
Algorithmic Differentiation, Functional Programming, and
Iterate-to-Fixedpoint

Barak A. Pearlmutter
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131

bap@cs.unm.edu
http://www.cs.unm.edu/∼bap/

Algorithmic differentiation (AD) transforms straight line
numeric code so that it calculates the derivative of the
function originally calculated (Corliss et al., 2001). There
are two varieties of AD: forward mode (Wengert, 1964),
in which the transformed program calculates the product
of the Jacobian of the original program with an input vec-
tor, and reverse mode (Speelpenning, 1980; Rall, 1981;
Rumelhart et al., 1986), in which it calculates the prod-
uct of the transpose of the Jacobian with an input vector.
The functions produced by the forward and reverse mode
AD of a function f can be characterized in terms of the
standard derivative Df x = (dfi(x)/dxj)ij by

⇀
J{f}x x̃ = (Df x) x̃

↼
J{f}x ỹ = (Df x)T ỹ

where these operators have types

D: (IRn → IRm) → (IRn → IRmn)
⇀
J : (IRn → IRm) → (IRn → (IRn → IRm))
↼
J : (IRn → IRm) → (IRn → (IRm → IRn))

We extend the AD transforms to composite types,

⇀
J : (α → β) → (α → (

⇀
α →

⇀
β))

↼
J : (α → β) → (α → (

↼
β →

↼
α))

where the types
⇀
α =

↼
α = α unless α contains a

mapping, for which α → β
⇀

= α → (
⇀
α →

⇀
β) and

↼
α → β = α → (

↼
β →

↼
α). ⇀

J and ↼
J produce func-

tions as efficient as the ones they are given, suffering only

a small constant factor overhead in time. While ⇀
J is

safe-for-space, ↼
J is not. These ⇀

J and ↼
J operators are

the natural abstraction and extension of forward and re-
verse mode AD to a functional context. With them deriva-
tives of higher-order functions become well defined, as in
↼
J{map} or ⇀

J{λfλgλx.fx(gx)}.

Code in which a loop is iterated until some tolerance is
reached have been problematic for AD, requiring manual
assistance and very rough approximations (Giles, 2001;

Gockenbach et al., 2001). We regard such loops as ap-
proximate iterate-to-fixedpoint calculations, and consider
an explicit iterate-to-fixedpoint operator

Fa{g(a,b)} = g(g(· · · g(g(a0,b),b) · · · ,b),b)

We find AD rules for F which unify and formalize meth-
ods in AD, machine learning, and mathematical physics.
⇀
J{ z = Fa{g(a,b)} }

⇒ z̃ = F̃a{
⇀
Jz{g(z,b)}ã +

⇀
Jb{g(z,b)}b̃ }

↼
J{ z = Fa{g(a,b)} }

⇒ b̃ =
↼
Jb{g(z,b)} · F̃a{

↼
Jz{g(z,b)}ã + z̃ }

These extensions open the door to AD implementations
with automatic efficient transformation of a broadened
class of codes, including functional programs, optimiza-
tion routines, and many numeric methods used in machine
learning. More importantly, they allow many numerical
algorithms to be expressed more clearly and succinctly
than previously possible.

References

George Corliss, Christèle Faure, Andreas Griewank, Laurent
Hascoët, and Uwe Naumann, editors. Automatic Differen-
tiation: From Simulation to Optimization. Computer and In-
formation Science. Springer, New York, NY, 2001.

Michael B. Giles. On the iterative solution of adjoint equations.
In Corliss et al. (2001), chapter 16, pages 145–151.

Mark S. Gockenbach, Daniel R. Reynolds, and William W.
Symes. Automatic differentiation and the adjoint state
method. In Corliss et al. (2001), chapter 18, pages 161–166.

Louis B. Rall. Automatic Differentiation: Techniques and Appli-
cations, volume 120 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 1981. ISBN 0–540–10861–0.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning rep-
resentations by back–propagating errors. Nature, 323:533–
536, 1986.

Bert Speelpenning. Compiling Fast Partial Derivatives of Func-
tions Given by Algorithms. PhD thesis, Department of Com-
puter Science, University of Illinois at Urbana-Champaign,
Urbana-Champaign, IL, January 1980.

R. E. Wengert. A simple automatic derivative evaluation pro-
gram. Comm. ACM, 7(8):463–464, 1964.

