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Abstract By considering the dynamics of the apparent motion of a stationary object relative to a

moving observer, we construct a partial differential equation that relates the changes

in an image to the motion of the observer. These come in two varieties: a first order

system that describes the coevolution of the egocentric radial distances to objects

and the visual scene, and a second order system that does not involve any distances

or other geometry. The later equation leads, via the calculus of variations, to a novel

technique for recovering egomotion from image sequences, a so-called visual yaw

detector, which is tested on real data. For expository purposes the derivation is

carried out in two dimensions, but the approach extends immediately to three.

�Present address: NEC Research Institute, 4 Independence Way, Princeton, NJ 08540



1. Introduction

Using a special camera mounted on the roof of a motorcar which gives a narrow

360 degree strip along the horizon, we are interested in recovering the angular and

forward velocity of the vehicle. We sometimes know the velocity from other sensory

modalities, such as a sensor attached to the speedometer or odometer. In that case,

we need recover only the angular velocity. To this end, we have developed a theory

of the evolution of such images. Because of the particular domain of interest, we

are primarily interested in the two-dimensional world described above. However, the

techniques we develop extend immediately to three dimensions.

For a full description of the visual sensor based navigation system, see Gorr et al.

(1995), Novak et al. (1995), Novak and Hancock (1995), Lin and Judd (1995) or

pending patents (Siemens Docket No.s 93E7601, 94E7541, 94E7617, 94E7618

US.)

2. Point movement

Consider an observer in a 2D space moving forward with velocity v, leftward with

velocity u, and turning counterclockwise with rotational velocity u̇. This observer sees

a fixed point at angle t counterclockwise from the forward direction. We wish to relate

v, u, u̇ and t.

u

v
τ

x

y
θ
.

If the fixed point is x ahead of the observer and y to the side, then by definition

tan t=y=x. By the linearity of differentiation dx=dt = u̇y � v and dy=dt = �u̇x � u.

Taking the derivative with respect to time of y cos t = x sin t gives

v sin t � u cos t = (ṫ + u̇)(x cos t + y sin t) (1)

and taking the derivative with respect to time again gets rid of x and y to yield

v̇ sin t � u̇ cos t =
ü + ẗ

u̇ + ṫ
(v sin t � u cos t) � (u̇ + 2ṫ)(v cos t + u sin t) (2)
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In the special case of no lateral motion u = 0 so this simplifies to

ü + ẗ = (u̇ + ṫ)(v̇=v + (u̇ + 2ṫ) cot t) (3)

which can also be expressed as the more mnemonic

d

dt
log

v

u̇ + ṫ
+ (u̇ + 2ṫ) cot t = 0 (4)

3. Isointensity contours

We would like to characterize the contour lines of a function f (t, t), so that we can

check if they satisfy some given differential equation.

τ

t

f(t,τ)

( )t’, τ’

τ( )τ= t

Consider an arbitrary point (t0, t0). For notational convenience, let t(t) be the contour

line that runs through (t0, t0), so for instance t0 = t(t0). Since t(t) is a contour line, by

definition f (t, t(t)) is constant. Using subscripts to denote partial derivatives, d
dt

f (t, t(t)) =
ft + ft ṫ(t) = 0 so

ṫ = �ft=ft (5)

is the slope of the contour line through an arbitrary point (t, t).

Similarly, taking the derivative with respect to t again,

d2

dt2
f (t, t(t)) = ftt + ṫftt + ft ẗ + (ftt + ftt ṫ)ṫ = 0

so

ẗ = �ftt=ft + 2ftftt=f2
t � f2

t ftt=f3
t (6)

gives the second derivative of the contour line.

3.1. Image evolution Let f (t, t) be the image intensity measured at time t angle t. Assuming Lambertian

reflection and no occlusion, the contour lines of f are the angular paths taken by

particular visible points in the world. Hence the contour line going through each point
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(t, t) must satisfy equation 3. We therefore substitute in the first two derivatives of the

contour line. This results in a condition on the partial derivatives of f ,

üf3
t � (fttf

2
t � 2ftfttft + f2

t ftt ) = (u̇ft � ft)ft (ft v̇=v + (u̇ft � 2ft) cot t) (7)

This equation will be obeyed wherever the assumptions made above are valid.

4. Distances

4.1. Distance from local

gradients

The distances to the observed object in direction t at time t has surprisingly simple

form. Substituting R = x cos t + y sin t into equation 1 and solving for R gives

R =
v sin t � u cos t

u̇ + ṫ
(8)

which can be put in terms of image intensity

R = ft
v sin t � u cos t

u̇ft � ft
(9)

4.2. First order system for

image evolution

From equation 8 we have

ṫ = (v sin t � u cos t)=R � u̇.

Let g(t, t) be some property we measure of a patch of an object at time t viewing

angle t. If we know how this property changes as a function of viewing angle and

egomotion, then we know

d

dt
g(t, t(t)) = gt + ṫgt = ġ(t)

gt + ((v sin t � u cos t)=R � u̇)gt = ġ(t) (10)

where t(t) is the viewing angle of the patch under consideration and ġ(t) is the temporal

derivative of the property of interest.

For image intensity g = f , and under the lighting and reflectance assumptions made

above ḟ = 0. Hence

ft = ((u cos t � v sin t)=R + u̇)ft

More interesting perhaps is when we let g = R. We must calculate Ṙ, which is

straightforward. R2 = x2 + y2 so RṘ = xẋ + yẏ = x(u̇y � v) + y(�u̇x � u) = �vx � uy and

since x = R cos t and y = R sin t we havge Ṙ = �v cos t � u sin t and therefore

Rt + v cos t + u sin t = ((u cos t � v sin t)=R + u̇)Rt

Substituting r = 1=R into this last pair of equations with Rt = �rt=r2 yields

ft = ((u cos t � v sin t)r + u̇)ft (11)

rt = ((u cos t � v sin t)r + u̇)rt + (v cos t + u sin t)r2 (12)
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5. Visual yaw detector

5.1. Moving observer Knowing f (t, t), v = const, and u = 0, we would like to estimate u̇. We might expect

the measured f to be rather noisy. Substituting the known values into equation 7 and

considering some fixed particular value of t gives a Riccati equation,

e(u̇,
d

dt
u̇, t; t) = A(t; t)

d

dt
u̇ + B(t; t)u̇2 + C(t; t)u̇ + D(t; t) = 0. (13)

where

A(t; t) = f3
t sin t

B(t; t) = �f3
t cos t

C(t; t) = 3f2
t ft cos t

D(t; t) = �2f2
t ft cos t � (fttf

2
t � 2ftfttft + f2

t ftt ) sin t

There are many such equations, corresponding to different values of t. This is

fortunate, since considered individually each one would be hopelessly corrupted by

noise. To approximately solve them all simultaneously, we minimize the functional

E (u̇) =
Z t1

t0

F(u̇, ü, t) dt (14)

where1

F(u̇, ü, t) = I
�

L(e(u̇, ü, t; t))
	

,

L(j ) = j2 is a loss function2 and we define I fh(t)g =
R 2p

0
h(t) dt. Note that I f�g is

linear. Also note that I f(=t)h(t)g = (=t)I fh(t)g = 0, so for instance I fftg = 0

and I ffftg = I
�

(=t)f2
	

=2 = 0. The extremal u̇(t) can be found using the calculus

of variations. E is of the form required by Euler’s equation, which states that the

functional E is extremal when u̇ satisfies

F

u̇
=

d

dt

F

ü

Evaluating and simplifying this gives a second-order ordinary differential equation

whose coefficients are easy to calculate numerically from visual data,

I
�

A2
	 d2

dt2
u̇ + I

�

2ȦA
	 d

dt
u̇ � I

�

2B2
	

u̇3 + I
�

ȦB + AḂ � 3BC
	

u̇2 (15)

+I
�

ȦC + AĊ � 2BD � C2
	

u̇ + I
�

ȦD + AḊ � CD
	

= 0

1It would be reasonable to add a regularizer R(u̇) to F , to encourage u̇ to be smooth.
2In the presence of occlusion and other local violations of equation 7 we would want to use a more

robust estimator than simple squared error. Unfortunately this tends to make minimizing E more difficult.

An ordinary differential equation still results if L is a polynomial, but higher degrees in L would make for

higher powers of u̇ and ü in equation 15.
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Figure 1 Equation 17 applied to a database of visual strips taken from around the horizon during a 3 km trek on

a rural route, sampled every meter. Estimated u̇ is shown as a function of distance. No smoothing has

been done at any point in the processing, except that the strips were downsampled to 120 bins around

the horizon.
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Figure 2 Equation 19 applied to a database of visual strips taken from around the horizon during a 3 km trek on

a rural route, sampled every meter. Estimated log gain change is shown as a function of distance. No

smoothing has been done at any point in the processing, except that the strips were downsampled to 120

bins around the horizon. Note the spikes, which correspond to glitches in the image acquisition process.

where Ẋ = (d=dt)X.

An online ode solver, in which only the most recent few values of u̇ are subject to

change, can be used in settings that require running estimates of u̇.

5.2. Stationary rotating

observer

Equation 15 inherits an implicit assumption that v Þ 0, i.e. that the observer has

non-negligible proper motion, from equation 7. Under some circumstances we might

wish to make the opposite assumption. The analog of equation 7 when u = v = 0 is

simply

ft = u̇ft (16)

Applying the calculus of variations as above with F = I
�

(u̇ft � ft)
2
	

gives3 the trivial

differential equation

u̇ =
I fftftg

I ff2
t g

=
R 2p

0
ftft dt

R 2p

0
f2
t dt

(17)

An application of this equation is shown in figure 1.

3Instead of this F , we could instead choose a different F , say F = I
�

x(u̇ft � ft)
2
	

which leads to

u̇ = I fxft ftg=I
�

xf2
t

	

. With x = 1=ft this gives u̇ = I fftg=I fftg. With x = 1=ft this gives u̇ = I fftg =I
�

f2
t =ft
	

.

With x = f2
t

f3
t cos t this gives u̇ = I

�

f2
t
f5
t cos t

	

=I
�

f3
t
f4
t cos t

	

. If there were no noise, these would all give

the same u̇. But with noise, the results will be different. How can we choose the best one? Assuming the

noise in the measured f is independent zero mean Gaussian with constant variance, we should choose a

quantity to integrate over both t and t whose variance is the same everywhere. Within that constraint, we

should choose the one with the lowest signal to noise ratio, in other words, the lowest ratio of standard

deviation to mean. This is the F used in the text. A similar analysis must be applied to equation 14.
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If the camera adds a constant extra signal to the entire visual field, as in a fluctuating

background noise process, we can call this background noise n2(t) and model it as

ft = u̇ft + n2. A more common type of noise is present in cameras with automatic

gain control, which fluctuates due to factors outside the portion of the visual field

being used here. Under these conditions, the change to a pixel’s value attributable

to camera gain change is proportional to that pixel’s value. If the derivative of the log

gain is n1(t) then process can be modeled as ft = u̇ft +n1f. Combining these two noise

processes yields

ft = u̇ft + n1f + n2 (18)

Using F = I
�

(u̇ft � ft + n1f + n2)2
	

gives

0

@

u̇

n1

n2

1

A = I

8

>

<

>

:

0

@

ft
f
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>

;

�1

I

8

<

:
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0

@

ft
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1

1

A

9
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;
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which shows that the influences of these noise sources and the influence of rotation

are orthogonal, and therefore the recovered u̇ should not be sensitive to these two

particular kinds of noise. However, the recovered gain changes n1(t) appear to detect

camera frame acquisition errors quite well, as shown in figure 2.

6. Discussion

The above presentation is for an observer in flatland. This is the character of the

application for which these techniques were developed, but the approach and equa-

tions extend to a full three dimensional setting. The only complication is the tedious

algebra which arises from the coordinate systems that must be used on the surface

of a sphere.

6.1. Scale In many of the equations above, the velocity appears as v̇=v = (d=dt) log v. It is

clear from the physics of the situation that this must be so, for even if everything

but distances are known, the velocity can be determined uniquely only up to a scale

factor. In other words, if v(t) is a solution to the equation, then so must be av(t) for any

a > 0, because (d=dt) log(av) = (d=dt) log v. This is of course common in computer

vision.

6.2. Other approaches There are many approaches to recovering egomotion or distances from image se-

quences.

We have taken a gradient-based approach, similar to that of Horn and Weldon (1988),

Negahdaripour and Horn (1987), in contrast to the alternative correlation based ap-

proaches (Hassenstein and Reichardt, 1956; Poggio and Reichardt, 1973). Gradi-

ents are more susceptible to noise than correlations, and present difficulties when the
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spatial and temporal discretization imposed by modern digital computer technology

makes for image movements greater than a few pixels per time step (Hildreth and

Koch, 1987). This latter problem can be ameliorated by spatially downsampling the

image, or, since often the ideal sampling rate varies across a single image, by adaptive

multiscale techniques. On the other hand, there are theoretical reasons to believe

that gradient methods perform better than correlation methods in the high signal to

noise regime (Potters and Bialek, 1994).

Another popular indirect method is point tracking, as in the matrix decomposition

method of Tomasi and Kanade (1992) of the chronogeneous motion algorithm of

Franzen (1991).

The approach taken here is a direct one, since image gradients are used directly, rather

than being used to calculate the optical flow (Horn and Schunck, 1981; Poggio, Yang,

and Torre, 1989; Verri and Poggio, 1989) which in turn constitutes the input to an

egomotion module (Uras et al., 1989).

6.3. Noise model The equations shown in the text are optimized for a small amount of additive gaussian

noise, and fall into the MLE framework, since they are derived from a least squared

formulation and incorporate no regularizer or prior on the egomotion. Unfortunately

that is not the sort of noise actually encountered in practice. Instead, there are a few

sources of noise, of which, at least for our applications, Gaussian camera noise is

the least significant. More severe are lack of stationarity of the world, such as other

moving vehicles; occlusion and revelation; specularities and reflections; and camera

blooming from the sun and reflections thereof.

Also, an additive gaussian noise model is a poor model of the world. In essence, it

assumes that an object’s intensity and distance follow a random walk. Instead, it is

our observations which are corruptions of an underlying unchanging stationary object.

Some of these problems could be dealt with in part by complicating the model, for

instance including occlusion processes which flow around the visual field according

to the same equation by which objects do. These could be created by the broken

spring models so popular computer vision, which of course correspond to robust

estimators, which themselves might improve performance (Poggio, Torre, and Koch,

1985; Koch, 1988).

Another route for improvement would be to attempt to maintain a world model via an

occupancy grid (Moravec, 1988). This would have the added benefit that it could be

matched against a database, hopefully making the system more robust to seasonal

variation in the visual appearance of objects. Unfortunately the computational burden

might exceed the capacities of our target platform.

6.4. Color Lastly, the current system does not make use of color information. Since color can be

more stable to view angle than intensity, it would make sense to incorporate color in

a non-trivial fashion into a system capable of detecting long range motion. However

here we use a gradient method, which is will operate properly only for small changes

to the visual field, on the order of a pixel or less. It is interesting to note that in primates

short range motion makes little use of color, while long range motion is quite sensitive

to color boundaries (Ramachandran and Gregory, 1978).
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