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Algorithmic differentiation (AD) transforms straight line
numeric code so that it calculates the derivative of the
function originally calculated (Corliss et al., 2001). There
are two varieties of AD: forward mode (Wengert, 1964),
in which the transformed program calculates the product
of the Jacobian of the original program with an input vec-
tor, and reverse mode (Speelpenning, 1980; Rall, 1981;
Rumelhart et al., 1986), in which it calculates the prod-
uct of the transpose of the Jacobian with an input vector.
The functions produced by the forward and reverse mode
AD of a function f can be characterized in terms of the
standard derivative Df x = (dfi(x)/dxj)ij by

⇀
J{f}x x̃ = (Df x) x̃

↼
J{f}x ỹ = (Df x)T ỹ

where these operators have types

D: ( IRn → IRm) → ( IRn → IRmn)
⇀
J : ( IRn → IRm) → ( IRn → ( IRn → IRm))
↼
J : ( IRn → IRm) → ( IRn → ( IRm → IRn))

We extend the AD transforms to composite types,

⇀
J : (α → β) → (α → (

⇀
α →

⇀
β ))

↼
J : (α → β) → (α → (

↼
β →

↼
α ))

where the types
⇀
α =

↼
α = α unless α contains a

mapping, for which α → β
⇀

= α → (
⇀
α →

⇀
β ) and

↼
α → β = α → (

↼
β →

↼
α ). ⇀

J and ↼
J produce func-

tions as efficient as the ones they are given, suffering only

a small constant factor overhead in time. While ⇀
J is

safe-for-space, ↼
J is not. These ⇀

J and ↼
J operators are

the natural abstraction and extension of forward and re-
verse mode AD to a functional context. With them deriva-
tives of higher-order functions become well defined, as in
↼
J{map} or ⇀

J{λfλgλx.fx(gx)}.

Code in which a loop is iterated until some tolerance is
reached have been problematic for AD, requiring manual
assistance and very rough approximations (Giles, 2001;

Gockenbach et al., 2001). We regard such loops as ap-
proximate iterate-to-fixedpoint calculations, and consider
an explicit iterate-to-fixedpoint operator

Fa{g(a,b)} = g(g(· · · g(g(a0,b),b) · · · ,b),b)

We find AD rules for F which unify and formalize meth-
ods in AD, machine learning, and mathematical physics.
⇀
J{ z = Fa{g(a,b)} }

⇒ z̃ = F̃a{
⇀
Jz{g(z,b)}ã +

⇀
Jb{g(z,b)}b̃ }

↼
J{ z = Fa{g(a,b)} }

⇒ b̃ =
↼
Jb{g(z,b)} · F̃a{

↼
Jz{g(z,b)}ã + z̃ }

These extensions open the door to AD implementations
with automatic efficient transformation of a broadened
class of codes, including functional programs, optimiza-
tion routines, and many numeric methods used in machine
learning. More importantly, they allow many numerical
algorithms to be expressed more clearly and succinctly
than previously possible.
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