÆulty in various ways.

The �rst approah is to fore eah row A

i

of the mixing matrix A to be

bounded in norm,

kA

i

k � 1 i = 1; : : : ; N: (14)

2

Otherwise, if P (A) is some other known funtion, we should use (9) diretly.
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The seond way is to restrit the norm of the rows C

j

from below

kC

j

k � 1 j = 1; : : : ;M: (15)

A third way is to reestimate the parameters �

j

based on the urrent values

of C

j

. For example, this an be done using sampling variane as follows:

for a given funtion h(�) in the distribution (5), express the variane of C

jk

as a funtion f

h

(�). An estimate of � an be obtained by applying the

orresponding inverse funtion to the sampling variane,

^

�

j

= f

�1

h

(K

�1

X

k

C

2

jk

) (16)

In partiular, when h() = jj, var() = 2�

�2

and

^

�

j

=

2

q

K

�1

P

k

C

2

jk

(17)

Substituting h(�) and

^

� into (13), we obtain

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(18)

A remarkable property of this objetive funtion is its invariane to resaling

of the rows of C when a orresponding inverse resaling is applied to the

olumns of A.

Computational experiments with more soures than mixtures In

our experiments we used the standard wavelet paket ditionary with the ba-

si wavelet symmlet-8. When the signal length is 64 samples, this ditionary

onsists of 448 atoms i.e. it is overomplete by a fator of seven. Examples of

atoms and their images in the time-frequeny phase plane [9, 16℄ are shown

in Figure 1. We used the ATOMIZER [8℄ and WAVELAB [4℄ MATLAB

pakages for fast multipliation by � and �

T

.

We reated three sparse soures (Figure 2, top), eah omposed of two or

three atoms. The �rst two soures have signi�ant ross-orrelation, equal to

0.34, whih makes separation diÆult for onventional methods. Two syn-

theti sensor signals (Figure 2, enter) were obtained as a linear mixture of
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Figure 1: Examples of atoms: time-frequeny phase plane (left) and time plot

(right.)

the soures. In order to measure the auray of the separation, we nor-

malized the original soures with kS

j

k

2

= 1, and the estimated soures with

k

e

S

j

k

2

= 1. The error was then omputed as

Error =

k

e

S

j

� S

j

k

2

kS

j

k

2

� 100% (19)

We tested two methods with this data. The �rst method used the objetive

funtion (13) and the onstraints (15), while the seond method used the

objetive funtion (18). As a tool for onstrained optimization we used the

PBM method [3℄. Unonstrained optimization was produed by the method

of onjugate gradients using the TOMLAB pakage [10℄. The same tool was

used for internal unonstrained optimization in PBM.

In all the ases we used h

�

(�) de�ned by (7) and (8), with the param-

eter � = 0:01. Another parameter �

2

= 0:0001. The resulting errors of the

soure estimates were 0.09% and 0.02% by the �rst and the seond method

respetively. The estimated soures are shown in the bottom three traes

of Figure 2. They are visually indistinguishable from the original soures,

shown in top three traes of Figure 2.
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Figure 2: Soures (top three), mixtures (enter two), reonstruted soures (bot-

tom three), in both time-frequeny phase plane (left) and time domain (right).

4 Equal number of soures and sensors: more

robust formulations

The main diÆulty in a maximization problem like (13) is the bilinear term

AC�, whih destroys the onvexity of the objetive funtion and makes on-

vergene unstable when optimization starts far from the solution. In this

setion we onsider more robust formulations for the ase when the number

of sensors is equal to the number of soures, N = M , and the mixing matrix

is invertible W = A

�1

.

In the ase when the noise is small and the matrix A is far from singular,
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WX gives a reasonable estimate of the soure signals S. Taking into aount

(4), we obtain a least square term kC��WXk

2

F

, so the separation objetive

may be written

min

W;C

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (20)

We also need to add a onstraint, whih enfores the non-singularity of W .

For example, we an restrit from below its minimal singular value r

min

(W ):

r

min

(W ) � 1 (21)

It an be shown, that in the noiseless ase, � � 0, the problem (20){(21) is

equivalent to the maximum posteriori formulation (13) with the onstraint

kAk

2

� 1: Another possibility for ensuring the non-singularity of W is to

subtrat K log j detW j from the objetive

min

W;C

�K log j detW j+

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (22)

When the noise is zero and � is the identity matrix, we an substitute C =

WX and obtain the Bell-Sejnowski Infomax objetive [2℄

min

W

�K log j detW j+

X

j;k

�

j

h((WX)

jk

) (23)

Computational experiments with equal number of soures and sen-

sors We reated two sparse soures (Figure 3, top) with strong ross-

orrelation of 0.52. Separation, produed by minimization of the objetive

funtion (22), gave an error of 0.23%. For omparison we tested the JADE

[6, 5℄, FastICA [12, 11℄ and Bell-Sejnowski Infomax [2, 1℄ algorithms on the

same signals. The Resulting relative errors (Figure 4) on�rm the signi�ant

superiority of the sparse deomposition approah.

5 Sequential Extration of Soures via Quadrati

Programming

Let us ask what is the most \sparse" signal one an obtain by a linear om-

bination of the sensor signals s = w

T

X. By sparsity, as before, we mean the
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Figure 3: Soures (top two), mixtures (enter two), reonstruted soures (bottom

two), in both time-frequeny phase plane (left) and time domain (right).

ability of the signal to be approximated by a linear ombination of a small

number of ditionary elements �

k

s � 

T

� ;  sparse

This will lead us to the following objetive:

min

w;

1

2

k

T

�� w

T

Xk

2

2

+ �

X

k

h(

k

); (24)

where the term

P

k

h(

k

) may be onsidered as a penalty on non-sparsity. In

order to avoid the trivial solution of w = 0 and  = 0, we need to add a
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      22

(29%)

(57%)
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(0.2%)

Cardoso’s
   JADE

Figure 4: Perent relative error of separation of the arti�ial sparse soures re-

overed by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Equation 22.

onstraint that separates w from zero. It ould be, for example,

kwk

2

2

� 1 ; (25)

A similar onstraint an be used as a tool to extrat all the soures sequen-

tially: the new separation vetor w

j

should have a omponent of unit norm

in the subspae orthogonal to the previously extrated vetors w

1

; : : : ; w

j�1

k(I � P

j�1

)w

j

k

2

2

� 1 ; (26)

where P

j�1

is an orthogonal projetor onto Spanfw

1

; : : : ; w

j�1

g.

When h(

k

) = j

k

j, we an use the standard substitution

 = 

+

� 

�

; 

+

� 0 ; 

�

� 0

̂ =

 



+



�

!

and

^

� =

 

�

��

!

;

that transforms (24) and (26) into the following quadrati program

min

w;̂

1

2

k̂

T

^

�� w

T

Xk

2

2

+ �e

T

̂

subjet to: kwk

2

2

� 1 ;

̂ � 0 ;

where e is a vetor of ones.
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6 Fast Solution in Non-overomplete Ditio-

naries

In important appliations, the sensor signals may have hundreds of hannels

and hundreds of thousands of samples. This may make separation omputa-

tionally diÆult. Here we present an approah whih ompromises between

statistial and omputational eÆieny. In our experiene this approah pro-

vides high quality of separation in reasonable time. Suppose the ditionary

is \omplete", i.e. the it forms a basis in the spae of disrete signals. This

means that the matrix � is square and non-singular. As examples of suh a

ditionary one an think of the Fourier basis, Gabor basis, various wavelet-

related bases, et. We an also obtain an \optimal" ditionary by learning

from given family of signals [15, 14, 18, 17℄.

Let us denote the dual basis

	 = �

�1

(27)

and suppose that oeÆients of deomposition of the soures

C = S	 (28)

are sparse and statistially independent. This assumption is reasonable for

properly hosen ditionaries, although of ourse we would lose the advantages

of overompleteness [15℄.

Let Y be the deomposition of the sensor signals

Y = X	 (29)

Multiplying both sides of (3) by 	 from the right and taking into aount

(28) and (29), we obtain

Y = AC + � ; (30)

where � is deomposition of the noise

� = �	 : (31)

In this paper we onsider an \easy" situation, when � is a white noise, that

requires orthogonality of 	. We an see that all the objetive funtions

from the setions 3{5 remain valid if we remove from them � (substituting
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instead the identity matrix) and replae the sensor signals X by their de-

omposition Y . For example, maximum posteriori objetives (13) and (18)

are transformed into

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j;k

�

j

h(C

jk

) (32)

and

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(33)

The objetive (22) beomes

min

W;C

�K log j detW j+

1

2

kC �WY k

2

F

+ �

X

j;k

�

j

h(C

jk

) (34)

In this ase when the noise is zero, we an substitute C = WY and obtain

the Bell-Sejnowski Infomax objetive [2℄

min

W

�K log j detW j+

X

j;k

�

j

h((WY )

jk

) (35)

Also other known methods (for example, [13, 15℄), whih normally assume

sparsity of soure signals, may be diretly applied to the deomposition Y of

the sensor signals. This may be more eÆient than the traditional approah,

and the reason is obvious: typially, a properly hosen deomposition gives

signi�antly higher sparsity than the raw signals had originally. Also, statis-

tial independene of the oeÆients is a more reasonable assumption than

statistial independene of the raw signal samples.

Computational experiments with musial sound soures In our ex-

periments we arti�ially mixed seven 5-seond fragments of musial sound

reordings taken from ommerial digital audio CDs. Eah of them inluded

40k samples after down-sampling by a fator of 5. (Figure 5).

The easiest way to perform sparse deomposition of suh soures is to

ompute a spetrogram, the oeÆients of a time-windowed disrete Fourier

transform. (We used the funtion SPECGRAM from the MATLAB signal

proessing toolbox with a time window of 1024 samples.) The sparsity of the

spetrogram oeÆients (the histogram in Figure 6, right) is muh higher

then the sparsity of the original signal (Figure 6, left)
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Figure 5: Separation of musial reordings taken from ommerial digital audio

CDs (�ve seond fragments.) Original soures (left); mixtures (enter); separated

soures (right).

In this ase Y (29) is a real matrix, with separate entries for the real and

imaginary omponents of eah spetrogram oeÆient of the sensor signalsX.

We used the objetive funtion (35) with �

j

= 1 and h

�

(�) de�ned by (7),(8)

with the parameter � = 10

�4

. Unonstrained minimization was performed

by a BFGS Quasi-Newton algorithm (MATLAB funtion FMINU.)

This algorithm separated the soures with a relative error of 0.67% for the

least well separated soure (error omputed aording to (19).) We also ap-

plied the Bell-Sejnowski Infomax algorithm [2℄ implemented in [1℄ to the spe-

trogram oeÆients Y of the sensor signals. Separation errors were slightly

larger: 0.9%.

For omparison we tested JADE [6, 5℄, FastIa [12, 11℄ and Bell-Sejnowski

Infomax algorithms on the same signals. Resulting relative errors (Figure 7)

on�rm the signi�ant (by a fator of more than 10) superiority of the sparse

deomposition approah.
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Figure 6: Histogram of sound soure values (left) and spetrogram oeÆients

(right), shown with linear y-sale (top), square root y-sale (enter) and logarith-

mi y-sale (bottom).
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Figure 7: Perent relative error of separation of seven musial soures reov-

ered by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Infomax,

applied to the spetrogram oeÆients, (5) BFGS minimization of the obje-

tive (35) with the spetrogram oeÆients.

13



7 Future researh

We should mention an alternative to the maximum posteriori approah (12).

Considering the mixing matrix A as a parameter, we an estimate it by

maximizing the probability of the observed signal X

max

A

�

P (X j A) =

Z

P (X j A;C)P (C)dC

�

The integral over all possible oeÆients C may be approximated, for ex-

ample, by Monte-Carlo sampling or by a mathing Gaussian, in the spirit

of [15, 14℄. It would be interesting to ompare this possibility to the other

methods presented in this paper.

Another important diretion give us the problem of blind separation-

deonvolution of onvolutive mixtures of signals (see for example [2℄.) In

this ase the matries A and W will have linear �lters as an elements, and

multipliation by the element will mean onvolution. Even in this matrix-of-

�lters ontext most of the formulae in this paper remain valid.

8 Conlusions

In this paper we showed that the use of sparse deomposition in a orrespond-

ing signal ditionary provides high-quality blind soure separation. The max-

imum posteriori framework gives the most general approah, inluding the

situation of more soures than sensors. Faster and omputationally robust

solutions are possible in the ase of an equal number of soures and sensors.

We an also extrat the soures sequentially using quadrati programming

with non-onvex quadrati onstraints. Finally, the fastest solution may be

obtained using non-overomplete ditionaries. Our experiments with arti�-

ial signals and digitally mixed musial sounds demonstrate a high quality

of soure separation, ompared to other known tehniques.
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