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Abstract

Batch gradient descent, �w(t) = ��dE=dw(t), converges to a minimum

of quadratic form with a time constant no better than

1

4

�

max

=�

min

where

�

min

and �

max

are the minimum and maximum eigenvalues of the Hessian

matrix of E with respect to w. It was recently shown that adding a

momentum term �w(t) = ��dE=dw(t) + ��w(t � 1) improves this to
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, although only in the batch case. Here we show that second-

order momentum, �w(t) = ��dE=dw(t) +��w(t� 1) + ��w(t� 2), can

lower this no further. We then regard gradient descent with momentum

as a dynamic system and explore a nonquadratic error surface, showing

that saturation of the error accounts for a variety of e�ects observed in

simulations and justi�es some popular heuristics.

1 INTRODUCTION

Gradient descent is the bread-and-butter optimization technique in neural networks.

Some people build special purpose hardware to accelerate gradient descent optimiza-

tion of backpropagation networks. Understanding the dynamics of gradient descent

on such surfaces is therefore of great practical value.

Here we briey review the known results in the convergence of batch gradient de-

scent; show that second-order momentum does not give any speedup; simulate a

real network and observe some e�ect not predicted by theory; and account for these

e�ects by analyzing gradient descent with momentum on a saturating error surface.



1.1 SIMPLE GRADIENT DESCENT

First, let us review the bounds on the convergence rate of simple gradient descent

without momentumto a minimumof quadratic form [11, 1]. Let w

�

be the minimum

of E, the error, H = d

2

E=dw

2

(w

�

), and �

i

, v

i

be the eigenvalues and eigenvectors

of H. The weight change equation

�w = ��

dE

dw

(1)

(where �f(t) � f(t + 1)� f(t)) is limited by

0 < � < 2=�

max

(2)

We can substitute � = 2=�

max

into the weight change equation to obtain conver-

gence that tightly bounds any achievable in practice, getting a time constant of

convergence of �1= log(1� 2s) = (2s)

�1

+O(1), or

E � E

�

� exp(�4st) (3)

where we use s = �

min

=�

max

for the inverse eigenvalues spread of H and � is read

\asymptotically converges to zero more slowly than."

1.2 FIRST-ORDER MOMENTUM

Sometimes a momentum term is used, the weight update (1) being modi�ed to

incorporate a momentum term � < 1 [5, equation 16],

�w(t) = ��

dE

dw

(t) + ��w(t� 1): (4)

The Momentum LMS algorithm, MLMS, has been analyzed by Shynk and Roy [6],

who have shown that the momentum term can not speed convergence in the online,

or stochastic gradient, case. In the batch case, which we consider here, Tu�gay and

Tanik [9] have shown that momentum is stable when

� < 1 and 0 < � < 2(�+ 1)=�

max

(5)

which speeds convergence to

E � E

�

� exp(�(4

p

s+ O(s)) t) (6)

by
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: (7)

2 SECOND-ORDER MOMENTUM

The time constant of asymptotic convergence can be changed fromO(�

max

=�

min

) to

O(

p

�

max

=�

min

) by going from a �rst-order system, (1), to a second-order system,

(4). Making a physical analogy, the �rst-order system corresponds to a circuit with
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Figure 1: Second-order momentum converges if ��

max

is less than the value plotted

as \eta," as a function of � and �. The region of convergence is bounded by four

smooth surfaces: three planes and one hyperbola. One of the planes is parallel

to the � axis, even though the sampling of the plotting program makes it appear

slightly sloped. Another is at � = 0 and thus hidden. The peak is at 4.

a resistor, and the second-order system adds a capacitor to make an RC oscillator.

One might ask whether further gains can be had by going to a third-order system,

�w(t) = ��

dE

dw

+ ��w(t� 1) + ��w(t � 2): (8)

For convergence, all the eigenvalues of the matrix
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must have absolute

value less than or equal to 1, which occurs precisely when
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For � � 0 this is most restrictive for �

max

, but for � > 0 �

min

also comes into play.

Taking the limit as �

min

! 0, this gives convergence conditions for gradient descent

with second-order momentum of

� 1 � �

� � 1 � � � 1� �

when � � 3� + 1 : (9)
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a region shown in �gure 1.

Fastest convergence for �

min

within this region lies along the ridge � = 3� + 1,

� = 2(1 + �� �)=�

max

. Unfortunately, although convergence is slightly faster than

with �rst-order momentum, the relative advantage tends to zero as s ! 0, giving

negligible speedup when �

max

� �

min

. For small s, the optimal settings of the

parameters are
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where �

�

is as in (7).

3 SIMULATIONS

We constructed a standard three layer backpropagation network with 10 input units,

3 sigmoidal hidden units, and 10 sigmoidal output units. 15 associations between

random 10 bit binary input and output vectors were constructed, and the weights

were initialized to uniformly chosen random values between �1 and +1. Training

was performed with a square error measure, batch weight updates, targets of 0 and

1, and a weight decay coe�cient of 0:01.

To get past the initial transients, the network was run at � = 0:45; � = 0 for

150 epochs, and at � = 0:3; � = 0:9 for another 200 epochs. The weights were then

saved, and the network run for 200 epochs for � ranging from 0 to 0:5 and � ranging

from 0 to 1 from that starting point.

Figure 3 shows that the region of convergence has the shape predicted by theory.

Calculation of the eigenvalues of d

2

E=dw

2

con�rms that the location of the bound-

ary is correctly predicted. Figure 2 shows that momentum speeded convergence by

the amount predicted by theory. Figure 3 shows that the parameter setting that

give the most rapid convergence in practice are the settings predicted by theory.

However, within the region that does not converge to the minimum, there appear

to be two regimes: one that is characterized by apparently chaotic uctuations

of the error, and one which slopes up gradually from the global minimum. Since

this phenomenon is so atypical of a quadratic minimum in a linear system, which

either converges or diverges, and this phenomenon seems important in practice, we

decided to investigate a simple system to see if this behavior could be replicated

and understood, which is the subject of the next section.

4 GRADIENT DESCENT WITH SATURATING ERROR

The analysis of the sections above may be objected to on the grounds that it assumes

the minimum to have quadratic form and then performs an analysis in the neigh-

borhood of that minimum, which is equivalent to analyzing a linear unit. Surely

our nonlinear backpropagation networks are richer than that.



Figure 2: Error plotted as a function of time for two settings of the learning param-

eters, both determined empirically: the one that minimized the error the most, and

the one with � = 0 that minimized the error the most. There exists a less aggressive

setting of the parameters that converges nearly as fast as the quickly converging

curve but does not oscillate.

A clue that this might be the case was shown in �gure 3. The region where the

system converges to the minimum is of the expected shape, but rather than simply

diverging outside of this region, as would a linear system, more complex phenomena

are observed, in particular a sloping region.

Acting on the hypothesis that this region is caused by �

max

being maximal at

the minimum, and gradually decreasing away from it (it must decrease to zero in

the limit, since the hidden units saturate and the squared error is thus bounded)

we decided to perform a dynamic systems analysis of the convergence of gradient

descent on a one dimensional nonquadratic error surface. We chose

E = 1�

1

1 + w

2

(11)

which is shown in �gure 4, as this results in a bounded E.

Letting

f(w) = w � �E

0

(w) =

w(1� 2� + 2w

2

+ w

4

)

(1 + w

2

)

2

(12)

be our transfer function, a local analysis at the minimum gives �

max

= E

00

(0) = 2

which limits convergence to � < 1. Since the gradient towards the minimum is

always less than predicted by a second-order series at the minimum, such � are in

fact globally convergent. As � passes 1 the �xedpoint bifurcates into the limit cycle

w = �

q

p

� � 1; (13)

which remains stable until � ! 16=9 = 1:77777 . . ., at which point the single sym-

metric binary limit cycle splits into two asymmetric limit cycles, each still of period

two. These in turn remain stable until � ! 2:0732261475�, at which point repeated

period doubling to chaos occurs. This progression is shown in �gure 7.



Figure 3: (Left) the error at epoch 550 as a function of the learning regime. Shading

is based on the height, but most of the vertical scale is devoted to nonconvergent net-

works in order to show the mysterious nonconvergent sloping region. The minimum,

corresponding to the most darkly shaded point, is on the plateau of convergence

at the location predicted by the theory. (Center) the region in which the network

is convergent, as measured by a strictly monotonically decreasing error. Learning

parameter settings for which the error was strictly decreasing have a low value while

those for which it was not have a high one. The lip at � = 0 has a value of 0, given

where the error did not change. The rim at � = 1 corresponds to damped oscillation

caused by � > 4��=(1� �)

2

. (Right) contour plot of the convergent plateau shows

that the regions of equal error have linear boundaries in the nonoscillatory region

in the center, as predicted by theory.

As usual in a bifurcation, w rises sharply as � passes 1. But recall that �gure 3,

with the smooth sloping region, plotted the error E rather than the weights. The

analogous graph here is shown in �gure 6 where we see the same qualitative feature

of a smooth gradual rise, which �rst begins to jitter as the limit cycle becomes

asymmetric, and then becomes more and more jagged as the period doubles its way

to chaos. From �gure 7 it is clear that for higher � the peak error of the attractor

will continue to rise gently until it saturates.

Next, we add momentum to the system. This simple one dimensional system du-

plicates the phenomena we found earlier, as can be seen by comparing �gure 3 with

�gure 5. We see that momentum delays the bifurcation of the �xed point attractor

at the minimum by the amount predicted by (5), namely until � approaches 1 + �.

At this point the �xedpoint bifurcates into a symmetric limit cycle of period 2 at

w = �

s

r

�

1 + �

� 1; (14)

a formula of which (13) is a special case. This limit cycle is stable for

� <

16

9

(1 + �); (15)

but as � reaches this limit, which happens at the same time that w reaches �1=

p

3

(the inection point of E where E = 1=4) the limit cycle becomes unstable. How-

ever, for � near 1 the cycle breaks down more quickly in practice, as it becomes

haloed by more complex attractors which make it progressively less likely that a

sequence of iterations will actually converge to the limit cycle in question. Both

boundaries of this strip, � = 1 + � and � =

16

9

(1 + �), are visible in �gure 5,
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sional tulip-shaped non-

linear error surface E =
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Figure 5: E after 50 it-

erations from a starting

point of 0:05, as a func-

tion of � and �.
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Figure 6: E as a func-

tion of � with � = 0.

When convergent, the �-

nal value is shown; oth-

erwise E after 100 it-

erations from a starting

point of w = 1:0. This a

more detailed graph of a

slice of �gure 5 at � = 0.
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Figure 7: The attractor in w as a function of � is shown, with the progression from a

single attractor at the minimumof E to a limit cycle of period two, which bifurcates

and then doubles to chaos. � = 0 (left) and � = 0:8 (right). For the numerical

simulations portions of the graphs, iterations 100 through 150 from a starting point

of w = 1 or w = 0:05 are shown.

particularly since in the region between them E obeys

E = 1�

r

1 + �

�

(16)

The bifurcation and subsequent transition to chaos with momentum is shown for

� = 0:8 in �gure 7. This � is high enough that the limit cycle fails to be reached

by the iteration procedure long before it actually becomes unstable. Note that this

diagram was made with w started near the minimum. If it had been started far

from it, the system would usually not reach the attractor at w = 0 but instead

enter a halo attractor. This accounts for the policy of backpropagation experts,

who gradually raise momentum as the optimization proceeds.



5 CONCLUSIONS

The convergence bounds derived assume that the learning parameters are set op-

timally. Finding these optimal values in practice is beyond the scope of this pa-

per, but some techniques for achieving nearly optimal learning rates are available

[4, 10, 8, 7, 3]. Adjusting the momentum feels easier to practitioners than adjust-

ing the learning rate, as too high a value leads to small oscillations rather than

divergence, and techniques from control theory can be applied to the problem [2].

However, because error surfaces in practice saturate, techniques for adjusting the

learning parameters automatically as learning proceeds can not be derived under

the quadratic minimumassumption, but must take into account the bifurcation and

limit cycle and the sloping region of the error, or they may mistake this regime of

stable error for convergence, leading to premature termination.
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