
LETTER Communicated by Michael Lewicki

Blind Source Separation by Sparse Decomposition in a Signal
Dictionary

Michael Zibulevsky
Department of Computer Science, University of New Mexico, Albuquerque, NM 87131,
U.S.A.

Barak A. Pearlmutter
Department of Computer Science and Department of Neurosciences, University of New
Mexico, Albuquerque, NM 87131, U.S.A.

The blind source separation problem is to extract the underlying source
signals from a set of linear mixtures, where the mixing matrix is unknown.
This situation is common in acoustics, radio, medical signal and image
processing, hyperspectral imaging, and other areas. We suggest a two-
stage separation process: a priori selection of a possibly overcomplete
signal dictionary (for instance, a wavelet frame or a learned dictionary) in
which the sources are assumed to be sparsely representable, followed by
unmixing the sources by exploiting the their sparse representability. We
consider the general case of more sources than mixtures, but also derive a
more efficient algorithm in the case of a nonovercomplete dictionary and
an equal numbers of sources and mixtures. Experiments with artificial
signals and musical sounds demonstrate significantly better separation
than other known techniques.

1 Introduction

In blind source separation an N-channel sensor signal x(t) arises from M un-
known scalar source signals si(t), linearly mixed together by an unknown
N ×M matrix A, and possibly corrupted by additive noise ξ(t),

x(t) = As(t)+ ξ(t). (1.1)

We wish to estimate the mixing matrix A and the M-dimensional source
signal s(t). Many natural signals can be sparsely represented in a proper
signal dictionary:

si(t) =
K∑

k=1

Cik ϕk(t). (1.2)

The scalar functions ϕk(t) are called atoms or elements of the dictionary.
These elements do not have to be linearly independent and instead may
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form an overcomplete dictionary. Important examples are wavelet-related
dictionaries (e.g., wavelet packets, stationary wavelets; see Chen, Donoho,
& Saunders, 1996; Mallat, 1998) and learned dictionaries (Lewicki & Se-
jnowski, in press; Lewicki & Olshausen, 1998; Olshausen & Field, 1996,
1997). Sparsity means that only a small number of the coefficients Cik differ
significantly from zero.

We suggest a two-stage separation process: a priori selection of a possibly
overcomplete signal dictionary in which the sources are assumed to be
sparsely representable and then unmixing the sources by exploiting their
sparse representability.

In the discrete-time case t = 1, 2, . . . ,T we use matrix notation. X is an
N× T matrix, with the ith component xi(t) of the sensor signal in row i, S is
an M× T matrix with the signal sj(t) in row j, and 8 is a K× T matrix with
basis function ϕk(t) in row k. Equations 1.1 and 1.2 then take the following
simple form:

X = AS+ ξ (1.3)

S = C8. (1.4)

Combining them, we get the following when the noise is small:

X ≈ AC8.

Our goal therefore can be formulated as follows: Given the sensor signal ma-
trix X and the dictionary8, find a mixing matrix A and matrix of coefficients
C such that X ≈ AC8 and C is as sparse as possible.

We should mention other problems of sparse representation studied in
the literature. The basic problem is to represent sparsely scalar signal in
given dictionary (see Chen et al., 1996). Another problem is to adapt the
dictionary to the given class of signals1 (Lewicki & Sejnowski, 1998; Lewicki
& Olshausen, 1998; Olshausen & Field, 1997). This problem is shown to
be equivalent to the problem of blind source separation when the sources
are sparse in time (Lee, Lewicki, Girolami, & Sejnowski, 1999; Lewicki &
Sejnowski, in press). Our problem is different, but we will use and generalize
some techniques presented in these works.

Independent factor analysis (Attias, 1999) and Bayesian blind source sep-
aration (Rowe, 1999) also consider the case of more sources than mixtures.
In our approach, we take an advantage when the sources are sparsely repre-
sentable. In the extreme case, when the decomposition coefficients are very
sparse, the separation becomes practically ideal (see section 3.2 and the six
flutes example in Zibulevsky, Pearlmutter, Bofill, & Kisilev, in press). Never-
theless, detailed comparison of the methods on real-world signals remains
open for future research.

1 Our dictionary 8 may be obtained in this way.
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In section 2 we give some motivating examples, which demonstrate how
sparsity helps to separate sources. Section 3 gives the problem formula-
tion in probabilistic framework and presents the maximum a posteriori
approach, which is applicable to the case of more sources than mixtures.
In section 4 we derive another objective function, which provides more ro-
bust computations when there is an equal number of sources and mixtures.
Section 5 presents sequential source extraction using quadratic program-
ming with nonconvex quadratic constraints. Finally, in section 6 we derive
a faster method for nonovercomplete dictionaries and demonstrate high-
quality separation of synthetically mixed musical sounds.

2 Separation of Sparse Signals

In this section we present two examples that demonstrate how sparsity of
source signals in the time domain helps to separate them. Many real-world
signals have sparse representations in a proper signal dictionary but not in
the time domain. The intuition here carries over to that situation, as shown
in section 3.1.

2.1 Example: Two Sources and Two Mixtures. Two synthetic sources
are shown in Figures 1a and 1b. The first source has two nonzero samples,
and the second has three. The mixtures, shown in Figures 1c and 1d, are less
sparse: they have five nonzero samples each. One can use this observation
to recover the sources. For example, we can express one of the sources as

s̃i(t) = x1(t)+ µx2(t)

and choose µ so as to minimize the number of nonzero samples ‖̃si‖0, that
is, the l0 norm of si.

This objective function yields perfect separation. As shown in Figure 2a,
when µ is not optimal, the second source interferes, and the total number
of nonzero samples remains five. Only when the first source is recovered
perfectly, as in Figure 2b, does the number of nonzero samples drop to two
and the objective function achieve its minimum.

Note that the function ‖̃si‖0 is discontinuous and may be difficult to
optimize. It is also very sensitive to noise: even a tiny bit of noise would
make all the samples nonzero. Fortunately in many cases, the l1 norm ‖̃si‖1
is a good substitute for this objective function. In this example, it too yields
perfect separation.

2.2 Example: Three Sources and Two Mixtures. The signals are pre-
sented in Figure 3. These sources have about 10% nonzero samples. The
nonzero samples have random positions and are zero-mean unit-variance
gaussian distributed in amplitude. Figure 4 shows a scatter plot of the mix-
tures. The directions of the columns of mixing matrix are clearly visible.
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(a)

(b)

(c)

(d)

Figure 1: Coefficients of signals, with coefficient identity on the x-axis (10 co-
efficients, arbitrarily ordered) and magnitude on the y-axis (arbitrarily scaled).
Sources (a and b) are sparse. Mixtures (c and d) are less sparse.

Figure 2: Coefficients of signals, with coefficient identity on the x-axis (10 co-
efficients, arbitrarily ordered) and magnitude on the y-axis (arbitrarily scaled).
(a) Imperfect separation. Since the second source is not completely removed,
the total number of nonzero samples remains five. (b) Perfect separation. When
the source is recovered perfectly, the number of nonzero samples drops to two,
and the objective function achieves its minimum.

This phenomenon can be used in clustering approaches to source separa-
tion (Pajunen, Hyvrinen, & Karhunen, 1996; Zibulevsky et al., in press). In
this work we will explore a maximum a posteriori approach.
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Figure 3: Coefficients of signals, with coefficient identity on the x-axis (300 co-
efficients, arbitrarily ordered) and magnitude on the y-axis (arbitrarily scaled).
(Top three panels) Sparse sources (sparsity is 10%). (Bottom two panels) Mix-
tures.

3 Probabilistic Framework

In order to derive a maximum a posteriori solution, we consider the blind
source separation problem in a probabilistic framework (Belouchrani & Car-
doso, 1995; Perlmutter & Parra, 1996). Suppose that the coefficients Cik in a
source decomposition (see equation 1.4) are independent random variables
with a probability density function (pdf) of an exponential type,

pi(Cik) ∝ exp−βih(Cik). (3.1)

This kind of distribution is widely used for modeling sparsity (Lewicki &
Sejnowski, in press; Olshausen & Field, 1997). A reasonable choice of h(c)
may be

h(c) = |c|1/γ γ ≥ 1 (3.2)
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Figure 4: Scatter plot of two sensors. Three distinguished directions, which
correspond to the columns of the mixing matrix A, are visible.

or a smooth approximation thereof. Here we will use a family of convex
smooth approximations to the absolute value,

h1(c) = |c| − log(1+ |c|) (3.3)

hλ(c) = λh1(c/λ), (3.4)

with λ a proximity parameter: hλ(c)→ |c| as λ→ 0+.
We also suppose a priori that the mixing matrix A is uniformly distributed

over the range of interest and that the noise ξ(t) in equation 1.3 is a spa-
tially and temporally uncorrelated gaussian process2 with zero mean and
variance σ 2.

3.1 Maximum A Posteriori Approach. We wish to maximize the poste-
rior probability,

max
A,C

P(A,C|X) ∝ max
A,C

P(X|A,C)P(A)P(C), (3.5)

where P(X|A,C) is the conditional probability of observing X given A and
C. Taking into account equations 1.3 and 1.4, and the white gaussian noise,

2 The assumption that the noise is white is for simplicity of exposition and can be easily
removed.
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we have

P(X|A,C) ∝
∏
i,t

exp− (Xit − (AC8)it)2

2σ 2 . (3.6)

By the independence of the coefficients Cjk and equation 3.1, the prior pdf
of C is

P(C) ∝
∏
j,k

exp(−βjh(Cjk)). (3.7)

If the prior pdf P(A) is uniform, it can be dropped3 from equation 3.5. In
this way we are left with the problem

max
A,C

P(X|A,C)P(C). (3.8)

By substituting 3.6 and 3.7 into 3.8, taking the logarithm, and inverting the
sign, we obtain the following optimization problem,

min
A,C

1
2σ 2 ‖AC8− X‖2F +

∑
j,k

βjh(Cjk), (3.9)

where ‖A‖F =
√∑

i,j A2
ij is the Frobenius matrix norm.

One can consider this objective as a generalization of Olshausen and Field
(1996, 1997) by incorporating the matrix8, or as a generalization of Chen et
al. (1996) by including the matrix A. One problem with such a formulation
is that it can lead to the degenerate solution C = 0 and A = ∞. We can
overcome this difficulty in various ways. The first approach is to force each
row Ai of the mixing matrix A to be bounded in norm,

‖Ai‖ ≤ 1 i = 1, . . . ,N. (3.10)

The second way is to restrict the norm of the rows Cj from below:

‖Cj‖ ≥ 1 j = 1, . . . ,M. (3.11)

A third way is to reestimate the parameters βj based on the current values
of Cj. For example, this can be done using sample variance as follows: for
a given function h(·) in the distribution 3.1, express the variance of Cjk as

3 Otherwise, if P(A) is some other known function, we should use equation 3.5 directly.
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a function fh(β). An estimate of β can be obtained by applying the corre-
sponding inverse function to the sample variance,

β̂j = f−1
h

(
K−1

∑
k

C2
jk

)
. (3.12)

In particular, when h(c) = |c|, var(c) = 2β−2 and

β̂j = 2√
K−1

∑
k C2

jk

. (3.13)

Substituting h(·) and β̂ into equation 3.9, we obtain

min
A,C

1
2σ 2 ‖AC8− X‖2F +

∑
j

2
∑

k |Cjk|√
K−1

∑
k C2

jk

. (3.14)

This objective function is invariant to a rescaling of the rows of C combined
with a corresponding inverse rescaling of the columns of A.

3.2 Experiment: More Sources Than Mixtures. This experiment de-
monstrates that sources that have very sparse representations can be sep-
arated almost perfectly, even when they are correlated and the number of
samples is small.

We used the standard wavelet packet dictionary with the basic wavelet
symmlet-8. When the signal length is 64 samples, this dictionary consists of
448 atoms; it is overcomplete by a factor of seven. Examples of atoms and
their images in the time-frequency phase plane (Coifman & Wickerhauser,
1992; Mallat, 1998) are shown in Figure 5. We used the ATOMIZER (Chen,
Donoho, Saunders, Johnstone, & Scargle, 1995) and WAVELAB (Buckheit,
Chen, Donoho, Johnstone, & Scargle, 1995) MATLAB packages for fast mul-
tiplication by 8 and 8T.

We created three very sparse sources (see Figure 6a), each composed
of only two or three atoms. The first two sources have significant cross-
correlation, equal to 0.34, which makes separation difficult for conventional
methods. Two synthetic sensor signals (see Figure 6b) were obtained as lin-
ear mixtures of the sources. In order to measure the accuracy of separation,
we normalized the original sources with ‖Sj‖2 = 1 and the estimated sources
with ‖S̃j‖2 = 1. The error was computed as

Error = ‖S̃j − Sj‖2
‖Sj‖2 · 100%. (3.15)

We tested two methods with these data. The first method used the ob-
jective function (see equation 3.9) and the constraints (see equation 3.11),
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Figure 5: Examples of atoms. (Left) Time-frequency phase plane. (Right) Time
plot.

and the second method used the objective function (see equation 3.14). We
used PBM (Ben-Tal & Zibulevsky, 1997) for the constrained optimization.
The unconstrained optimization was done using the method of conjugate
gradients, with the TOMLAB package (Holmstrom & Bjorkman, 1999). The
same tool was used by PBM for its internal unconstrained optimization.

We used hλ(·) defined by equations 3.3 and 3.4, with λ = 0.01 and
σ 2 = 0.0001 in the objective function. The resulting errors of the recovered
sources were 0.09% and 0.02% by the first and the second methods, re-
spectively. The estimated sources are shown in Figure 6c. They are visually
indistinguishable from the original sources in Figure 6a.

It is important to recognize the computational difficulties of this ap-
proach. First, the objective functions seem to have multiple local minima.
For this reason, reliable convergence was achieved only when the search
started randomly within 10% to 20% distance to the actual solution (in or-
der to get such an initial guess, one can use a clustering algorithm, as in
Pajunen et al., 1996, or Zibulevsky et al., in press).

Second, the method of conjugate gradients requires a few thousand it-
erations to converge, which takes about 5 minutes on a 300 MHz AMD
K6-II even for this very small problem. (On the other hand, preliminary
experiments with a truncated Newton method have been encouraging, and
we anticipate that this will reduce the computational burden by an order
of magnitude or more. Also Paul Tseng’s (2000) block coordinate descent
method may be appropriate.) Below we present a few other approaches that
help to stabilize and accelerate the optimization.

4 Equal Number of Sources and Sensors: More Robust Formulations

The main difficulty in a maximization problem like equation 3.9 is the bilin-
ear term AC8, which destroys the convexity of the objective function and
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Figure 6: Sources, mixtures, and reconstructed sources in both time-frequency
phase plane (left) and time domain (right).

makes convergence unstable when optimization starts far from the solution.
In this section, we consider more robust formulations for the case when the
number of sensors is equal to the number of sources, N = M, and the mixing
matrix is invertible, W = A−1.

When the noise is small and the matrix A is far from singular, WX gives a
reasonable estimate of the source signals S. Taking into account equation 1.4,
we obtain a least-squares term ‖C8−WX‖2F, so the separation objective may
be written as

min
W,C

1
2
‖C8−WX‖2F + µ

∑
j,k

βjh(Cjk). (4.1)
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We also need to add a constraint that enforces the nonsingularity of W.
For example, we can restrict its minimal singular value rmin(W) from below,

rmin(W) ≥ 1. (4.2)

It can be shown that in the noiseless case, σ ≈ 0, the problem 4.1–4.2 is
equivalent to the maximum a posteriori formulation, equation 3.9, with the
constraint ‖A‖2 ≤ 1. Another possibility for ensuring the nonsingularity of
W is to subtract K log |det W| from the objective

min
W,C
−K log |det W| + 1

2
‖C8−WX‖2F + µ

∑
j,k

βjh(Cjk) (4.3)

which (Bell & Sejnowski, 1995; Pearlmutter & Para, 1996) can be viewed as
a maximum likelihood term.

When the noise is zero and 8 is the identity matrix, we can substitute
C =WX and obtain the BS Infomax objective (Bell & Sejnowski, 1995):

min
W
−K log |det W| +

∑
j,k

βjh((WX)jk). (4.4)

4.1 Experiment: Equal Numbers of Sources and Sensors. We created
two sparse sources (see Figure 7, top) with strong cross-correlation of 0.52.
Separation by minimization of the objective function, equation 4.3, gave an
error of 0.23%. Robust convergence was achieved when we started from
random uniformly distributed points in C and W.

For comparison we tested the JADE (Cardoso, 1999a), FastICA
(Hyvärinen, 1999), and BS Infomax (Bell & Sejnowski, 1995; Amari, Ci-
chocki, & Yang, 1996) algorithms on the same signals. All three codes were
obtained from public web sites (Cardoso, 1999b; Hyvärinen, 1998; Makeig,
1999) and were used with default setting of all parameters. The resulting
relative errors (see Figure 8) confirm the significant superiority of the sparse
decomposition approach.

This still takes a few thousand conjugate gradient steps to converge
(about 5 minutes on a 300 MHz AMD K6). For comparison, the tuned pub-
lic implementations of JADE, FastICA, and BS Infomax take only a few
seconds. Below we consider some options for acceleration.

5 Sequential Extraction of Sources via Quadratic Programming

Let us consider finding the sparsest signal that can be obtained by a linear
combination of the sensor signals s = wTX. By sparsity, we mean the ability
of the signal to be approximated by a linear combination of a small number
of dictionary elements ϕk, as s ≈ cT8. This leads to the objective

min
w,c

1
2
‖cT8− wTX‖22 + µ

∑
k

h(ck), (5.1)
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Figure 7: Sources, mixtures, and reconstructed sources in both time-frequency
phase plane (left) and time domain (right).

    BS
Infomax

Fast
ICA

Equation
     4.3

(29%)

(57%)

(27%)

(0.2%)

Cardoso’s
   JADE

Figure 8: Percentage relative error of separation of the artificial sparse sources
recovered by JADE, fast ICA, Bell-Sejnowski Infomax, and equation 4.3.
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where the term
∑

k h(ck) may be considered a penalty for nonsparsity. In
order to avoid the trivial solution of w = 0 and c = 0, we need to add a
constraint that separates w from zero. It could be, for example,

‖w‖22 ≥ 1. (5.2)

A similar constraint can be used as a tool to extract all the sources sequen-
tially. The new separation vector wj should have a component of unit norm
in the subspace orthogonal to the previously extracted vectors w1, . . . ,wj−1,

‖(I − Pj−1)wj‖22 ≥ 1 , (5.3)

where Pj−1 is an orthogonal projector onto Span{w1, . . . ,wj−1}.
When h(ck) = |ck|, we can use the standard substitution

c = c+ − c−, c+ ≥ 0, c− ≥ 0

ĉ =
(

c+

c−

)
and 8̂ =

(
8

−8
)
,

which transforms equations 5.1 and 5.3 into the quadratic program,

min
w,ĉ

1
2
‖ĉT8̂− wTX‖22 + µeTĉ

subject to: ‖w‖22 ≥ 1, ĉ ≥ 0

where e is a vector of ones.

6 Fast Solution in Nonovercomplete Dictionaries

In important applications (Tang, Pearlmutter & Zibulevsky, 2000; Tang,
Pearlmutter, Zibulevsky, Hely, & Weisend, 2000; Tang, Phung, Pearlmut-
ter, & Christner, 2000) the sensor signals may have hundreds of channels
and hundreds of thousands of samples. This may make separation computa-
tionally difficult. Here we present an approach that compromises between
statistical and computational efficiency. In our experience, this approach
provides a high quality of separation in a reasonable amount of time.

Suppose that the dictionary is “complete”; it forms a basis in the space
of discrete signals. This means that the matrix8 is square and nonsingular.
As examples of such a dictionary, one can think of the Fourier basis, Gabor
basis, and various wavelet-related bases, among others. We can also obtain
an “optimal” dictionary by learning from given family of signals (Lewicki
& Sejnowski, in press; Lewicki & Olshausen, 1998; Olshausen & Field, 1997,
1996).
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Let us denote the dual basis,

9 = 8−1, (6.1)

and suppose that coefficients of decomposition of the sources,

C = S9, (6.2)

are sparse and independent. This assumption is reasonable for properly
chosen dictionaries, although we would lose the advantages of overcom-
pleteness.

Let Y be the decomposition of the sensor signals,

Y = X9. (6.3)

Multiplying both sides of equation 1.3 by 9 from the right and taking into
account equations 6.2 and 6.3, we obtain

Y = AC+ ζ, (6.4)

where ζ = ξ9 is the decomposition of the noise. Here we consider an “easy”
situation, where ζ is white, which assumes that9 is orthogonal. We can see
that all the objective functions from sections 3.1 to 5 remain valid if we
substitute the identity matrix for 8 and replace the sensor signal X by its
decomposition Y. For example, the maximum a posteriori objectives 3.9 and
3.14 are transformed into

min
A,C

1
2σ 2 ‖AC− Y‖2F +

∑
j,k

βjh(Cjk) (6.5)

and

min
A,C

1
2σ 2 ‖AC− Y‖2F +

∑
j

2
∑

k |Cjk|√
K−1

∑
k C2

jk

. (6.6)

The objective, equation 4.3, becomes

min
W,C
−K log |det W| + 1

2
‖C−WY‖2F + µ

∑
j,k

βjh(Cjk). (6.7)

In this case we can further assume that the noise is zero, substitute C =WY,
and obtain the BS Infomax objective (Bell & Sejnowski, 1995):

min
W
−K log |det W| +

∑
j,k

βjh((WY)jk). (6.8)
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Sources Mixtures Separated

Figure 9: Separation of musical recordings taken from commercial digital audio
CDs (5 second fragments).

Also other known methods (e.g., Lee et al., 1999; Lewicki & Sejnowski, in
press), which normally assume sparsity of source signals, may be directly
applied to the decomposition Y of the sensor signals. This may be more
efficient than the traditional approach, and the reason is obvious: typically
a properly chosen decomposition gives significantly higher sparsity for the
transformed coefficients than for the raw signals. Furthermore, indepen-
dence of the coefficients is a more realistic assumption than independence
of the raw signal samples.

6.1 Experiment: Musical Sounds. In our experiments we artificially
mixed seven 5-second fragments of musical sound recordings taken from
commercial digital audio CDs. Each of them included 40,000 samples after
downsampling by a factor of 5 (see Figure 9).

The easiest way to perform sparse decomposition of such sources is
to compute a spectrogram, the coefficients of a time-windowed discrete
Fourier transform. (We used the function SPECGRAM from the MATLAB
signal processing toolbox with a time window of 1024 samples.) The spar-
sity of the spectrogram coefficients (the histogram in Figure 10, right) is
much higher then the sparsity of the original signal (see Figure 10, left).

In this case Y (see equation 6.3) is a real matrix, with separate entries
for the real and imaginary components of each spectrogram coefficient of
the sensor signals X. We used the objective function (see equation 6.8) with
βj = 1 and hλ(·) defined by equations 3.3 and 3.4 with the parameter λ =
10−4. Unconstrained minimization was performed by a BFGS quasi-Newton
algorithm (MATLAB function FMINU.)



878 Michael Zibulevsky and Barak A. Pearlmutter

Figure 10: Histogram of sound source values (left) and spectrogram coefficients
(right), shown with linear y-scale (top), square root y-scale (center), and loga-
rithmic y-scale (bottom).

This algorithm separated the sources with a relative error of 0.67% for
the least well-separated source (error computed according to equation 3.15).
We also applied the BS Infomax algorithm (Bell & Sejnowski, 1995) imple-
mented in Makeig (1999) to the spectrogram coefficients Y of the sensor
signals. Separation errors were slightly larger, at 0.9%, but the computing
time was improved (from 30 minutes for BFGS to 5 minutes for BS Infomax).

For comparison we tested the JADE (Cardoso, 1999a, 1999b), FastICA
(Hyvärinen, 1998, 1999), and BS Infomax algorithms on the raw sensor sig-
nals. Resulting relative errors (see Figure 11) confirm the significant (by a
factor of more than 10) superiority of the sparse decomposition approach.

The method described in this section, which combines a spectrogram
transform with the BS Infomax algorithm, is included in the ICA/EEG tool-
box (Makeig, 1999).

7 Future Research

We should mention an alternative to the maximum a posteriori approach
(see equation 3.8). Considering the mixing matrix A as a parameter, we can
estimate it by maximizing the probability of the observed signal X:

max
A

[
P(X|A) =

∫
P(X|A,C)P(C) dC

]
.

The integral over all possible coefficients C may be approximated, for ex-
ample, by Monte Carlo sampling or by a matching gaussian, in the spirit of
Lewicki and Sejnowski (in press) and Lewicki and Olshausen (1998) or by
variational methods (Jordan, Ghahramani, Jaakkola, & Saul, 1999). It would
be interesting to compare these possibilities to the other methods presented
in this article.
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Cardoso’s
   JADE

Fast
ICA

   BS
Infomax

Spect−
Infomax

Spect−
BFGS

(8.8%) (8.6%)

(7.1%)

(0.9%) (0.67%)

Figure 11: Percentage relative error of separation of seven musical sources re-
covered by JADE; fast ICA; Bell-Sejnowski Infomax; Infomax, applied to the
spectrogram coefficients; and BFGS minimization of the objective (see equa-
tion 6.8) with the spectrogram coefficients.

Another important direction is toward the problem of simultaneous blind
deconvolution and separation, as in Lambert (1996). In this case, the matri-
ces A and W will have linear filters as an elements, and multiplication by an
element corresponds to convolution. Even in this matrix-of-filters context,
most of the formulas in this paper remain valid.

8 Conclusions

We showed that the use of sparse decomposition in a proper signal dic-
tionary provides high-quality blind source separation. The maximum a
posteriori framework gives the most general approach, which includes the
situation of more sources than sensors. Computationally more robust so-
lutions can be found in the case of an equal number of sources and sen-
sors. We can also extract the sources sequentially using quadratic pro-
gramming with nonconvex quadratic constraints. Finally, much faster solu-
tions may be obtained by using nonovercomplete dictionaries. Our exper-
iments with artificial signals and digitally mixed musical sounds demon-
strate a high quality of source separation compared to other known tech-
niques.
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