

Evolving the Incremental λ Calculus into a Model of Forward AD

Barak A. Pearlmutter¹ Robert Kelly¹ ¹Dept of Computer Science, Maynooth University ²School of Electrical and Computer Engineering, Purdue University

Key Idea

- Formal transformations resembling derivatives common in CS Derivatives of regular expressions (Brzozowski, 1964)
- Derivatives of types (McBride, 2001; Abbott et al., 2004)
- Incremental λ -Calculus (ILC; Cai et al., 2014)

Maynooth

University

National University

of Ireland Maynooth

Incremental λ -Calculus

- $\triangleright \lambda$ Calculus formalises function definition and application
- ILC adds \mathcal{D} to model incremental computation
- $\blacktriangleright \mathcal{D}$ maps a function $f: B \rightarrow B$
 - which alters a database B
 - to an update function $\mathcal{D}f: B \to \Delta B \to \Delta B$
 - where ΔB is the type of *changes* to B
- Mechanically verifiable proofs of various properties

ILC has Properties Resembling Calculus

 $\mathcal{D}(\lambda x \cdot f(g x)) = (\lambda x x' \cdot \mathcal{D} f(g x) (\mathcal{D} g x x'))$ $\mathcal{D}(f \circ g) x = \mathcal{D}f(g x) \circ \mathcal{D}g x$

Differences Between ILC and Forward AD

- Propagates changes rather than tangents
- Changes are elements of *change sets*
- Changes are finite, not infinitesimal
- ▶ "Differences" (Δ), not "differentials" (∂)
- Changes are separate arguments, tangents are bundled with primals
- ► ILC wishes to partial evaluate the primal away
- Forward AD does not

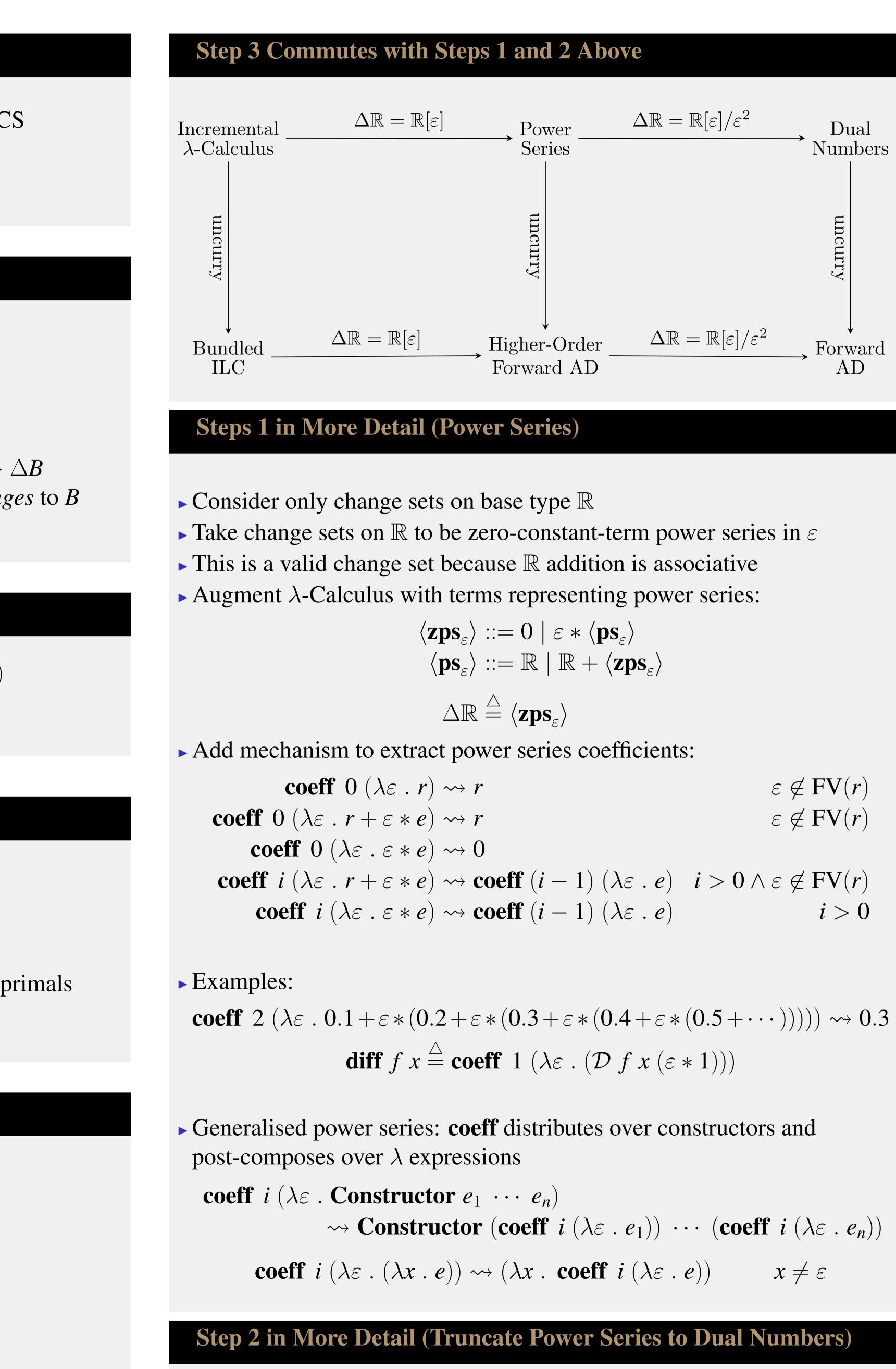
Reducing ILC to Forward AD in Three Steps

- . Take the change sets of \mathbb{R} to be *power series* over \mathbb{R}
- 2. Truncate these power series to dual numbers
- 3. Uncurry and bundle

$$f(x)(x') \leadsto f(x, x') \leadsto f(\langle x, x' \rangle)$$

and also return primal

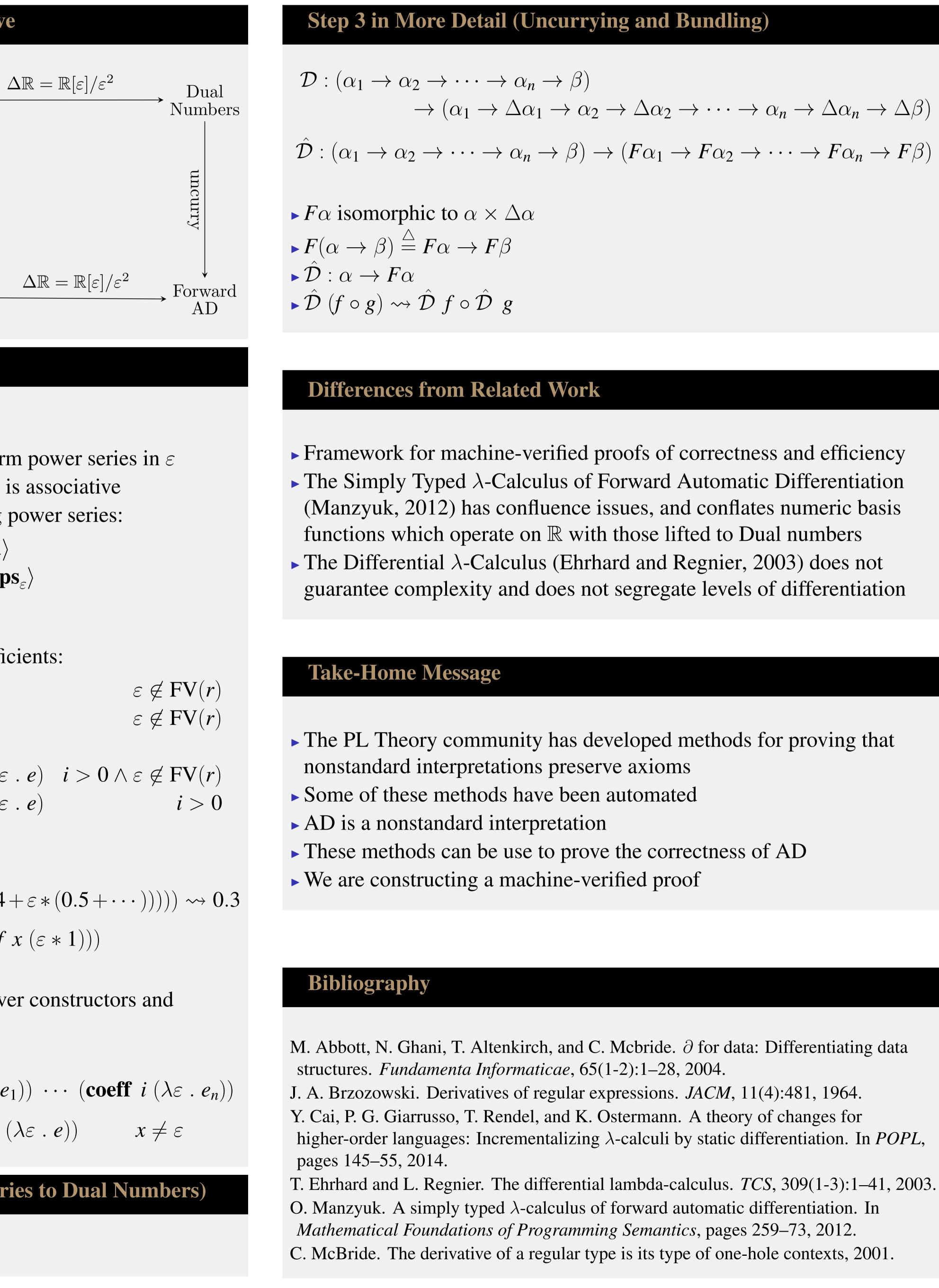
$$\mathcal{D}: (\alpha \to \beta) \to (\alpha \to \Delta \alpha \to \Delta \beta)$$
$$\rightsquigarrow \hat{\mathcal{D}}: (\alpha \to \beta) \to ((\alpha \times \Delta \alpha))$$



 $\rightarrow (\beta \times \Delta \beta))$

laziness

Jeffrey Mark Siskind²



This work was supported, in part, by Science Foundation Ireland grant 09/IN.1/12637 and by NSF grant 1522954-IIS. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the