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1.1 Introdution

In blind soure separation an N -hannel sensor signal x(t) arises from

M unknown salar soure signals s

i

(t), linearly mixed together by an

unknown N �M matrix A, and possibly orrupted by additive noise

�(t)

x(t) = As(t) + �(t) (1.1)

We wish to estimate the mixing matrix A and theM -dimensional soure

signal s(t). Many natural signals an be sparsely represented in a proper

signal ditionary

s

i

(t) =

K

X

k=1

C

ik

'

k

(t) (1.2)

The salar funtions '

k

(t) are alled atoms or elements of the ditio-

nary. These elements do not have to be linearly independent, and in-

stead may form an overomplete ditionary. Important examples are

wavelet-related ditionaries (wavelet pakets, stationary wavelets, et.,

see for example Chen et al., 1996; Mallat, 1998 and referenes therein),

or learned ditionaries (Lewiki and Sejnowski, 1998; Lewiki and Ol-

shausen, 1999; Olshausen and Field, 1997; Olshausen and Field, 1996).

Sparsity means that only a small number of the oeÆients C

ik

di�er

signi�antly from zero.

We suggest a two stage separation proess. First, a priori seletion

of a possibly overomplete signal ditionary in whih the soures are

assumed to be sparsely representable. Seond, unmixing the soures by

exploiting their sparse representability.

In the disrete time ase t = 1; 2; : : : ; T we use matrix notation. X is

1
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an N � T matrix, with the i-th omponent x

i

(t) of the sensor signal in

row i, S is an M � T matrix with the signal s

j

(t) in row j, and � is a

K � T matrix with basis funtion '

k

(t) in row k. Equations (1.1) and

(1.2) then take the following simple form

X = AS + � (1.3)

S = C� (1.4)

Combining them, we get the following when the noise is small

X � AC�

Our goal therefore an be formulated as follows:

Given sensor signal matrix X and ditionary �, �nd a mixing matrix A and

matrix of oeÆients C suh that X � AC� and C is as sparse as possible.

We should mention other problems of sparse representation studied in

the literature. The basi problem is to represent sparsely salar signal

in given ditionary (see for example Chen et al., 1996 and referenes

therein). Another problem is to adapt the ditionary to the given lass

of signalsy (Lewiki and Sejnowski, 1998; Lewiki and Olshausen, 1999;

Olshausen and Field, 1997). This problem is shown to be equivalent to

the problem of blind soure separation, when the soures are sparse in

time (Lee et al., 1998; Lewiki and Sejnowski, 1998). Our problem is

di�erent, but we will use and generalize some tehniques presented in

these works.

Overview of the hapter

We start this hapter with some motivating examples, whih demon-

strate how sparsity helps to separate soures (Setion 1.2). Then in

Setion 1.3 we present a lustering approah, whih is one of the most

eÆient ways to estimate the mixing matrix when the soures are sparse.

Overomplete ditionary. Setion 1.4 gives the problem formulation

in probabilisti framework in the most general ase of an overomplete

ditionary, when there an be more soures than mixtures, and presents

the maximum a posteriori approah to its solution.

In Setion 1.5 we derive another objetive funtion, whih provides

more robust omputations when there are an equal number of soures

y Our ditionary � may be obtained in this way.
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and mixtures. Setion 1.6 presents sequential soure extration using

quadrati programming with non-onvex quadrati onstraints.

Non-overomplete ditionary. When the ditionary is non-overom-

plete, omputationally muh faster solutions are possible. In Setion 1.7

we demonstrate high-quality separation of synthetially mixed musial

sounds with a square mixing matrix.

Even when the number of soures is larger than the number of mix-

tures, we an estimate the mixing matrix beforehand by lustering, and

then reonstrut the soures by a shortest path deomposition, as it is

shown in Setion 1.8. Here we present examples of separation of up to

six sound soures from two mixtures.

Exploiting multisale representations In many ases, espeially in

wavelet-related deompositions, there are distint groups of oeÆients,

in whih soures have di�erent sparsity properties. Setion 1.9 shows,

how seletion of the best groups of oeÆients signi�antly improves the

separation quality.

1.2 Separation of Sparse Signals

In this setion we present two examples whih demonstrate how sparsity

of soure signals in the time domain helps to separate them. Many real-

world signals have sparse representations in a proper signal ditionary,

but not in the time domain. The intuition here arries over to that

situation, as shown in Setion 1.4.1.

Example: 2 soures and 2 mixtures. Two syntheti soures are

shown in Figure 1.1(a,b). The �rst soure has two non-zero samples,

and the seond has three. The mixtures, shown in Figure 1.1(,d) are

less sparse: they have �ve non-zero samples eah. One an use this

observation to reover the soures. For example, we an express one of

the soures as

~s

i

(t) = x

1

(t) + �x

2

(t)

and hose � suh as to minimize the number of non-zero samples k~s

i

k

0

,

i.e. the l

0

norm of s

i

.

This objetive funtion yields perfet separation. As shown in Fig-

ure 1.2(a), when � is not optimal the seond soure interferes, and the

total number of non-zero samples remains �ve. Only when the �rst
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Fig. 1.1. Soures (a and b) are sparse. Mixtures ( and d) are less sparse.
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Fig. 1.2. (a) Imperfet separation. Sine the seond soure is not ompletely

removed, the total number of non-zero samples remains �ve. (b) Perfet sepa-

ration. When the soure is reovered perfetly, the number of non-zero samples

drops to two and the objetive funtion ahieves its minimum.

soure is reovered perfetly, as in Figure 1.2(b), does the number of

non-zero samples drop to two, and the objetive funtion ahieve its

minimum.

Note that the funtion k~s

i

k

0

is disontinuous and may be diÆult to

optimize. It is also very sensitive to noise: even a tiny bit of noise would

make all the samples non-zero. Fortunately in many ases the l

1

norm

k~s

i

k

1

is a good substitute for this objetive funtion. In this example,

it too yields perfet separation.

Example: 3 soures and 2 mixtures. The signals are presented in

Figure 1.3. These soures have about 10% non-zero samples. The non-

zero samples have random positions, and are zero-mean unit-variane

Gaussian distributed in amplitude. Figure 1.3 shows a satter plot of

the mixtures. The diretions of the olumns of mixing matrix are learly

visible. Indeed, if only one soure, say s

1

(t), was present, the sensor

signals would look like

x

1

(t) = a

11

s

1

(t)

x

2

(t) = a

21

s

1

(t)

and the points at the satter plot of x

2

versus x

1

would belong to the

straight line plaed along the vetor [a

11

a

21

℄

T

. The same thing hap-
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Fig. 1.3. Left: top three panels { sparse soures (sparsity is 10%), bottom

two panels { mixtures. Right: satter plot of two mixtures x

1

versus x

2

.

Three distinguished diretions, whih orrespond to the olumns of the mixing

matrix A, are visible.

pens when all the soures are present but the samples are sparse: at

eah partiular index where a sample of one soure is large, there is

a high probability that the orresponding samples of other soures are

small, and the point in the satter plot still lies lose to the mentioned

straight line. This explains the appearane of dominant orientations at

the satter plot.

1.3 Clustering of Data Conentration Diretions

The phenomena of data onentration along the diretions of the olumns

of mixing matrix an be used in lustering approahes to soure sepa-

ration (Pajunen et al., 1996; Bo�ll and Zibulevsky, 2000b). This works

eÆiently even if the number of soures is greater than the number

of sensors. In order to determine orientations of data onentration, we

projet the data points onto the surfae of a unit spherey by normalizing

orresponding vetors, and then apply a standard lustering algorithm.

Our lustering proedure an be summarized as follows:

(i) In order to projet data points onto the surfae of a unit sphere,

normalize the sensor data vetors at every partiular time index

k: x

k

= x

k

=kx

k

k;

Before normalization, it is reasonable to remove data points with a

very small norm, sine these very likely are noisy.

y One an also use weights, depending on the distane of a data point from the

origin, beause more distant points are more reliable.
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(ii) Move data points to a half-sphere, e.g. by foring the sign of the

�rst oordinate x

1

k

to be positive: if x

1

k

< 0 then x

k

= �x

k

;

Without this operation eah 'line' of data onentration would yield

two lusters on opposite sides of the sphere.

(iii) Determine luster enters using some lustering algorithm. Their

oordinates will form the olumns of the estimated mixing ma-

trix

~

A.

In omputational examples below in this hapter we use C-means lus-

tering Bezdek, 1981 as implemented in the Matlab Fuzzy Logi Tool-

box funtion FCM. We built also a modi�ation of C-means algorithm,

whih allows its input points to be weighted. The optimal hoie of the

weights, as a funtion of the distane of a data point from the origin

still requires further investigation. In Setion 1.8 we use also potential-

funtion based lustering Bo�ll and Zibulevsky, 2000b.

1.4 Probabilisti Framework

In order to derive a maximum a posteriori solution, we onsider the blind

soure separation problem in a probabilisti framework (Belouhrani and

Cardoso, 1995; Pearlmutter and Parra, 1996). Suppose that the oef-

�ients C

ik

in a soure deomposition (1.4) are independent random

variables with a probability density funtion (pdf) of an exponential

type

p

i

(C

ik

) / exp��

i

h(C

ik

) (1.5)

This kind of distribution is widely used for modeling sparsity (Lewiki

and Sejnowski, 1998; Olshausen and Field, 1997). A reasonable hoie

of h() may be

h() = jj

1=

 � 1 (1.6)

or a smooth approximation thereof. Here we will use a family of onvex

smooth approximations to the absolute value

h

1

() = jj � log(1 + jj) (1.7)

h

�

() = �h

1

(=�) (1.8)

with � a proximity parameter: h

�

()! jj as �! 0

+

.

We also suppose a priori that the mixing matrix A is uniformly dis-

tributed over the range of interest, and that the noise �(t) in (1.3) is a
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spatially and temporally unorrelated Gaussian proessy with zero mean

and variane �

2

.

1.4.1 Maximum a posteriori approah

We wish to maximize the posterior probability

max

A;C

P (A;CjX) / max

A;C

P (X jA;C)P (A)P (C) (1.9)

where P (X jA;C) is the onditional probability of observing X given A

and C. Taking into aount (1.3), (1.4), and the white Gaussian noise,

we have

P (X jA;C) /

Y

i;t

exp�

(X

it

� (AC�)

it

)

2

2�

2

(1.10)

By the independene of the oeÆients C

jk

and (1.5), the prior pdf of

C is

P (C) /

Y

j;k

exp(��

j

h(C

jk

)) (1.11)

If the prior pdf P (A) is uniform, it an be droppedy from (1.9). In this

way we are left with the problem

max

A;C

P (X jA;C)P (C): (1.12)

By substituting (1.10) and (1.11) into (1.12), taking the logarithm, and

inverting the sign, we obtain the following optimization problem

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j;k

�

j

h(C

jk

) (1.13)

where kAk

F

=

q

P

i;j

A

2

ij

is the Frobenius matrix norm.

One an onsider this objetive as a generalization of Olshausen and

Field, 1996; Olshausen and Field, 1997 by inorporating the matrix �, or

as a generalization of Chen et al., 1996 by inluding the matrix A. One

problem with suh a formulation is that it an lead to the degenerate

solution C = 0 and A = 1. We an overome this diÆulty in various

y The assumption that the noise is white is for simpliity of exposition, and an be

easily removed.

y Otherwise, if P (A) is some other known funtion, we should use (1.9) diretly.
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ways. The �rst approah is to fore eah row A

i

of the mixing matrix

A to be bounded in norm,

kA

i

k � 1 i = 1; : : : ; N: (1.14)

The seond way is to restrit the norm of the rows C

j

from below

kC

j

k � 1 j = 1; : : : ;M: (1.15)

A third way is to reestimate the parameters �

j

based on the urrent

values of C

j

. For example, this an be done using sample variane as

follows: for a given funtion h(�) in the distribution (1.5), express the

variane of C

jk

as a funtion f

h

(�). An estimate of � an be obtained

by applying the orresponding inverse funtion to the sample variane,

^

�

j

= f

�1

h

(K

�1

X

k

C

2

jk

) (1.16)

In partiular, when h() = jj, var() = 2�

�2

and

^

�

j

=

2

q

K

�1

P

k

C

2

jk

(1.17)

Substituting h(�) and

^

� into (1.13), we obtain

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(1.18)

This objetive funtion is invariant to a resaling of the rows of C om-

bined with a orresponding inverse resaling of the olumns of A.

1.4.2 Experiment: more soures than mixtures

This experiment demonstrates that soures whih have very sparse rep-

resentations an be separated almost perfetly, even when they are or-

related and the number of samples is small.

We used the standard wavelet paket ditionary with the basi wavelet

symmlet-8. When the signal length is 64 samples, this ditionary onsists

of 448 atoms i.e. it is overomplete by a fator of seven. Examples of

atoms and their images in the time-frequeny phase plane (Coifman and

Wikerhauser, 1992; Mallat, 1998) are shown in Figure 1.4. We used the

ATOMIZER (Chen et al., 1995) and WAVELAB (Bukheit et al., 1995)

MATLAB pakages for fast multipliation by � and �

T

.

We reated three very sparse soures (Figure 1.5(a)), eah omposed
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Fig. 1.4. Examples of atoms: time-frequeny phase plane (left) and time plot

(right.)
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Fig. 1.5. (a) Soures, (b) mixtures, and () reonstruted soures, in both

time-frequeny phase plane (left) and time domain (right).

of only two or three atoms. The �rst two soures have signi�ant ross-

orrelation, equal to 0.34, whih makes separation diÆult for onven-

tional methods. Two syntheti sensor signals (Figure 1.5(b)) were ob-

tained as linear mixtures of the soures. In order to measure the auray

of separation, we normalized the original soures with kS

j

k

2

= 1, and
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the estimated soures with k

~

S

j

k

2

= 1. The error was omputed as

Error =

k

~

S

j

� S

j

k

2

kS

j

k

2

� 100% (1.19)

We tested two methods with this data. The �rst method used the

objetive funtion (1.13) and the onstraints (1.15), while the seond

method used the objetive funtion (1.18). We used PBM (Ben-Tal and

Zibulevsky, 1997) for the onstrained optimization. The unonstrained

optimization was done using the method of onjugate gradients, with

the TOMLAB pakage (Holmstrom and Bjorkman, 1999). The same

tool was used by PBM for its internal unonstrained optimization.

We used h

�

(�) de�ned by (1.7) and (1.8) with � = 0:01 and �

2

= 0:0001

in the objetive funtion. The resulting errors of the reovered soures

were 0.09% and 0.02% by the �rst and the seond methods, respetively.

The estimated soures are shown in Figure 1.5(). They are visually in-

distinguishable from the original soures in Figure 1.5(a).

It is important to reognize the omputational diÆulties of this ap-

proah. First, the objetive funtions seem to have multiple loal min-

ima. For this reason, reliable onvergene was ahieved only when the

searh started randomly within 10%{20% distane to the atual solution

(in order to get suh an initial guess one an use a lustering algorithm,

as in Pajunen et al., 1996 or Bo�ll and Zibulevsky, 2000b.)

Seond, the method of onjugate gradients requires a few thousand

iterations to onverge, whih takes about 5 min on a 300 MHz AMD

K6-II even for this very small problem. (On the other hand, preliminary

experiments with a trunated Newton method have been enouraging,

and we antiipate that this will redue the omputational burden by

an order of magnitude or more. Also Paul Tseng's blok oordinate

desent method (unpublished manusript) may be appropriate.) Below

we present a few other approahes whih help to stabilize and aelerate

the optimization.

1.5 Equal number of soures and sensors: more robust

formulations

The main diÆulty in a maximization problem like (1.13) is the bilinear

term AC�, whih destroys the onvexity of the objetive funtion and

makes onvergene unstable when optimization starts far from the solu-

tion. In this setion we onsider more robust formulations for the ase
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when the number of sensors is equal to the number of soures, N =M ,

and the mixing matrix is invertible, W = A

�1

.

When the noise is small and the matrix A is far from singular, WX

gives a reasonable estimate of the soure signals S. Taking into aount

(1.4), we obtain a least squares term kC� �WXk

2

F

, so the separation

objetive may be written

min

W;C

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (1.20)

We also need to add a onstraint whih enfores the non-singularity

of W . For example, we an restrit its minimal singular value r

min

(W )

from below,

r

min

(W ) � 1 (1.21)

It an be shown that in the noiseless ase, � � 0, the problem (1.20){

(1.21) is equivalent to the maximum a posteriori formulation (1.13)

with the onstraint kAk

2

� 1: Another possibility for ensuring the non-

singularity of W is to subtrat K log j detW j from the objetive

min

W;C

�K log j detW j+

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (1.22)

whih (Bell and Sejnowski, 1995; Pearlmutter and Parra, 1996) an be

viewed as a maximum likelihood term.

When the noise is zero and � is the identity matrix, we an substitute

C = WX and obtain the BS Infomax objetive (Bell and Sejnowski,

1995)

min

W

�K log j detW j+

X

j;k

�

j

h((WX)

jk

) (1.23)

Experiment: equal numbers of soures and sensors. We reated

two sparse soures (Figure 1.6, top) with strong ross-orrelation of 0.52.

Separation by minimization of the objetive funtion (1.22) gave an er-

ror of 0.23%. Robust onvergene was ahieved when we started from

random uniformly distributed points in C and W .

For omparison we tested the JADE (Cardoso, 1999a), FastICA (Hyv�arinen,

1999) and BS Infomax (Bell and Sejnowski, 1995; Amari et al., 1996)

algorithms on the same signals. All three odes were obtained from

publi web sites (Cardoso, 1999b; Hyv�arinen, 1998; Makeig, 1999) and



12 Zibulevsky, Pearlmutter, Bo�ll, Kisilev

(a) Soures

10 20 30 40 50 60

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

10 20 30 40 50 60

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(b) Mixtures

10 20 30 40 50 60

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

10 20 30 40 50 60

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

() Separated soures

10 20 30 40 50 60

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

10 20 30 40 50 60

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 1.6. (a) Soures, (b) mixtures, and () reonstruted soures, in both

time-frequeny phase plane (left) and time domain (right).

were used with default setting of all parameters. The resulting rela-

tive errors (Figure 1.7) on�rm the signi�ant superiority of the sparse

deomposition approah.

This still takes a few thousands onjugate gradient steps to onverge

(about 5 min on a 300 MHz AMD K6). For omparison, the tuned

publi implementations of JADE, FastICA and BS Infomax take only a

few seonds. Below we onsider some options for aeleration.

1.6 Sequential Extration of Soures via Quadrati

Programming

Let us onsider �nding the sparsest signal that an be obtained by a

linear ombination of the sensor signals s = w

T

X . By sparsity we mean

the ability of the signal to be approximated by a linear ombination of a

small number of ditionary elements '

k

, as s � 

T

�. This leads to the

objetive

min

w;

1

2

k

T

�� w

T

Xk

2

2

+ �

X

k

h(

k

); (1.24)
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Fig. 1.7. Perent relative error of separation of the arti�ial sparse soures

reovered by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Equa-

tion 1.22.

where the term

P

k

h(

k

) may be onsidered a penalty for non-sparsity.

In order to avoid the trivial solution of w = 0 and  = 0 we need to add

a onstraint that separates w from zero. It ould be, for example,

kwk

2

2

� 1 ; (1.25)

A similar onstraint an be used as a tool to extrat all the soures

sequentially: the new separation vetor w

j

should have a omponent of

unit norm in the subspae orthogonal to the previously extrated vetors

w

1

; : : : ; w

j�1

k(I � P

j�1

)w

j

k

2

2

� 1 ; (1.26)

where P

j�1

is an orthogonal projetor onto Spanfw

1

; : : : ; w

j�1

g.

When h(

k

) = j

k

j we an use the standard substitution

 = 

+

� 

�

; 

+

� 0 ; 

�

� 0

̂ =

�



+



�

�

and

^

� =

�

�

��

�

that transforms (1.24) and (1.26) into the quadrati program

min

w;̂

1

2

k̂

T

^

�� w

T

Xk

2

2

+ �e

T

̂

subjet to: kwk

2

2

� 1 ; ̂ � 0

where e is a vetor of ones.

1.7 Fast Solution in Non-overomplete Ditionaries

In important appliations (Tang et al., 1999; Tang et al., 2000), the sen-

sor signals may have hundreds of hannels and hundreds of thousands of
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samples. This may make separation omputationally diÆult. Here we

present an approah whih ompromises between statistial and ompu-

tational eÆieny. In our experiene this approah provides high quality

of separation in reasonable time.

Suppose that the ditionary is \omplete," i.e. it forms a basis in

the spae of disrete signals. This means that the matrix � is square

and non-singular. As examples of suh a ditionary one an think of

the Fourier basis, Gabor basis, various wavelet-related bases, et.. We

an also obtain an \optimal" ditionary by learning from given family

of signals (Lewiki and Sejnowski, 1998; Lewiki and Olshausen, 1999;

Olshausen and Field, 1997; Olshausen and Field, 1996).

Let us denote the dual basis

	 = �

�1

(1.27)

and suppose that oeÆients of deomposition of the soures

C = S	 (1.28)

are sparse and independent. This assumption is reasonable for properly

hosen ditionaries, although of ourse we would lose the advantages of

overompleteness.

Let Y be the deomposition of the sensor signals

Y = X	 (1.29)

Multiplying both sides of (1.3) by 	 from the right and taking into

aount (1.28) and (1.29), we obtain

Y = AC + � ; (1.30)

where � = �	 is the deomposition of the noise. Here we onsider an

\easy" situation, where � is white, whih assumes that 	 is orthogonal.

We an see that all the objetive funtions from the setions 1.4.1{1.6

remain valid if we substitute the identity matrix for � and replae the

sensor signal X by its deomposition Y . For example, the maximum a

posteriori objetives (1.13) and (1.18) are transformed into

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j;k

�

j

h(C

jk

) (1.31)

and

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(1.32)
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Soures Mixtures Separated

Fig. 1.8. Separation of musial reordings taken from ommerial digital audio

CDs (�ve seond fragments).

The objetive (1.22) beomes

min

W;C

�K log j detW j+

1

2

kC �WY k

2

F

+ �

X

j;k

�

j

h(C

jk

) (1.33)

In this ase we an further assume that the noise is zero, substitute

C = WY , and obtain the BS Infomax objetive (Bell and Sejnowski,

1995)

min

W

�K log j detW j+

X

j;k

�

j

h((WY )

jk

) (1.34)

Also other known methods (for example, Lee et al., 1998; Lewiki and

Sejnowski, 1998), whih normally assume sparsity of soure signals, may

be diretly applied to the deomposition Y of the sensor signals. This

may be more eÆient than the traditional approah, and the reason is

obvious: typially, a properly hosen deomposition gives signi�antly

higher sparsity for the transformed oeÆients than for the raw signals.

Furthermore, independene of the oeÆients is a more realisti assump-

tion than independene of the raw signal samples.

Experiment: musial sounds. In our experiments we arti�ially mixed

seven 5-seond fragments of musial sound reordings taken from om-

merial digital audio CDs. Eah of them inluded 40k samples after

down-sampling by a fator of 5. (Figure 1.8).
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The easiest way to perform sparse deomposition of suh soures is to

ompute a spetrogram, the oeÆients of a Short Time Fourier Trans-

form (STFT). (We used the funtion SPECGRAM from the MATLAB

signal proessing toolbox with a time window of 1024 samples.) The

sparsity of the spetrogram oeÆients (the histogram in Figure 1.9,

right) is muh higher then the sparsity of the original signal (Figure 1.9,

left)

In this ase Y (1.29) is a real matrix, with separate entries for the

real and imaginary omponents of eah spetrogram oeÆient of the

sensor signals X . We used the objetive funtion (1.34) with �

j

= 1

and h

�

(�) de�ned by (1.7) and (1.8) with the parameter � = 10

�4

.

Unonstrained minimization was performed by a BFGS Quasi-Newton

algorithm (MATLAB funtion FMINU.)

This algorithm separated the soures with a relative error of 0.67%

for the least well separated soure (error omputed aording to (1.19).)

We also applied the BS Infomax algorithm (Bell and Sejnowski, 1995)

implemented in Makeig, 1999 to the spetrogram oeÆients Y of the

sensor signals. Separation errors were slightly larger, at 0.9%, but the

omputing time was improved (from 30 min for BFGS to 5 min for BS

Infomax).

For omparison we tested the JADE (Cardoso, 1999a; Cardoso, 1999b),

FastICA (Hyv�arinen, 1999; Hyv�arinen, 1998) and BS Infomax algo-

rithms on the raw sensor signals. Resulting relative errors (Figure 1.10)

on�rm the signi�ant (by a fator of more than 10) superiority of the

sparse deomposition approah.

The method desribed in this setion, whih ombines a spetrogram

transform with the BS Infomax algorithm, is inluded in the ICA/EEG

toolbox (Makeig, 1999).

1.8 Estimating the Mixing Matrix and the Soures Separately

As opposed to the ase of a square mixing matrix, where �nding W

amounts to solving the problem C =WY, in the ase of more soures

than mixtures, we are faed with two interrelated problems: estimating

the mixing matrixA and estimating the souresC. Trying to solve both

of them at the same time as in equation (1.31) is a diÆult multivariate

optimization problem.

Another approah onsists in estimating the mixing matrix A before-

hand. We an do this by lustering (as in Setion 1.3), using sparsity

of sensor oeÆients Y. In experiments of this setion we use sparsity
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Fig. 1.9. Histogram of sound soure values (left) and spetrogram oeÆients

(right), shown with linear y-sale (top), square root y-sale (enter) and log-

arithmi y-sale (bottom).

Cardoso’s
   JADE

Fast
ICA

   BS
Infomax

Spect−
Infomax

Spect−
BFGS

(8.8%) (8.6%)

(7.1%)

(0.9%) (0.67%)

Fig. 1.10. Perent relative error of separation of seven musial soures reov-

ered by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Infomax,

applied to the spetrogram oeÆients, (5) BFGS minimization of the obje-

tive (1.34) with the spetrogram oeÆients.

of Short Time Fourier Transform (STFT). The bene�ts of suh an ap-

proah are lear in Figure 1.11. Six ute signals playing di�erent notes

(see the Six Flutes example in Setion 1.8.2) were synthetially mixed

into two mixtures along equally spaed diretions. Figure 1.11a presents

a satter plot of the resulting data (x

t

2

against x

t

1

for every t), showing

a single big loud. As it an be seen, the di�erent soures are indis-

tinguishable. Then eah mixture was FFT-transformed and the satter

plot of the data in the frequeny domain is shown in Figure 1.11b (i.e.,

x

w

2

against x

w

1

for every w). The di�erene is extraordinary. Now almost
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Fig. 1.11. Satter plot X

2�

vs X

1�

of six ute notes mixed into two mixtures

along equally spaed diretions in the time (left) and frequeny (right) do-

mains.

all the data points are neatly lustered along the six diretions of the

olumns of the mixing matrix, thus providing very good separability.

If we assume that the matrix A is found, the problem (1.31) an be

deomposed into to K independent small problems for eah data point



k

(here we use h(�) = j � j)

min



k

1

2�

2

jjA

k

� y

k

jj

2

+

X

j

j

k

j

j; for k = 1; : : : ;K: (1.35)

Or, in the absene of noise

min



k

X

j

j

k

j

j subjet to A

k

= y

k

; for k = 1; : : : ;K; (1.36)

whih an be formulated as a linear programming problem Chen et al.,

1996.

1.8.1 A Shortest Path Deomposition of the Soures

We use a simple geometrial approah to the optimization problem

(1.36). When the olumns a

j

are normalized, the optimal representa-

tion of the data point y

k

=

P

j

a

j



k

j

that minimizes

P

j

j

k

j

j, will inlude

at most N of the a

j

's, orresponding to the verties of the minimal

simplex enlosing the diretion of vetor y

k

(this leads to the problem

of triangulation on sphere.) The non-zero omponents of the optimal

deomposition orrespond then to the shortest path from the origin to

the data point, when only the diretions of the mixing matrix may be

inluded into the path.

In partiular, for the two-sensor ase, the shortest path is obtained
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Six Flutes (FFT) 50.5 52.5 49.4 43.4 49.1 51.8

Six Flutes (time domain) -1.9 -2.0 -2.2 -2.4 -2.3 -2.4

Four Voies (STFT) 21.7 19.4 15.7 16.6

Five Songs (STFT) 15.6 15.5 15.0 15.1 15.2

Six Flute Melodies (STFT) 20.4 19.4 14.2 16.1 24.7 29.1

Table 1.1. S/N reonstrution indies (dB) for the di�erent

experiments (see text).

by hoosing the olumns a

b

and a

a

whose diretions tan

�1

(a

b

2

=a

b

1

) and

tan

�1

(a

a

2

=a

a

1

) are the losest from below and from above, respetively,

to the diretion of the data point �

k

= tan

�1

(y

k

2

=y

k

1

).

LetW

r

= [a

b

a

a

℄

�1

be the redued N�N inverse matrix, and let 

k

r

be

the redued deomposition along diretions a

b

and a

a

. The omponents

of the soures are then obtained as



k

r

= W

r

y

k

;



k

j

= 0; for j 6= b; a: (1.37)

In pratie,W

r

need only be omputed one for all data points between

any two pairs of mixing diretions.

1.8.2 Experiments with Estimating the Mixing Matrix and

the Soures Separately

The approah was �rst tested using the Six Flutes data set: the sound

of a ute playing steady isolated notes was reorded at high-quality in

an aoustially isolated booth without reverberation, and sampled at

44.1Khz with 16 bits resolution. Six 743 ms exerpts (32768 samples)

were seleted for the soures, orresponding to the notes a4, d5, f5, g5, 6

and d#6. These six soures were mixed into two mixtures along equally

spaed diretions. Eah of the mixture signals was then proessed with

a 32768 sample FFT (i.e., the whole length of the exerpts) and the real

and imaginary parts of the positive spetra were used as input to the

separation system. We used potential funtion based lustering Bo�ll

and Zibulevsky, 2000b. Results are shown in the �rst row of Table 1.1.

For the sake of omparison, the next experiment was onduted on the

same data set using the mixtures in the time domain instead of in the

frequeny domain. The enters of obtained lusters were no longer in
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the diretions of the mixing matrix, so the resulting estimate was mean-

ingless. The separation was then attempted using the original mixing

matrix, but the algorithm totally failed to separate the soures, as shown

in Table 1.1, the seond row.

The ute notes in the Six Flutes data set above were very steady,

whih allowed for a very large FFT window size. The remaining three

experiments presented here were performed on muh more dynami sig-

nals, and preproessing was required based on STFT. As before, the

soures were �rst normalized to the same energy level and mixed in

the time domain. STFT of the resulting mixtures was produed with

a Hanning window of length L, and a \hop" distane d was used be-

tween the starting point of suessive frames (yielding an L�d overlap).

For eah mixture, the input to the separation system was then a single

long vetor ontaining the onatenation of the oeÆients of real and

imaginary parts of the positive spetra among all the frames in that

mixture. After the separation the estimated signals were resynthesized

by reonstruting the frames, regrouping the real and imaginary parts,

taking inverse FFT and inverse windowing. The overlap was removed by

keeping only the entral part of the frame (thus avoiding the distortion

at the edges that often appears after frequeny domain manipulation)

and the reonstruted signal was obtained by simple onatenation of

the resulting piees.

The experiments were onduted on the following sets of signals: A

Four Voies data set with four 2.9 se sentenes pronouned by four

di�erent people (three females and a male), reorded at 22,050 Hz and

8 bits with a low quality mirophone on a home personal omputer.

STFT was done with L = 2048 and d = 614 samples. A Five Songs

data set with �ve 5 se long full-ensemble musi piees (two lassial and

three pop/folk musi) extrated from standard CDs (44,100 Hz/16 bits),

downsampled to 11,025 Hz monophoni and proessed with L = 4096

and d = 1228 samples. Finally, a Six Flute Melodies data set inluding

six 5.7 se long ute melodies (the two voies of a anon, the two voies

of a duet and two unrelated melodies) with a high-quality registration

at 44,100 Hz/16 bits, down-sampled to 22,050 Hz and proessed with

L = 8192 and d = 3276 samples.

In all three ases the mixing matrix was formed with equally spaed

diretions. Results of the separation are shown in Table 1.1. Although

good enough in themselves, the reonstrution indies of the dynami

signals were signi�antly poorer than those of the Six Flutes, in part

due to the intrinsi diÆulties of the short-term analysis and resynthe-



Soure Separation by Sparse Deomposition 21

a) Mixtures

b) Sources and Recovered Signals

Fig. 1.12. FourVoies experiment. (a) Mixtures, (b) soures and reovered

signals, pairwise. Taken from Bo�ll and Zibulevsky, 2000a.

sis. Reonstrution indies were on the same range for the three exam-

ples, regardless of the number of voies, with somehow worse results in

the ase of the FiveSongs, probably due to the higher omplexity of the

sounds. The plot of the reovered signals was in all ases very similar

to the plot of the original soures, as illustrated in Figure 1.12 for the

Four Voies ase. From a subjetive listening point of view, the separa-

tion of the FourVoies example was remarkable for the high intelligibility

of the reovered sentenes, in spite of some bakground noise and ross-

talk. Sound examples for the above experiments are available on-line at

http://www.a.up.es/homes/pau/.

1.9 Soure Separation Using Sparsity of Multisale

Representation

In many ases, espeially in wavelet-related deompositions, there are

distint groups of oeÆients, in whih soures have di�erent sparsity

properties. The idea is to selet those groups of features (oeÆients)

whih are best suited for separation, with respet to the following ri-

teria: (1) sparsity of oeÆients (2) separability of soures' features.

After the best groups are seleted, one uses only these in the separa-
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tion proess, whih an be aomplished by standard ICA algorithms

or by lustering. We present experiments with simulated signals, mu-

sial sounds and images whih demonstrate improvement of separation

quality.

1.9.1 Example: sparsity of random bloks in the Haar basis

Typial blok funtions are shown in Figure 1.13. They are pieewise

onstant, with random amplitude and duration of eah onstant piee.

Let us take a lose look at the Haar wavelet oeÆients at di�erent

resolutions. Wavelet basis funtions at the �nest resolution are obtained

by translation of the Haar mother wavelet:

'

j

(t) =

8

<

:

�1 if t = 0

1 if t = 1

0 otherwise :

Taking a salar produt of a funtion s(t) with the wavelet '

j

(t � �),

we produe a �nite di�erentiation of the funtion s(t) at the point t =

� . This means that the number of non-zero oeÆients at the �nest

resolution for a blok funtion will orrespond roughly to the number of

jumps it has. Proeeding to the next, oarser resolution level

'

j�1

(t) =

8

<

:

�1 if t = �1;�2

1 if t = 0; 1

0 otherwise

the number of non-zero oeÆients still orresponds to the number of

jumps, but the total number of oeÆients at this level is halved , and

so is the sparsity. If we proeed further in this diretion, we will ahieve

levels of resolution, where typial width of a wavelet '

j

(t) is ompara-

ble to the typial distane between jumps in the funtion s(t). In this

ase, most of the oeÆients are expeted to be nonzero, and, therefore,

sparsity will fade-out.

To demonstrate how this inuenes auray of a blind soure sepa-

ration, we randomly generated two blok-signal soures (Fig 1.13, left),

and mixed them by the matrix

A =

�

0:8321 0:6247

�0:5547 0:7809

�

The resulting mixtures, x

1

(t) and x

2

(t) are shown in Figure 1.13, enter.

Figure 1.14, �rst olumn, shows the satter plot of x

1

(t) versus x

2

(t),
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Fig. 1.13. Time plots of blok signals
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BS-Infomax 13.9% 4.2% 0.69%

C-means lustering 13.3% 2.4% 0.41%

Fig. 1.14. Separation of blok signals: satter plots of sensor signals and mean-

squared separation errors (%)

where there are no visible distint features. In ontrast, the satter

plot of the wavelet oeÆients at the highest resolution (Figure 1.14,

third olumn) shows two distint orientations, whih orrespond to the

olumns of the mixing matrix.

Results of separation of the blok soures are presented in Figure 1.14.

The largest error (13%) was obtained on the raw data, and the small-

est (below 0.7%) { on the wavelet oeÆients at the highest resolution,

whih have the best sparsity. Use of all wavelet oeÆients leads to

intermediate sparsity and performane.

1.9.2 Adaptive seletion of sparse subsets of oeÆients in

wavelet pakets tree

Multiresolution analysis

Our hoie of a partiular wavelet basis and of the sparsest subset of o-

eÆients was obvious in the above example: it was based on knowledge

of the struture of pieewise onstant signals. For soures having osil-

latory omponents (like sounds or images with textures), other systems

of basis funtions, for example, wavelet pakets Coifman et al., 1992,
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Fig. 1.15. Wavelet pakets tree

or multiwavelets Weitzer et al., 1997, might be more appropriate. The

wavelet pakets library onsists of the triple-indexed family of funtions:

'

jnk

(t) = 2

j=2

'

n

(2

j

t� k); j; k 2 Z; n 2 N: (1.38)

As in the ase of the wavelet transform, j; k are the sale and shift

parameters, respetively, and n is the frequeny parameter, related to

the number of osillations of a partiular generating funtion '

n

(t). The

set of funtions '

jn

(t) forms a (j; n) wavelet paket. This set of funtions

an be split into two parts at a oarser sale: '

j�1;2n

(t) and '

j�1;2n+1

(t).

It follows that these two form an orthonormal basis of the subspae whih

spans f'

jn

(t)g. Thus, we arrive at a family of wavelet paket funtions

on a binary tree (Figure 1.15). The nodes of this tree are numbered by

two indies: the depth of the level j = 0; 1; ::; J , and the number of nodes

n = 0; 1; 2; 3; :::; 2

j

{1 at the spei�ed level. Using wavelet pakets allows

one to analyze given signals not only with a sale-oriented deomposition

but also on frequeny sub-bands. Naturally, the library ontains the

wavelet basis.

The deomposition oeÆients 

jnk

= hs; '

jnk

i also split into (j; n)

sets orresponding to the nodes of the tree, and there is a fast way to

ompute them using banks of onjugate mirror �lters, as is implemented

in the fast wavelet transform.

Choie of the best nodes in the tree

When signals have a omplex nature, it is diÆult to deide in advane

whih nodes ontain the sparsest sets of oeÆients. That is why we use

the following simple adaptive approah.

First, for every node of the tree, we apply a lustering algorithm
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(see Setion 1.3), and ompute a measure of lusters' distortion. In our

experiments we used a standard global distortion: the mean squared dis-

tane of data points to the enters of their own (losest) lusters. (Here

again, the weights of the data points an be inorporated). Seond, we

hoose a few best nodes with the minimal distortion, ombine their o-

eÆients into one data set, and apply a separation algorithm (lustering

or Infomax) to these data.

More sophistiated tehniques dealing with adaptive hoie of best

nodes, as well as their number an be found in Kisilev et al., .

1.9.3 Experiments with adaptive seletion of sparse subsets

of oeÆients

We evaluated the quality of the proposed wavelet-paket based separa-

tion method on several types of signals. The �rst type is the random

bloks signal (see above). The seond type of signal is a frequeny mod-

ulated (FM) sinusoidal signal. In the �rst ase, the arrier is modulated

by a sinusoidal funtion. In the seond ase, it is modulated by hoosing

a random frequeny and a orresponding random duration; we all this

type of signal Blok-FM (BFM). The third type of signal is a musial

reording of ute sounds. Finally, we apply our algorithm to portrait

images.

In order to ompare the auray of our method to other methods,

we form the following features sets: (1) the set of signals, (2) short

time Fourier transform (STFT) oeÆients, (3) Wavelet transform oef-

�ients, and (4) Wavelet pakets oeÆients at the \best" nodes. In the

last ase, mixtures of soures were deomposed with the Matlab wavelet

paket toolbox using various families of mother wavelets with di�erent

numbers of vanishing moments (smoothness parameter). A typial ex-

ample of satter plots of the wavelet paket oeÆients at di�erent nodes

of the wavelet paket tree is shown in Figure 1.16. The upper left satter

plot, labeled \C", orresponds to the set of oeÆients at all nodes. The

reminder are the satter plots of sets of oeÆients indexed in a wavelet

paket tree above. Generally speaking, the more distint the diretions

appearing on these plots, the more preise the estimation of the mixing

matrix, and, therefore, the better the separation.

We applied the fuzzy C-means lustering algorithm with some modi-

�ations (see Kisilev et al., for details) to eah feature set. Table 1.13

summarizes results of our experiments. We ompared the quality of

separation of random blok and BFM signals by performing 100 Monte-
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Fig. 1.16. Satter plots of the WP oeÆients of the FM mixtures

Signal raw data STFT WT, db8 WT, haar WP, db8 WP, haar

Bloks 31.89 16.31 4.18 1.94 2.70 0.43

BFM sine 49.81 8.17 8.16 15.30 4.48 6.65

FM sine 50.57 5.66 10.16 24.71 4.13 5.33

Flutes 12.18 5.36 5.96 9.23 3.93 8.05

Images raw data DCT WT, sym8 WT, haar WP, sym8 WP, haar

Portraits 22.11 19.11 10.79 10.57 6.04 8.29

Table 1.2. Experimental results: normalized mean square separation

error (%) for signals and images using raw data and deomposition

oeÆients in di�erent domains. In the ase of wavelet pakets (WP)

we used the best seleted nodes.

Carlo simulations and alulating the normalized mean-squared errors

(NMSE) for the above features sets. In the ase of deterministi signals,

we alulated a normalized squared error (SE). In the ase of image sep-

aration, we used the 2D Disrete Cosine Transform (DCT) instead of

the STFT, and the Symmlet-8 mother wavelet when using 2D wavelet

transform and wavelet pakets.

From Table 1.13 it is lear that the adaptive best nodes method out-

performs all other feature sets for eah type of signal. Also, as mentioned
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above, the lustering approah provides a better separation than Info-

Max. It is lear that using the Haar wavelet funtion for the wavelet

pakets representation of the random blok signals provides better sep-

aration than using some smooth wavelet, e.g. Db8. The reason is that

these signals have a sparser representation with the Haar wavelet. In

ontrast, the Flute's signals are better represented with smooth wavelets,

and, therefore, these provide yield separation. This is another advantage

of using sets of features at multiple nodes along with various families of

'mother' funtions: one an hoose best nodes from a number deompo-

sition trees simultaneously.

More results and omparisons an be found in Kisilev et al., .

1.10 Conlusions

We showed that the use of sparse deomposition in a proper signal di-

tionary provides high-quality blind soure separation. The maximum a

posteriori framework gives the most general approah, whih inludes

the situation of overomplete ditionary and more soures than sensors.

Computationally more robust solutions an be found in the ase of an

equal number of soures and sensors. We an also extrat the soures

sequentially using quadrati programming with non-onvex quadrati

onstraints.

Muh faster solutions may be obtained by using non-overomplete

ditionaries. Even when the number of soures is larger than the number

of mixtures, we an estimate the mixing matrix beforehand by lustering,

and then reonstrut the soures by a shortest path deomposition.

In many ases, espeially in wavelet-related deompositions, seletion

of few best groups of oeÆients with the highest sparsity brings addi-

tional improvement of the separation quality.

Our experiments with arti�ial signals and digitally mixed musial

sounds demonstrate a high quality of soure separation, ompared to

other known tehniques.
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