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Abstract 

Conventional analysis of electroencephalography (EEG) and magnetoencephalography 

(MEG) often relies on averaging over multiple trials to extract statistically relevant 

differences between two or more experimental conditions. In this paper we demonstrate 

single trial detection by linearly integrating information over multiple spatially 

distributed sensors within a predefined time window. We report an average, single trial 

discrimination performance of Az ≈  0.80 and fraction correct between 0.70-0.80, across 

three distinct encephalographic datasets. We restrict our approach  to linear integration 

as it allows the computation of a spatial distribution of the discriminating component 

activity. In the present set of experiments the resulting component activity distributions 

are shown to correspond to the functional neuroanatomy consistent with the task (e.g. 

contralateral sensory-motor cortex and anterior cingulate). Our work demonstrates how 

a purely data-driven method for learning an optimal spatial weighting of 

encephalographic activity can be validated against the functional neuroanatomy.   
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Introduction 

Trial averaging is often used in braining imaging to mitigate low signal-to-interference 

(SIR) ratios.  For example, it is the basis for analysis of event-related potentials (ERPs) 

(Coles and Rugg, 1995). However for some encephalographic applications, such as 

seizure prediction, trial averaging is problematic. One application where the problem of 

single-trial averaging is immediately apparent is the brain-computer interface (BCI), i.e. 

interpreting brain activity for real-time communication. In the simplest case, where one 

wishes to communicate a binary decision, averaging corresponds to asking the same 

question over multiple trials and averaging the subject's binary responses. In order to 

obtain high-bandwidth communication, it is desirable to do as little averaging over time 

or across trials as possible.  

More generally, single trial analysis of brain activity is important in order to uncover the 

origin of response variability, for instance in analysis of error related negativity (ERN). 

The ERN is a negative deflection in the EEG following perceived incorrect responses 

(Gehring et al., 1993, Falkenstein et al., 2000) or expected losses (Gehring and 

Willoughby, 2002) in a forced-choice task. Single trial detection of the ERN has been 

proposed as a means of correcting communication errors in a BCI system (Schalk et al., 

2000). With the ability to analyze the precise timing and amplitude of the ERN, on 

individual trials, one can begin to study parameters that cannot be controlled across 

trial, such as reaction time or error perception. Such an approach opens up new 

possibilities for studying the behavioral relevance and neurological origin of the ERN. 

With the large number of sensors in high density EEG and MEG, an alternative 

approach to trial averaging is to integrate information over space rather than across 

trials. A number of methods along these lines have been proposed. Blind source 
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separation analyzes the multivariate statistics of the sensor data to identify spatial linear 

combinations that are statistically independent over time (Makeig et.al 1996, Vigario et 

al., 2000, Tang et al., 2002).  Separating independent signals and removing noise 

sources and artifacts, increases SIR. However, blind source separation does not exploit 

the timing information of external events that is often available. In most current 

experimental paradigms subjects are prompted with external stimuli to which they are 

asked to respond. The timing of the stimuli, as well as the timing of overt responses, are 

therefore available and should be exploited by the analysis method. 
 

In the context of a BCI system, many methods have applied linear and non-linear 

classification to a set of features extracted from the EEG.  For example, adaptive 

autoregressive models have been used to extract features across a limited number of 

electrodes, with features combined using either linear or non-linear classifiers to 

identify the activity from the time course of individual sensors (Pfurtscheller and 

Neuper, 2001). Others have proposed to combine sensors in space by computing 

maximum and minimum eigenvalues of the sensor covariance matrices. The 

eigenvalues, which capture the power variations of synchronization and 

desynchronization, are then combined non-linearly to obtain binary classification 

(Ramoser et al., 2000).  Spatial filtering has also been used to improve the SNR of 

oscillatory activity. However, there has been no systematic effort to choose optimal 

spatial filters.  In the context of the ERN, Gehring et. al (1993) use linear discrimination 

to identify characteristic time courses in individual electrodes, but do not exploit spatial 

information. Though many of these aforementioned methods obtain promising 

performance in terms of classifying covert (purely mental) processes, their neurological 

interpretation remains obscured.  
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In this paper we report on using conventional linear discrimination to compute the 

optimal spatial integration of a large array of sensors. We exploit timing information by 

discriminating and averaging within a short time window relative to a given external 

event. We restrict ourselves to a linear integration as it permits the computation of 

spatial distributions of the discriminating component1 activity, which in turn can be 

compared to functional neuroanatomy.  

We demonstrate the utility of the proposed method for three distinct datasets acquired 

via high-spatial density encephalography :  

• Predicting explicit (overt) motor response using MEG (122 sensors).  

• Classifying imagined (covert) motor activity using EEG (59 sensors).  

• Detecting decision errors for a binary discrimination task using EEG (64 sensors).  

Materials and Methods 

Linear Discrimination 

Denoting x(t) as the M sensor values sampled at time instance t, we compute the spatial 

weighting coefficients v such that    

                                                 

1 Note that we use the term “component” instead of “source” so as to avoid confusion with an implied physiological 

source.   
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y(t) = vTx(t)     (1) 

is maximally discriminating between the times  t, corresponding to two different 

experimental conditions. For example, in the prediction of explicit motor response 

experiments (described below) the times correspond to a number of samples prior to an 

explicit button push. The samples corresponding to a left button push are to be 

discriminated from samples of a right button push. For each of N trials there are T 

samples, totaling NT training examples. We use conventional logistic regression (Duda 

et al., 2001) to find v. After finding the optimal v we average over the T dependent 

samples of the kth trial to obtain a more robust result, ∑= tyy )(1
∈ kTt

k T
, where  Tk 

denotes the set of sample times corresponding to trial k. We evaluate performance using 

receiver operating characteristic (ROC) analysis (Swets, 1979) on the single-trial short-

time averaged discrimination activities ( ky ). For visualization purposes, it is also useful 

to compute the trial averaged discrimination activities   

∑
∈

=
eNk

ke ty
N

ty )(1)(      (2) 

where Ne denotes the set of samples for event e  (e.g. left or right button push) with time  

measured relative to some common reference across trials. The separation of the means 

together with their corresponding variances provides an indication of whether single-

trial discrimination is plausible within the analysis window.  

Localization of Discriminating Components 

In order to provide a functional neuroanatomical interpretation of the resultant spatial 

weighting, we treat y(t) as a component which is maximally discriminating given the 

linear model and task. A simple way of visualizing the origin of a component's activity 
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is to display the coupling coefficients of the component with the sensors. The strength 

of the coupling roughly indicates the proximity and orientation of the component elative 

to the sensor. The coupling a is defined as the coefficients that multiply the component 

y(t) to give its additive contribution  xy(t) to the sensor readings, xy(t)=ay(t). However 

xy(t) is not observable in isolation and instead we observe, x(t) = xy(t) + xy’(t)  , where 

xy’(t)  represents the activity that is not due to the discriminating component. If the 

contributions of the other components, xy’(t) , are uncorrelated with y(t) we obtain the 

coupling coefficients by the least-squares solution (Haykin, 1996). Arranging the 

samples x(t) for different  t as columns in the a matrix X, and  y(t) as a column vector y 

the solution is given by   

yy
Xya T=      (3) 

In the appendix we present a derivation of a  and describe some of the underlying 

assumptions in its interpretation. In general other components are not guaranteed to be 

uncorrelated with the discriminating component. Therefore a represents the coupling of 

all component activities that are correlated with the discriminating component y(t). We 

refer to a as a "sensor projection" as it measures the activity in the sensors that correlate 

with a given component. Our approach relies on the linearity of  y(t) and the fact that 

different components in EEG and MEG add linearly (Baillet et al., 2001).  

Datasets for Analysis 

Predicting explicit (overt) motor response using MEG: This dataset was provided by 

AT and BP. Four subjects performed a visual-motor integration task.  A “trump” 

experiment was defined whereby subjects were simultaneously presented with two 

visual stimuli on a CRT, one of which is the target and “trumps” (beats-out) the other. 
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Subjects were instructed to push a left hand or right hand button, depending on which 

side the target (trump stimulus) was present. The subject was to discover the target by 

trial-and-error using auditory feedback.  Each trial began with visual stimulus onset, 

followed by button push, followed by auditory feedback, indicating if the subject 

responded correctly. The interval between the motor-response and the next stimulus 

presentation was 3.0 ± 0.5 sec. Each subject performed 90 trials, which took 

approximately 10 minutes. MEG data was recorded using 122 sensor at a sampling rate 

of 300 Hz and high-pass filtered to remove DC drifts.  
 

Classifying imagined (covert) motor activity using EEG: This dataset was provided by 

AO. Nine subjects performed a visual stimulus driven finger (L/R) tapping task.  

Subjects were asked to synchronize an explicit or imagined tap by the left, right, or both 

index fingers to the presentation of a brief temporally predictable signal. Subjects were 

trained until their explicit taps occurred consistently within 100 ms of the 

synchronization signal.  Subjects were presented visual stimuli indicating with which 

index finger to tap and if it should be an explicit or imagined tap. 1.25 s after the last 

instruction symbol a fixation point was replaced for 50 ms by the letter "X." This letter 

served as a signal to which the instructed tap (whether overt or imagined) was to be 

synchronized. Each trial lasted for 6 s. After training, each subject received 10 blocks of 

trials. Each 72-trial block consisted of nine replications of the eight trial types (Explicit 

vs. Imagined x Left vs. Right vs. Both vs. No Tap) presented in a random order.  Trials 

with noise due to eye blinks were not considered in the EEG analysis. The 

electromyogram (EMG) was recorded to detect muscle activity during imagined 

movements. The 59 EEG channels were sampled at 100 Hz and high-pass filtered to 

remove DC components.  
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Detecting decision errors for a binary discrimination task using EEG:   This dataset 

was provided by NY. Seven subjects performed a visual target detection amongst 

distractors task. On each trial, subjects were presented with a stimulus for 100 ms. 

There were four possible stimuli, each consisting of a row of five arrows. Subjects were 

told to respond by pressing a key on the side indicated by the center arrow. They were 

to ignore the four flanking arrows. On half of the trials, the flanking arrows pointed in 

the same direction as the target (e.g. <<<<<), on the other half the flankers pointed in 

the opposite direction (e.g. << ><<). Subjects were slower and made many more errors 

in the latter case. Following their response, there was an inter-trial interval of 1.5 

seconds, after which a new stimulus was presented. Subjects performed 12 blocks of 68 

trials each.  The 100 ms interval prior to the response was used as the baseline period 

(separately for each trial and electrode). The sampling rate was 250 Hz. Following the 

baseline period, trials were manually edited to remove those with blinks, large eye 

movements, instrument artifacts and amplifier saturation.  

Results and Discussion 
 

Single trial discrimination results are shown for the three different data sets and include 

trial averaged discriminating component activity ey (t), sensor projections a, and 

detection/prediction performance using single-trial, short-time averaged ky . 

Performance is reported using ROC analysis computed with a leave-one-out training 

and testing procedure (Duda et al., 2001). ROC analysis is a reasonable method for 

quantifying performance for these three datasets since it enables one to incorporate an 

independent cost for false positives and false negatives.  For example, in an error 
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correction application using the ERN, it important to detect error events with high 

confidence.  The desired operating point of such a detector is therefore at a low false 

positive rate (high specificity).  In contrast, an application which looks to exploit motor 

imagery for communicating a binary decision is best assessed at the operating point 

were sensitivity equals specificity i.e. the error rates for the two possible outcomes are 

equal.  A metric that quantifies the overall performance of a detector for arbitrary 

operating points is the area under the ROC curve (Az). In the following sections we 

report Az , as well as the fraction of correct classifications, for all three tasks. A 

summary of the results for the three datasets is given in the following table. 

 

 ROC area 
(Az) 

Mean ± std. 

Fraction 
correct 

Mean ± std. 
N Ne  Sensors Detection time 

window 

Explicit L/R 
button push 
prediction 

0.82 ± 0.06 0.79 ± 0.09 4 45/45 122 MEG 100ms to 33 ms 
prior to button push 

Imagined L/R 
finger tap 
discrimination 

0.77 ± 0.10 0.71 ± 0.08 9 90/90 64 EEG 400 ms before to 
400 ms after 
synchronization 

Response 
error/correct 
discrimination 

0.79 ± 0.05 0.73 ± 0.05 7 40-80 
/300  

59 EEG 0 ms to 100 ms 
after response 

 

Table 1: Performance of the linear spatial integration method for the three 

datasets. Mean and standard deviation (std.) are reported across N 

subjects. Ne is the number of trails used to determine the best linear 

classifier (#positive/#negative trials). The time window used for detection 

is also specified.  

 

As seen in table 1, for all three datasets the number of trials for training is comparable 

to the number coefficients to be trained. This typically leads to serious problems in 
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over-training. We mitigate these by including multiple training samples for each trial.2 

We would expect that increasing the number of independent training samples (e.g. 

trials) would similarly increase performance of the results presented below.   

 

Figure 1 shows results for the dataset used to predict whether a subject will press a 

button with their left or right hand by analyzing the MEG signals in a window prior to 

the button push (left hand = 1, right hand = 0 in the logistic regression model). We use 

an analysis window 100 ms wide centered at 83 ms prior to the button event, which at 

300 Hz corresponds to T=30. Figure 1 shows the results for one subject (AT). In the 

trial averaged results one can see significant separation of the means for left vs right 

button push within the analysis window. Given that this separation is approximately 

equal to one standard deviation, this suggests that single trial discrimination is possible. 

Single-trial discrimination is shown in the ROC curve, which for this subject shows 

good discriminability (Az=0.93). Figure  1 also shows the sensor projection  a and the 

location of a dipole-fit for this projection. A single equivalent current dipole fits the data 

with an accuracy of 64% using the least squares ‘xfit’ routine from Neuromag3 and 

assuming a spherical head model. This compares favorably with the 50% goodness of 

fit which are typically obtained for somatosensory responses when using all 122 sensors 

(Tang 2002).  When considered with respect to the motor-sensory homunculus., these 

results indicate that the discrimination component activity originates in the sensory-

                                                 

2 These samples are obviously not independent, however, they provide evidence for the natural variation of the data 

and thus make the estimates much more robust. They were shown, through cross-validation, to improve estimated 

generalization performance. 

3 See www.neuromag.com. 
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motor cortex corresponding to the left hand.  

 

Figure 2 shows results for the second dataset, where the goal is to detect activity 

associated with a purely imagined motor response, a situation perhaps more relevant for 

a BCI system. Subjects are trained to imagine a tap with the left or right index finger 

synchronized to a brief, temporally predictable signal. Therefore there exists a known 

time window in which one can explicitly look for activity that discriminates between the 

left and right imagine conditions. We selected a 0.8 s time window around the time 

where the task is to be performed. 90 left and 90 right trials were available to train the 

coefficients of the 59 EEG sensors. The result for the best performing subject is  

, shown in Figure 2. The sensor projection of the 59 EEG sensors shows a 

clear left-right polarization over the motor area. In the context of BCI the metric of 

interest is the bit rate  at which information can be transmitted with imagined motor 

activity. The information transmitted per trial is given by,  

90.0=zA

 

                                                I = 1+p log2(p)+ (1-p)log2(1-p),              (4) 

 

where p is the fraction correct. For the subject shown in Figure 2 this corresponds to I 

=0.26 bits/trial. When averaged over the nine subjects the information transmitted is 

I=0.16 bit/trial. Note that with a repetition rate of 6s this experiment is not designed for 

an optimal transmission rate. Assuming equivalent performance with a repetition rate of 

0.8s (corresponding to the time window used here for discrimination) we obtain an 

average bit rate of 12 bits/minute.  
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For comparison, we compare our approach with an alternative method, first described 

by Wolpaw et al. (1991), that is based on differences in the power spectrum in 

electrodes over the left and right motor cortex. Andersen et al. (1998) modify the 

approach by using six auto-regressive (AR) coefficients to model the power spectrum of 

each electrode within the analysis window and classify the imagined conditions using a 

linear discrimination on these AR coefficients. Following Penny et al. (2001), we used 

electrodes C3 and C4 (international 10/20 electrode placement system – see Towle et al. 

1993) and obtain, Az = 0.65 ± 0.09, and fraction correct of p= 0.62±0.07, which 

corresponds to I = 0.054 bits/trial or a bit rate of 4 bit/minute. This is about a third of the 

bit rate produced by our method of linear spatial integration.  

 

The results, across the nine subjects, for predicting explicit finger taps from a window 

300 ms to 100 ms prior to the taps is Az = 0.87 ± 0.08 with a fraction correct of 0.80 ± 

0.08.  As shown for subject PJM in Figure 2, sensor projections of the discrimination 

vector for explicit motor response are similar to the projections of the imagined motor 

response.  This is consistent with previous finding in EEG and fMRI (Cunnington et al., 

1996, Porro et al., 1996) and supports the approach of many current BCI systems—

signals arising from the cortical areas that encode an explicit movement are also in 

some sense optimal for detecting the imagined movement.  

 

Figure 3 shows the results for the target detection experiments where the goal is to 

detect the ERN on a single trial basis. The ERN has a medial-frontal distribution that is 

symmetric to the midline, suggesting a source in the anterior cingulate (Dehaene et al., 

1994). It begins around the time of the perceived incorrect response and lasts roughly 
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100 ms thereafter. We use this time window for detection. 40 to 80 error trials and 300 

correct trials were used for training and testing 64 coefficients. The sensor projection, 

shown in Figure 3 for one subject, is representative of the results obtained for other 

subjects and is consistent with the scalp topography and time course of the ERN. The 

detection performance for this subject is  and is to be compared to  

when detecting ERN from the front-center electrode where maximal activity is expected 

(FCz in the 10/20 system).  

84.0=zA 63.0=zA

 

Our results demonstrate the utility of linear analysis methods for discriminating between 

different events in single-trial, stimulus driven experimental paradigms using EEG and 

MEG. A particularly important aspect of our approach is that linearity enables the 

computation of sensor projections for the optimally discriminating weighting. This 

localization can be compared to the functional neuroanatomy, serving as a validation of 

the data driven linear methods. In all three cases presented, we find that indeed the 

activity distribution correlated with the component that optimizes single-trial 

discrimination localizes to a region that is consistent with the functional neuranatomy. 

This is important, for instance, to determine whether the discrimination model is 

capturing information directly related to the underlying task-dependent cortical activity, 

or is instead exploiting an indirect cortical response or other physiological signals 

correlated with the task (e.g. correlations with the stimulus, eye movements, etc.).   

Localization of the discriminating component activity, and its correlates, also enables 

one to determine the neuroanatomical correlations between different discrimination 

tasks, as was demonstrated for explicit and imagined motor responses in EEG.  
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In this work we have focused on spatial linear filtering of the magnitude of electrical or 

magnetic activity. This is consistent with the conventional concept of evoked responses, 

which capture magnitude differences under different experimental conditions. Note that 

in this approach the sign of the response is relevant for discrimination.  Our approach 

does not consider temporal patterns of activity.  An alternative and common approach is 

to consider signal powers after linear filtering in time (Wolpaw et al. 1991, Pfurtscheller 

et al., 2001, Anderson et al. 1998). When considering powers, (i.e. squared magnitudes) 

the sign of the activity is irrelevant and instead one typically captures oscillatory 

temporal patterns of activity. Both coherent evoked responses as well as oscillatory 

activity have been important analysis tools for encephalography, and work to combine 

optimal linear spatial and temporal filtering is beginning to emerge (Ramoser et al. 

2001).  

 

A potential disadvantage of the method we have described is that its utility is derived 

from integration across a large sensor array, which may be impractical for a realistic 

BCI system (e.g.  may be too cumbersome and/or costly).  In such cases, the method 

still offers utility as a means for identifying a reduced sensor configuration, since the 

computed sensor projection can be used to prune the array in a way that minimizes loss 

in discrimination performance.   

 

We close by noting that the proposed method is applicable to other encephalographic 

modalities with linear superposition of activity, such as functional near infrared imaging  

(Boas et al., 2001).   
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Appendix 

Derivation of Sensor Projection a 

Suppose our observation vector is  and we have built a linear classifier, , 

where  is the binary number indicating some cognitive event that we are trying to 

detect. We assume that there are a number of such cognitive events occurring 

simultaneously. We represent these as a vector of binary indicators 

x xvTy =1

1y

y , with  as its 

first element, and a matrix that maps these to the observation vectors; i.e. . 

We wish to identify this mapping, namely to find the first column of , which we call 

and which is defined as the oberservation vector that we would obtain if only  

occurred. The least-squares estimate of can be derived as follows.   Let  be the 

observation matrix for many samples-i.e. the t

1y

Ayx =

1y

X

A

1(y T

A

a

a

th column is the observation for the tth 

sample. Let y  be the corresponding binary column vectors across these samples given 

by . The analogous relationship with a  is .  The least-square solution 

for a  is given by . 

T
1

Xv=y T
1

T
1ayX =

1
11 ) −= yXya

 

We would like to determine the conditions under which the least-squares estimate of 
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a is actually proportional to the first column of . Let the matrix be the binary 

matrix of the simultaneous cognitive events across trials—i.e. the t

A Y

th column is the 

cognitive events vector y  for the tth trial. Since we find that 

. Note that has dimensions of number of cognitive events (N) by 

number of samples (T), and that the quantity  is the column vector of unnormalized 

correlations between the event indicators  and the set of all cognitive events. If this is 

proporational to the Kronecker delta, 

AY=X

1YY

1
111 )( −= yyAYy Ta Y

1y

1,iδ  (i.e.  is uncorrelated with the indicators of 

the other events) then  and therefore a  is proportional to the first 

column of .

1y

1,iA1, =, jja ∝∑ δ
j iAi

A
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         A                        B                C 

 

D 

Figure 1: MEG left/right button push prediction. (A) Trial averages )(tye   

(solid curves) and standard deviations (dotted curves) of discriminating 

component for left (red) and right (blue) button pushes. Time is given in 

seconds. Black vertical line at t = 0 s indicates timing of button push. 

Green vertical lines indicate the discrimination window. (B) Sensor 

projections for discrimination vector.  (C) ROC curve for left vs. right 

discrimination. Area under the curve ( ) = 0.93. (D) Dipole-fit of overlaid 

on MRI image.   

zA a
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  A                            B                 C 

 

 D                                                 E
Figure 2: Discrimination of imagined left/right finger taps. (A) trial 
averages  e  (solid curves) and standard deviations (dotted curves) of 

discriminating component for left (red) and right (blue) imagined. Time is 

given in seconds. Black vertical solid line at t = 0 s indicates timing of 

visual stimulus that defines the action to be performed (left or right 

imagine). The subjects are trained to execute the task at around t = 1:25 s. 

Green vertical lines indicate the discrimination window. (B) Dorsal view of 

sensor projections a. (C) ROC curve for left vs. right discrimination. For 

this subject the fraction of correct classification is p=0.79 which 

corresponds to an information transfer of 0.26 bits/trial. (D) Sensor 

projection for same subject for explicit finger tap. (E) ROC curve for same 

subject for explicit finger tap. 
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A            B       C 
Figure 3: Detection of decision errors with EEG. (A)  trial averages )(tye  

(solid curves) and standard deviations (dotted curves) of discriminating 

component for correct and error trials. The negative deflection after a 

button push response at t = 0 s is the ERN. Green vertical lines indicate 

the discrimination window. (B) Dorsal view of sensor projections a. (C) 

ROC curve for error vs. correct trials. Solid curve corresponds to 

discrimination using Eq. (1) and dotted line to discrimination with center 

electrode (FCz).  


