
Soft-LOST: EM on a Mixture of Oriented Lines

Paul D. O’Grady and Barak A. Pearlmutter

Hamilton Institute
National University of Ireland Maynooth

Co. Kildare
Ireland

paul.ogrady@may.ie barak@cs.may.ie

Abstract. Robust clustering of data into overlapping linear subspaces
is a common problem. Here we consider one-dimensional subspaces that
cross the origin. This problem arises in blind source separation, where
the subspaces correspond directly to columns of a mixing matrix. We
present an algorithm that identifies these subspaces using an EM proce-
dure, where the E-step calculates posterior probabilities assigning data
points to lines and the M-step repositions the lines to match the points
assigned to them. This method, combined with a transformation into a
sparse domain and an L1-norm optimisation, constitutes a blind source
separation algorithm for the under-determined case.

1 Introduction

Mixtures of oriented lines arise in sparse separation when a set of observations
from N sensors, X = (x(1)| · · · |x(T )), consist of a linear mixture of M source
signals, S = (s(1)| · · · |s(T )), by way of an unknown linear mixing process char-
acterised by the N × M mixing matrix A via x(t) = As(t). When N = M the
sources can be recovered by an unmixing matrix W where ŝ(t) = Wx(t) and
ŝ(t) holds the estimated sources at time t, with W = A−1 up to permutation
and scaling of its rows.

When the sources are sparse the mixtures have special structure correspond-
ing to overlaid lines on a scatter plot. For sources of interest in practice (voice,
music) a sparse representation can often be achieved by a transformation into
a suitable basis such as such as a short-time Fourier, Gabor, or Wavelet basis.
The line orientations correspond to the columns of the mixing matrix A, so if
the lines can be estimated from the data then an estimate of the mixing matrix
can be trivially constructed.

An algorithm for identification of radial line orientation and line separation is
presented in Section 2. The application of the algorithm to blind source separa-
tion (BSS) of speech signals in both the even-determined and under-determined
cases, along with experimental results including empirical assessments of robust-
ness to noise, are presented in Section 3.



2 Oriented Lines Separation

2.1 Determining Line Orientation Using Data Covariance

The orientation of a linear cloud of data corresponds to the principal eigen-
vector of its covariance matrix [1, pages 125-132]. In order to identify multiple
lines within a scatter plot, we soft assign data into M classes corresponding
to the elements of the mixture, represented by orientation vectors vi (eq. 1).
This calculation corresponds to the Expectation step of an EM algorithm [2].
The covariance matrix is then calculated for the data associated with each class
(eq. 2) and the principal eigenvector of the matrix is used as the new line orien-
tation vector estimate (eq. 4), in the Maximisation step of our EM algorithm.
This process is iterated until convergence, at which point the estimated mixing
matrix Â is constructed by adjoining the estimated line orientations to form the
columns of the matrix (eq. 5). We initialised the line orientations uniformly by
normalising samples from an N -dimensional zero-mean spherical Gaussian.

2.2 Data Point Separation

For the even-determined case (N = M) the estimated mixing matrix Â is square
and the sensor data can be converted to sources using its inverse. When N <
M , the under-determined case, A is not invertible so the sources need to be
estimated by some other means. To this end, we assume the source coefficients
are sparse. One appropriate technique is the hard assignment of coefficients to
sources using a mask [3, 4]. Another is soft assignment, in which each coefficient
is decomposed into more than one source. This is generally done by minimisation
of the L1-norm, which can be seen as a maximum likelihood reconstruction under
the assumption that the coefficients are drawn from a distribution of the form
p(c) ∝ exp−|c|, i.e. a Laplacian [5, 6].

2.3 Algorithm Summary

We present an algorithm called Soft-LOST, for Line Orientation Separation
Technique. The “soft” indicates that data points are partially assigned to lines
by weighted each line’s proximity. (A discussion of hard and soft assignments is
presented by Kearns et al. [7].) Separation is achieved by first using a soft line
orientation estimation subroutine.

soft line orientation estimation

1. Randomly initialise the M line orientation vectors vi.
2. Partially assign each data point dj , where dj = x(j), to each line orientation

vector using a soft data assignment

zij = ‖dj − (vi · dj)vi‖
2

ẑij =
e−βzij

∑
i′ e−βzi′j

(1)



where β controls the softness of the boundaries between the regions at-
tributed to each line and ẑij is the magnitude of the assignment of data
point j to line i.

3. Determine the new line orientation estimate by calculating the principal
eigenvector of the covariance matrix. The covariance matrix expression (with
zero mean) and assignment weightings are combined as follows:

Σi =

∑
j ẑijdjd

T
j

∑
j ẑij

(2)

where Σi is the covariance of weighted data associated with line i. The
eigenvector decomposition of Σi is expressed as:

Σi = UiΛiU
−1

i (3)

The matrix Ui contains the eigenvectors of Σi and the diagonal matrix Λi

contains it’s associated eigenvalues λi . . . λN . The new line orientation vector
estimate is the principal eigenvector of Σi which is expressed as

vi = umax (4)

where umax is the principal eigenvector, the eigenvector whose eigenvalue is
λmax.
Return to step 2 and repeat until the vi converge.

4. After convergence, adjoin the line orientations estimates to form the esti-
mated mixing matrix.

Â = [v1| · · · |vM ] (5)

Soft-LOST line separation algorithm

1. Perform soft line orientation estimation to calculate Â.
2. For the even-determined case data points are assigned to line orientations

using s(t) = Â−1 x(t). For the under-determined case, calculate coefficients
cj using linear programming for each data point j such that

min
cj

‖cj‖1 subject to Âcj = dj

The resultant cj coefficients, properly arranged, constitute the estimated

linear subspaces, Ŝ = [c1| · · · |cT ].

3. The final result is a M × T matrix Ŝ that contains the line orientation data
sets in each row.

3 Experimental Results

The Soft-LOST algorithm was used for a blind source separation problem, where
source attenuation vectors correspond to linear subspaces. The Soft-LOST solu-
tion to BSS is presented as follows
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Fig. 1. Ten-second clips of six acoustic sources. Sound wave pressure is plotted against
time, in seconds (see Appendix A.).

Soft-LOST for BSS

1. A N × T data matrix X(t) is composed of sensor observations of N in-
stantaneous mixtures. The data is transformed into a sparse representation,
X(t) 7→ X(ω).

2. The Soft-LOST algorithm is performed on the data X(ω). The algorithm
estimates a mixing matrix, which in turn allows sources to be estimated
from the mixtures via L1-norm optimisation.

3. The resultant M × T matrix Ŝ(ω) contains in its rows the M estimated
sources ŝ1, . . . , ŝM . These estimates are then transformed back into the time
domain, Ŝ(ω) 7→ Ŝ(t).

3.1 Experimental Methods

The Signal-to-Noise Ratios of the estimated sources ŝi (in dB) are used to mea-
sure the performance of the algorithm, SNRi = 20 log

10
(‖si‖/‖ŝi − si‖).

Speech signals (see Figure 1 and Appendix A) were transformed using a
512-point windowed FFT and the real coefficients were used to create a scatter
plot. The experiments were coded for Matlab 6.5.0 and run on a 3.06 GHz
Intel Pentium-4 based computer with 768MB of RAM. Experiments for the
under-determined case typically took 35 minutes while the tests for the even-
determined case ran for less than six minutes, depending on the number of
iterations required for convergence. For comparison, the potential performance
given a perfect estimate of A was also evaluated. In these experiments the line
orientation estimation phase is skipped and the L1-norm minimisation phase is
tested separately. In general the better defined the line orientations in the scatter
plot, the more accurate the source estimates. Experiments were performed for
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Fig. 2. Convergence plots of estimated mixing matrices for the following experiments;
5 mixtures 6 Sources (∗), 5 mixtures 5 sources (+), 4 mixtures 5 sources (◦) and 2
mixtures 3 sources (×). On the left is the difference between consecutive estimates
‖Âl − Âl−1‖, while the right is the difference between the true mixing matrix and
the current estimate, ‖Aorig − Âl‖. The x axis of each plot is in units of algorithm
iterations l.

a range of different values of N and M , and the parameter β was varied on an
ad hoc basis.

3.2 Results

Results are presented for a total of 15 experiments. Data on the number of
mixtures, sources used, and the value of the parameter β are contained in the
tables of results. Results in Tables 1 and 2 demonstrate the effectiveness of the
algorithm for the even-determined case. Experiments for testing line separation
using L1-norm minimisation were performed and their results are presented in
Table 3. These experiments evaluate the effectiveness of the separation phase of
the Soft-LOST algorithm in the under-determined case, and provide a bench-
mark for the subsequent experiments. Results for experiments that test both
line orientation estimation and line separation in the under-determined case are
presented in Tables 4 and 5. The Soft-LOST algorithm was tested for robust-
ness to noise. Gaussian noise of various calibrated intensities was added to the
signals in the experiments in Table 6. These results, when contrasted with those
previously presented, measure the algorithm’s empirical robustness to noise.

These experimental results demonstrate that the Soft-LOST algorithm is an
effective technique for BSS in both the even-determined and under-determined
cases, even in the presence of noise. A convergence plot is shown in Figure 2.

4 Conclusion

The results presented demonstrate that the identification of line orientations us-
ing a modified EM procedure is an effective method for determining the mixing



matrix of a set of linear mixtures. It has been demonstrated that once the mix-
ing matrix is found, sources can then be separated by minimising the L1-norm
between the data point being considered and the line orientations represented
by the columns of the mixing matrix. The Soft-LOST algorithm provides a good
solution to blind source separation of instantaneous mixtures even when there
are fewer sensors than sources. The experiments presented are concerned with
the specific problem of blind source separation of speech signals, however the
results can be applied to any situation involving a mixture of oriented lines.

This work extends previous research in which we developed a modified k-
means algorithm called Hard-LOST [8]. The Soft-LOST results presented here
can be contrasted with those of Hard-LOST. In future work, we plan to modify
the L2 norm of the line distance calculation to use the covariance matrix of each
line, and to partition the coefficients into classes exhibiting different noise levels
to allow optimal combination of evidence using such a noise-sensitive measure.
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A Source Signals

The source signals were taken from Poetry Speaks, a commercial audio CD of
poems read by their authors [9]. Audio CD data is recorded as uncompressed
44.1 kHz 16-bit stereo waveforms. Prior to further processing ten-second clips
were extracted, the two signal channels were averaged, and the data was down-
sampled to 8 kHz. The scale of the audio data is arbitrary, leading to the arbitrary
units on auditory waveform samples throughout the manuscript.

s1 Coole Park and Ballylee, by William Butler Yeats.
s2 The Lake Isle of Innisfree, by William Butler Yeats.
s3 Among Those Killed in the Dawn Raid Was a Man Aged a Hundred, by Dylan

Thomas.
s4 Fern Hill, by Dylan Thomas.
s5 Ave Maria, by Frank O’Hara.
s6 Lana Turner Has Collapsed, by Frank O’Hara.

Table 1. Two Mixtures and Two Sources

Mixtures Sources β SNR (dB)

2 s1 s2 1.5 35.28 43.90
2 s3 s4 1.5 41.24 63.32
2 s5 s6 1.5 40.30 39.17

Table 2. Five Mixtures and Five Sources

Mixtures Sources β SNR (dB)

5 s1 s2 s3 6 27.76 24.06 28.31
s4 s5 26.08 28.67

5 s1 s2 s3 6.6 27.95 24.15 28.41
s4 s5 26.2 28.77

5 s1 s2 s3 5.5 27.54 23.96 28.18
s4 s5 25.94 28.54



Table 3. L1-Norm and True Mixing Matrix

Mixtures Sources SNR (dB)

2 s1 s2 s3 10.41 15.64 7.75

5 s1 s2 s3 20.85 20.62 19.10
s4 s5 s6 17.08 21.93 48.96

Table 4. Two Mixtures and Three Sources

Mixtures Sources β SNR (dB)

2 s1 s2 s3 2 10.43 15.58 7.87
2 s1 s2 s3 1.5 10.43 15.58 7.87

Table 5. Five Mixtures and Six Sources

Mixtures Sources β SNR (dB)

5 s1 s2 s3 6.5 20.17 19.85 18.88
s4 s5 s6 16.66 21.09 32.19

5 s1 s2 s3 6 20.15 19.83 18.87
s4 s5 s6 16.65 21.08 32.21

Table 6. Additive Gaussian Noise

Mixtures Sources Noise (dB) SNR (dB)

2 s1 s2 5 34.75 40.05

5 s1 s2 15 26.58 23.45
s3 s4 27.02 25.41
s5 27.14

5 s1 s2 15 17.03 16.78
s3 s4 15.79 13.82
s5 s6 18.27 31.59


