
Evolving the Incremental λ Calculus into a Model of Forward AD
Robert Kelly1 Barak A. Pearlmutter1 Jeffrey Mark Siskind2

1Dept of Computer Science, Maynooth University 2School of Electrical and Computer Engineering, Purdue University

Key Idea

IFormal transformations resembling derivatives common in CS
IDerivatives of regular expressions (Brzozowski, 1964)
IDerivatives of types (McBride, 2001; Abbott et al., 2004)
I Incremental λ-Calculus (ILC; Cai et al., 2014)

Incremental λ-Calculus

Iλ Calculus formalises function definition and application
I ILC adds D to model incremental computation
ID maps a function f : B→ B

which alters a database B
to an update function D f : B→ ∆B→ ∆B

where ∆B is the type of changes to B
IMechanically verifiable proofs of various properties

ILC has Properties Resembling Calculus

D (λ x . f (g x)) = (λ x x′ . D f (g x) (D g x x′))

D (f ◦ g) x = D f (g x) ◦ D g x

Differences Between ILC and Forward AD

IPropagates changes rather than tangents
IChanges are elements of change sets
IChanges are finite, not infinitesimal
I “Differences” (∆), not “differentials” (∂)

IChanges are separate arguments, tangents are bundled with primals
I ILC wishes to partial evaluate the primal away
I Forward AD does not

Reducing ILC to Forward AD in Three Steps

1. Take the change sets of R to be power series over R
2. Truncate these power series to dual numbers
3. Uncurry and bundle

f (x)(x′) f (x, x′) f (〈x, x′〉)
and also return primal

D : (α→ β)→ (α→ ∆α→ ∆β)

 D̂ : (α→ β)→ ((α×∆α)→ (β ×∆β))

Step 3 Commutes with Steps 1 and 2 Above

Incremental
λ-Calculus

Power
Series

Dual
Numbers

Bundled
ILC

Higher-Order
Forward AD

Forward
AD

∆R = R[ε]

u
n
cu

rry

u
n
cu

rry

∆R = R[ε]/ε2

∆R = R[ε] ∆R = R[ε]/ε2

u
n
cu

rry

Steps 1 in More Detail (Power Series)

IConsider only change sets on base type R
ITake change sets on R to be zero-constant-term power series in ε
IThis is a valid change set because R addition is associative
IAugment λ-Calculus with terms representing power series:

〈zpsε〉 ::= 0 | ε ∗ 〈psε〉
〈psε〉 ::= R | R + 〈zpsε〉

∆R 4
= 〈zpsε〉

IAdd mechanism to extract power series coefficients:

coeff 0 (λε . r) r ε 6∈ FV(r)

coeff 0 (λε . r + ε ∗ e) r ε 6∈ FV(r)

coeff 0 (λε . ε ∗ e) 0
coeff i (λε . r + ε ∗ e) coeff (i− 1) (λε . e) i > 0 ∧ ε 6∈ FV(r)

coeff i (λε . ε ∗ e) coeff (i− 1) (λε . e) i > 0

IExamples:

coeff 2 (λε . 0.1 +ε∗ (0.2 +ε∗ (0.3 +ε∗ (0.4 +ε∗ (0.5 + · · ·))))) 0.3

diff f x
4
= coeff 1 (λε . (D f x (ε ∗ 1)))

IGeneralised power series: coeff distributes over constructors and
post-composes over λ expressions

coeff i (λε . Constructor e1 · · · en)

 Constructor (coeff i (λε . e1)) · · · (coeff i (λε . en))

coeff i (λε . (λx . e)) (λx . coeff i (λε . e)) x 6= ε

Step 2 in More Detail (Truncate Power Series to Dual Numbers)

laziness

Step 3 in More Detail (Uncurrying and Bundling)

D : (α1→ α2→ · · · → αn→ β)

→ (α1→ ∆α1→ α2→ ∆α2→ · · · → αn→ ∆αn→ ∆β)

D̂ : (α1→ α2→ · · · → αn→ β)→ (Fα1→ Fα2→ · · · → Fαn→ Fβ)

IFα isomorphic to α×∆α

IF(α→ β)
4
= Fα→ Fβ

I D̂ : α→ Fα
I D̂ (f ◦ g) D̂ f ◦ D̂ g

Differences from Related Work

IFramework for machine-verified proofs of correctness and efficiency
IThe Simply Typed λ-Calculus of Forward Automatic Differentiation

(Manzyuk, 2012) has confluence issues, and conflates numeric basis
functions which operate on R with those lifted to Dual numbers

IThe Differential λ-Calculus (Ehrhard and Regnier, 2003) does not
guarantee complexity and does not segregate levels of differentiation

Take-Home Message

IThe PL Theory community has developed methods for proving that
nonstandard interpretations preserve axioms

ISome of these methods have been automated
IAD is a nonstandard interpretation
IThese methods can be use to prove the correctness of AD
IWe are constructing a machine-verified proof

Bibliography

M. Abbott, N. Ghani, T. Altenkirch, and C. Mcbride. ∂ for data: Differentiating data
structures. Fundamenta Informaticae, 65(1-2):1–28, 2004.

J. A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481, 1964.
Y. Cai, P. G. Giarrusso, T. Rendel, and K. Ostermann. A theory of changes for
higher-order languages: Incrementalizing λ-calculi by static differentiation. In POPL,
pages 145–55, 2014.

T. Ehrhard and L. Regnier. The differential lambda-calculus. TCS, 309(1-3):1–41, 2003.
O. Manzyuk. A simply typed λ-calculus of forward automatic differentiation. In
Mathematical Foundations of Programming Semantics, pages 259–73, 2012.

C. McBride. The derivative of a regular type is its type of one-hole contexts, 2001.

This work was supported, in part, by Science Foundation Ireland grant 09/IN.1/I2637 and by NSF grant 1522954-IIS. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors.

https://www.linkedin.com/in/robert-kelly-61952155
http://barak.pearlmutter.net
http://engineering.purdue.edu/~qobi

