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Key Idea

IFormal transformations resembling derivatives common in CS
IDerivatives of regular expressions (Brzozowski, 1964)
IDerivatives of types (McBride, 2001; Abbott et al., 2004)
I Incremental λ-Calculus (ILC; Cai et al., 2014)

Incremental λ-Calculus

Iλ Calculus formalises function definition and application
I ILC adds D to model incremental computation
ID maps a function f : B→ B

which alters a database B
to an update function D f : B→ ∆B→ ∆B

where ∆B is the type of changes to B
IMechanically verifiable proofs of various properties

ILC has Properties Resembling Calculus

D (λ x . f (g x)) = (λ x x′ . D f (g x) (D g x x′))

D ( f ◦ g) x = D f (g x) ◦ D g x

Differences Between ILC and Forward AD

IPropagates changes rather than tangents
IChanges are elements of change sets
IChanges are finite, not infinitesimal
I “Differences” (∆), not “differentials” (∂)

IChanges are separate arguments, tangents are bundled with primals
I ILC wishes to partial evaluate the primal away
I Forward AD does not

Reducing ILC to Forward AD in Three Steps

1. Take the change sets of R to be power series over R
2. Truncate these power series to dual numbers
3. Uncurry and bundle

f (x)(x′) f (x, x′) f (〈x, x′〉)
and also return primal

D : (α→ β)→ (α→ ∆α→ ∆β)

 D̂ : (α→ β)→ ((α×∆α)→ (β ×∆β))

Step 3 Commutes with Steps 1 and 2 Above
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Steps 1 in More Detail (Power Series)

IConsider only change sets on base type R
ITake change sets on R to be zero-constant-term power series in ε
IThis is a valid change set because R addition is associative
IAugment λ-Calculus with terms representing power series:

〈zpsε〉 ::= 0 | ε ∗ 〈psε〉
〈psε〉 ::= R | R + 〈zpsε〉

∆R 4
= 〈zpsε〉

IAdd mechanism to extract power series coefficients:

coeff 0 (λε . r) r ε 6∈ FV(r)

coeff 0 (λε . r + ε ∗ e) r ε 6∈ FV(r)

coeff 0 (λε . ε ∗ e) 0
coeff i (λε . r + ε ∗ e) coeff (i− 1) (λε . e) i > 0 ∧ ε 6∈ FV(r)

coeff i (λε . ε ∗ e) coeff (i− 1) (λε . e) i > 0

IExamples:

coeff 2 (λε . 0.1 +ε∗ (0.2 +ε∗ (0.3 +ε∗ (0.4 +ε∗ (0.5 + · · · ))))) 0.3

diff f x
4
= coeff 1 (λε . (D f x (ε ∗ 1)))

IGeneralised power series: coeff distributes over constructors and
post-composes over λ expressions

coeff i (λε . Constructor e1 · · · en)

 Constructor (coeff i (λε . e1)) · · · (coeff i (λε . en))

coeff i (λε . (λx . e)) (λx . coeff i (λε . e)) x 6= ε

Step 2 in More Detail (Truncate Power Series to Dual Numbers)

laziness

Step 3 in More Detail (Uncurrying and Bundling)

D : (α1→ α2→ · · · → αn→ β)

→ (α1→ ∆α1→ α2→ ∆α2→ · · · → αn→ ∆αn→ ∆β)

D̂ : (α1→ α2→ · · · → αn→ β)→ (Fα1→ Fα2→ · · · → Fαn→ Fβ)

IFα isomorphic to α×∆α

IF(α→ β)
4
= Fα→ Fβ

I D̂ : α→ Fα
I D̂ (f ◦ g) D̂ f ◦ D̂ g

Differences from Related Work

IFramework for machine-verified proofs of correctness and efficiency
IThe Simply Typed λ-Calculus of Forward Automatic Differentiation

(Manzyuk, 2012) has confluence issues, and conflates numeric basis
functions which operate on R with those lifted to Dual numbers

IThe Differential λ-Calculus (Ehrhard and Regnier, 2003) does not
guarantee complexity and does not segregate levels of differentiation

Take-Home Message

IThe PL Theory community has developed methods for proving that
nonstandard interpretations preserve axioms

ISome of these methods have been automated
IAD is a nonstandard interpretation
IThese methods can be use to prove the correctness of AD
IWe are constructing a machine-verified proof
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