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Abstrat

The blind soure separation problem is to extrat the underlying soure signals from a

set of linear mixtures, where the mixing matrix is unknown. This situation is ommon,

in aoustis, radio, medial signal and image proessing, hyperspetral imaging, et.. We

suggest a two-stage separation proess. First, a priori seletion of a possibly overomplete

signal ditionary (for instane a wavelet frame, or a learned ditionary) in whih the soures

are assumed to be sparsely representable. Seond, unmixing the soures by exploiting the

their sparse representability. We onsider the general ase of more soures than mixtures,

but also derive a more eÆient algorithm in the ase of a non-overomplete ditionary and an

equal numbers of soures and mixtures. Experiments with arti�ial signals and with musial

sounds demonstrate signi�antly better separation than other known tehniques.
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1 Introdution

In blind soure separation an N -hannel sensor signal x(t) arises from M unknown salar

soure signals s

i

(t), linearly mixed together by an unknown N �M matrix A, and possibly

orrupted by additive noise �(t)

x(t) = As(t) + �(t) (1)

We wish to estimate the mixing matrix A and the M -dimensional soure signal s(t). Many

natural signals an be sparsely represented in a proper signal ditionary

s

i

(t) =

K

X

k=1

C

ik

'

k

(t) (2)

The salar funtions '

k

(t) are alled atoms or elements of the ditionary. These elements

do not have to be linearly independent, and instead may form an overomplete ditionary.

Important examples are wavelet-related ditionaries (wavelet pakets, stationary wavelets,

et, see for example Chen et al. (1996); Mallat (1998) and referenes therein), or learned

ditionaries (Lewiki and Sejnowski, 1998; Lewiki and Olshausen, 1999; Olshausen and

Field, 1997, 1996). Sparsity means that only a small number of the oeÆients C

ik

di�er

signi�antly from zero.

We suggest a two stage separation proess. First, a priori seletion of a possibly over-

omplete signal ditionary in whih the soures are assumed to be sparsely representable.

Seond, unmixing the soures by exploiting their sparse representability.

In the disrete time ase t = 1; 2; : : : ; T we use matrix notation. X is an N � T matrix,

with the i-th omponent x

i

(t) of the sensor signal in row i, S is an M � T matrix with the

signal s

j

(t) in row j, and � is a K �T matrix with basis funtion '

k

(t) in row k. Equations

(1) and (2) then take the following simple form

X = AS + � (3)

S = C� (4)

Combining them, we get the following when the noise is small

X � AC�

Our goal therefore an be formulated as follows:

Given the sensor signal matrix X and the ditionary �, �nd a mixing matrix A

and matrix of oeÆients C suh that X � AC� and C is as sparse as possible.

We should mention other problems of sparse representation studied in the literature.

The basi problem is to represent sparsely salar signal in given ditionary (see for example

Chen et al. (1996) and referenes therein). Another problem is to adapt the ditionary to the

given lass of signals

1

(Lewiki and Sejnowski, 1998; Lewiki and Olshausen, 1999; Olshausen

1

Our ditionary � may be obtained in this way.
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(a)

(b)

()

(d)

Figure 1: Soures (a and b) are sparse. Mixtures ( and d) are less sparse.

and Field, 1997). This problem is shown to be equivalent to the problem of blind soure

separation, when the soures are sparse in time (Lee et al., 1998; Lewiki and Sejnowski,

1998). Our problem is di�erent, but we will use and generalize some tehniques presented

in these works.

Independent Fator Analysis (Attias, 1999) and the Bayesian blind soure separation

(Rowe, 1999) also onsider the ase of more soures than mixtures. In our approah we

take an advantage, when the soures are sparsely representable. In extreme ase, when

the deomposition oeÆients are very sparse, the separation beomes pratially ideal (see

Setion 3.2 below, and the six utes example in Zibulevsky et al. (2000)). Nevertheless

detailed omparison of the methods on real-world signals remains open for future researh.

Our paper is organized as follows. In Setion 2 we give some motivating examples, whih

demonstrate how sparsity helps to separate soures. Setion 3 gives the problem formula-

tion in probabilisti framework, and presents the maximum a posteriori approah, whih is

appliable to the ase of more soures than mixtures. In Setion 4 we derive another ob-

jetive funtion, whih provides more robust omputations when there are an equal number

of soures and mixtures. Setion 5 presents sequential soure extration using quadrati

programming with non-onvex quadrati onstraints. Finally, in Setion 6 we derive a faster

method for non-overomplete ditionaries and demonstrate high-quality separation of syn-

thetially mixed musial sounds.

2 Separation of Sparse Signals

In this setion we present two examples whih demonstrate how sparsity of soure signals in

the time domain helps to separate them. Many real-world signals have sparse representations

in a proper signal ditionary, but not in the time domain. The intuition here arries over to

that situation, as shown in Setion 3.1.
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(a)

(b)

Figure 2: (a) Imperfet separation. Sine the seond soure is not ompletely removed, the

total number of non-zero samples remains �ve. (b) Perfet separation. When the soure is

reovered perfetly, the number of non-zero samples drops to two and the objetive funtion

ahieves its minimum.

Example: 2 soures and 2 mixtures. Two syntheti soures are shown in Figure 1(a,b).

The �rst soure has two non-zero samples, and the seond has three. The mixtures, shown

in Figure 1(,d) are less sparse: they have �ve non-zero samples eah. One an use this

observation to reover the soures. For example, we an express one of the soures as

e

s

i

(t) = x

1

(t) + �x

2

(t)

and hose � suh as to minimize the number of non-zero samples k

e

s

i

k

0

, i.e. the l

0

norm of

s

i

.

This objetive funtion yields perfet separation. As shown in Figure 2(a), when � is

not optimal the seond soure interferes, and the total number of non-zero samples remains

�ve. Only when the �rst soure is reovered perfetly, as in Figure 2(b), does the number of

non-zero samples drop to two, and the objetive funtion ahieve its minimum.

Note that the funtion k

e

s

i

k

0

is disontinuous and may be diÆult to optimize. It is

also very sensitive to noise: even a tiny bit of noise would make all the samples non-zero.

Fortunately in many ases the l

1

norm k

e

s

i

k

1

is a good substitute for this objetive funtion.

In this example, it too yields perfet separation.

Example: 3 soures and 2 mixtures. The signals are presented in Figure 3.

These soures have about 10% non-zero samples. The non-zero samples have random

positions, and are zero-mean unit-variane Gaussian distributed in amplitude. Figure 4

shows a satter plot of the mixtures. The diretions of the olumns of mixing matrix are

learly visible. This phenomena an be used in lustering approahes to soure separation

(Pajunen et al., 1996; Zibulevsky et al., 2000). In this work we will explore a maximum a

posteriori approah.

3 Probabilisti Framework

In order to derive a maximum a posteriori solution, we onsider the blind soure separation

problem in a probabilisti framework (Belouhrani and Cardoso, 1995; Pearlmutter and

Parra, 1996). Suppose that the oeÆients C

ik

in a soure deomposition (4) are independent

random variables with a probability density funtion (pdf) of an exponential type

p

i

(C

ik

) / exp��

i

h(C

ik

) (5)
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Figure 3: Top three panels: sparse soures (sparsity is 10%). Bottom two panels: mixtures.

This kind of distribution is widely used for modeling sparsity (Lewiki and Sejnowski, 1998;

Olshausen and Field, 1997). A reasonable hoie of h() may be

h() = jj

1=

 � 1 (6)

or a smooth approximation thereof. Here we will use a family of onvex smooth approxima-

tions to the absolute value

h

1

() = jj � log(1 + jj) (7)

h

�

() = �h

1

(=�) (8)

with � a proximity parameter: h

�

()! jj as �! 0

+

.

We also suppose a priori that the mixing matrix A is uniformly distributed over the

range of interest, and that the noise �(t) in (3) is a spatially and temporally unorrelated

Gaussian proess

2

with zero mean and variane �

2

.

3.1 Maximum a posteriori approah

We wish to maximize the posterior probability

max

A;C

P (A;CjX) / max

A;C

P (XjA;C)P (A)P (C) (9)

2

The assumption that the noise is white is for simpliity of exposition, and an be easily removed.
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Figure 4: Satter plot of two sensors. Three distinguished diretions, whih orrespond to

the olumns of the mixing matrix A, are visible.

where P (XjA;C) is the onditional probability of observing X given A and C. Taking into

aount (3), (4), and the white Gaussian noise, we have

P (XjA;C) /

Y

i;t

exp�

(X

it

� (AC�)

it

)

2

2�

2

(10)

By the independene of the oeÆients C

jk

and (5), the prior pdf of C is

P (C) /

Y

j;k

exp(��

j

h(C

jk

)) (11)

If the prior pdf P (A) is uniform, it an be dropped

3

from (9). In this way we are left with

the problem

max

A;C

P (XjA;C)P (C): (12)

By substituting (10) and (11) into (12), taking the logarithm, and inverting the sign, we

obtain the following optimization problem

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j;k

�

j

h(C

jk

) (13)

where kAk

F

=

q

P

i;j

A

2

ij

is the Frobenius matrix norm.

One an onsider this objetive as a generalization of Olshausen and Field (1996, 1997)

by inorporating the matrix �, or as a generalization of Chen et al. (1996) by inluding the

matrix A. One problem with suh a formulation is that it an lead to the degenerate solution

3

Otherwise, if P (A) is some other known funtion, we should use (9) diretly.
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C = 0 and A = 1. We an overome this diÆulty in various ways. The �rst approah is

to fore eah row A

i

of the mixing matrix A to be bounded in norm,

kA

i

k � 1 i = 1; : : : ; N: (14)

The seond way is to restrit the norm of the rows C

j

from below

kC

j

k � 1 j = 1; : : : ;M: (15)

A third way is to reestimate the parameters �

j

based on the urrent values of C

j

. For

example, this an be done using sample variane as follows: for a given funtion h(�) in the

distribution (5), express the variane of C

jk

as a funtion f

h

(�). An estimate of � an be

obtained by applying the orresponding inverse funtion to the sample variane,

^

�

j

= f

�1

h

(K

�1

X

k

C

2

jk

) (16)

In partiular, when h() = jj, var() = 2�

�2

and

^

�

j

=

2

q

K

�1

P

k

C

2

jk

(17)

Substituting h(�) and

^

� into (13), we obtain

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(18)

This objetive funtion is invariant to a resaling of the rows of C ombined with a orre-

sponding inverse resaling of the olumns of A.

3.2 Experiment: more soures than mixtures

This experiment demonstrates that soures whih have very sparse representations an be

separated almost perfetly, even when they are orrelated and the number of samples is

small.

We used the standard wavelet paket ditionary with the basi wavelet symmlet-8. When

the signal length is 64 samples, this ditionary onsists of 448 atoms i.e. it is overomplete

by a fator of seven. Examples of atoms and their images in the time-frequeny phase

plane (Coifman and Wikerhauser, 1992; Mallat, 1998) are shown in Figure 5. We used the

ATOMIZER (Chen et al., 1995) and WAVELAB (Bukheit et al., 1995) MATLAB pakages

for fast multipliation by � and �

T

.

We reated three very sparse soures (Figure 6(a)), eah omposed of only two or three

atoms. The �rst two soures have signi�ant ross-orrelation, equal to 0.34, whih makes

separation diÆult for onventional methods. Two syntheti sensor signals (Figure 6(b)) were

obtained as linear mixtures of the soures. In order to measure the auray of separation, we
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Figure 5: Examples of atoms: time-frequeny phase plane (left) and time plot (right.)

normalized the original soures with kS

j

k

2

= 1, and the estimated soures with k

e

S

j

k

2

= 1.

The error was omputed as

Error =

k

e

S

j

� S

j

k

2

kS

j

k

2

� 100% (19)

We tested two methods with this data. The �rst method used the objetive funtion (13)

and the onstraints (15), while the seond method used the objetive funtion (18). We used

PBM (Ben-Tal and Zibulevsky, 1997) for the onstrained optimization. The unonstrained

optimization was done using the method of onjugate gradients, with the TOMLAB pak-

age (Holmstrom and Bjorkman, 1999). The same tool was used by PBM for its internal

unonstrained optimization.

We used h

�

(�) de�ned by (7) and (8) with � = 0:01 and �

2

= 0:0001 in the objetive

funtion. The resulting errors of the reovered soures were 0.09% and 0.02% by the �rst

and the seond methods, respetively. The estimated soures are shown in Figure 6(). They

are visually indistinguishable from the original soures in Figure 6(a).

It is important to reognize the omputational diÆulties of this approah. First, the

objetive funtions seem to have multiple loal minima. For this reason, reliable onvergene

was ahieved only when the searh started randomly within 10%{20% distane to the atual

solution (in order to get suh an initial guess one an use a lustering algorithm, as in

Pajunen et al. (1996) or Zibulevsky et al. (2000).)

Seond, the method of onjugate gradients requires a few thousand iterations to onverge,

whih takes about 5 min on a 300 MHz AMD K6-II even for this very small problem.

(On the other hand, preliminary experiments with a trunated Newton method have been

enouraging, and we antiipate that this will redue the omputational burden by an order

of magnitude or more. Also Paul Tseng's blok oordinate desent method (unpublished

manusript) may be appropriate.) Below we present a few other approahes whih help to

stabilize and aelerate the optimization.
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(a) Soures

(b) Mixtures

() Separated soures

Figure 6: Soures, mixtures and reonstruted soures, in both time-frequeny phase plane

(left) and time domain (right).

4 Equal number of soures and sensors: more robust

formulations

The main diÆulty in a maximization problem like (13) is the bilinear term AC�, whih

destroys the onvexity of the objetive funtion and makes onvergene unstable when opti-

mization starts far from the solution. In this setion we onsider more robust formulations

for the ase when the number of sensors is equal to the number of soures, N =M , and the

mixing matrix is invertible, W = A

�1

.

When the noise is small and the matrix A is far from singular, WX gives a reasonable

estimate of the soure signals S. Taking into aount (4), we obtain a least squares term

kC��WXk

2

F

, so the separation objetive may be written

min

W;C

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (20)

We also need to add a onstraint whih enfores the non-singularity of W . For example,

we an restrit its minimal singular value r

min

(W ) from below,

r

min

(W ) � 1 (21)

It an be shown that in the noiseless ase, � � 0, the problem (20){(21) is equivalent to the

maximum a posteriori formulation (13) with the onstraint kAk

2

� 1: Another possibility
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(a) Soures

(b) Mixtures

() Separated soures

Figure 7: Soures, mixtures and reonstruted soures, in both time-frequeny phase plane

(left) and time domain (right).

for ensuring the non-singularity of W is to subtrat K log j detW j from the objetive

min

W;C

�K log j detW j+

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (22)

whih (Bell and Sejnowski, 1995; Pearlmutter and Parra, 1996) an be viewed as a maximum

likelihood term.

When the noise is zero and � is the identity matrix, we an substitute C = WX and

obtain the BS Infomax objetive (Bell and Sejnowski, 1995)

min

W

�K log j detW j+

X

j;k

�

j

h((WX)

jk

) (23)

Experiment: equal numbers of soures and sensors. We reated two sparse soures

(Figure 7, top) with strong ross-orrelation of 0.52. Separation by minimization of the

objetive funtion (22) gave an error of 0.23%. Robust onvergense was ahieved when we

started from random uniformly distributed points in C and W .

For omparison we tested the JADE (Cardoso, 1999a), FastICA (Hyv�arinen, 1999) and

BS Infomax (Bell and Sejnowski, 1995; Amari et al., 1996) algorithms on the same signals.

All three odes were obtained from publi web sites (Cardoso, 1999b; Hyv�arinen, 1998;

Makeig, 1999) and were used with default setting of all parameters. The resulting relative

errors (Figure 8) on�rm the signi�ant superiority of the sparse deomposition approah.

This still takes a few thousands onjugate gradient steps to onverge (about 5 min on a

300 MHz AMD K6). For omparison, the tuned publi implementations of JADE, FastICA

and BS Infomax take only a few seonds. Below we onsider some options for aeleration.
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    BS
Infomax

Fast
ICA

Equation
      22

(29%)

(57%)

(27%)

(0.2%)

Cardoso’s
   JADE

Figure 8: Perent relative error of separation of the arti�ial sparse soures reovered by (1)

JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Equation 22.

5 Sequential Extration of Soures via Quadrati Pro-

gramming

Let us onsider �nding the sparsest signal that an be obtained by a linear ombination of the

sensor signals s = w

T

X. By sparsity we mean the ability of the signal to be approximated

by a linear ombination of a small number of ditionary elements '

k

, as s � 

T

�. This leads

to the objetive

min

w;

1

2

k

T

�� w

T

Xk

2

2

+ �

X

k

h(

k

); (24)

where the term

P

k

h(

k

) may be onsidered a penalty for non-sparsity. In order to avoid the

trivial solution of w = 0 and  = 0 we need to add a onstraint that separates w from zero.

It ould be, for example,

kwk

2

2

� 1 ; (25)

A similar onstraint an be used as a tool to extrat all the soures sequentially: the new

separation vetor w

j

should have a omponent of unit norm in the subspae orthogonal to

the previously extrated vetors w

1

; : : : ; w

j�1

k(I � P

j�1

)w

j

k

2

2

� 1 ; (26)

where P

j�1

is an orthogonal projetor onto Spanfw

1

; : : : ; w

j�1

g.

When h(

k

) = j

k

j we an use the standard substitution

 = 

+

� 

�

; 

+

� 0 ; 

�

� 0

̂ =

 



+



�

!

and

^

� =

 

�

��

!

that transforms (24) and (26) into the quadrati program

min

w;̂

1

2

k̂

T

^

�� w

T

Xk

2

2

+ �e

T

̂

subjet to: kwk

2

2

� 1 ; ̂ � 0
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where e is a vetor of ones.

6 Fast Solution in Non-overomplete Ditionaries

In important appliations (Tang et al., 1999, 2000a,b), the sensor signals may have hundreds

of hannels and hundreds of thousands of samples. This may make separation omputa-

tionally diÆult. Here we present an approah whih ompromises between statistial and

omputational eÆieny. In our experiene this approah provides high quality of separation

in reasonable time.

Suppose that the ditionary is \omplete," i.e. it forms a basis in the spae of disrete

signals. This means that the matrix � is square and non-singular. As examples of suh a

ditionary one an think of the Fourier basis, Gabor basis, various wavelet-related bases, et.

We an also obtain an \optimal" ditionary by learning from given family of signals (Lewiki

and Sejnowski, 1998; Lewiki and Olshausen, 1999; Olshausen and Field, 1997, 1996).

Let us denote the dual basis

	 = �

�1

(27)

and suppose that oeÆients of deomposition of the soures

C = S	 (28)

are sparse and independent. This assumption is reasonable for properly hosen ditionaries,

although of ourse we would lose the advantages of overompleteness.

Let Y be the deomposition of the sensor signals

Y = X	 (29)

Multiplying both sides of (3) by 	 from the right and taking into aount (28) and (29), we

obtain

Y = AC + � ; (30)

where � = �	 is the deomposition of the noise. Here we onsider an \easy" situation, where

� is white, whih assumes that 	 is orthogonal. We an see that all the objetive funtions

from the setions 3.1{5 remain valid if we substitute the identity matrix for � and replae the

sensor signal X by its deomposition Y . For example, the maximum a posteriori objetives

(13) and (18) are transformed into

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j;k

�

j

h(C

jk

) (31)

and

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(32)

The objetive (22) beomes

min

W;C

�K log j detW j+

1

2

kC �WY k

2

F

+ �

X

j;k

�

j

h(C

jk

) (33)
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Soures Mixtures Separated

Figure 9: Separation of musial reordings taken from ommerial digital audio CDs (�ve

seond fragments).

In this ase we an further assume that the noise is zero, substitute C = WY , and obtain

the BS Infomax objetive (Bell and Sejnowski, 1995)

min

W

�K log j detW j+

X

j;k

�

j

h((WY )

jk

) (34)

Also other known methods (for example, Lee et al. (1998); Lewiki and Sejnowski (1998)),

whih normally assume sparsity of soure signals, may be diretly applied to the deomposi-

tion Y of the sensor signals. This may be more eÆient than the traditional approah, and

the reason is obvious: typially, a properly hosen deomposition gives signi�antly higher

sparsity for the transformed oeÆients than for the raw signals. Furthermore, independene

of the oeÆients is a more realisti assumption than independene of the raw signal samples.

Experiment: musial sounds. In our experiments we arti�ially mixed seven 5-seond

fragments of musial sound reordings taken from ommerial digital audio CDs. Eah of

them inluded 40k samples after down-sampling by a fator of 5. (Figure 9).

The easiest way to perform sparse deomposition of suh soures is to ompute a spetro-

gram, the oeÆients of a time-windowed disrete Fourier transform. (We used the funtion

SPECGRAM from the MATLAB signal proessing toolbox with a time window of 1024

samples.) The sparsity of the spetrogram oeÆients (the histogram in Figure 10, right) is

muh higher then the sparsity of the original signal (Figure 10, left)

In this ase Y (29) is a real matrix, with separate entries for the real and imaginary

omponents of eah spetrogram oeÆient of the sensor signals X. We used the objetive

funtion (34) with �

j

= 1 and h

�

(�) de�ned by (7) and (8) with the parameter � = 10

�4

.

Unonstrained minimization was performed by a BFGS Quasi-Newton algorithm (MATLAB

funtion FMINU.)
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Figure 10: Histogram of sound soure values (left) and spetrogram oeÆients (right), shown

with linear y-sale (top), square root y-sale (enter) and logarithmi y-sale (bottom).

This algorithm separated the soures with a relative error of 0.67% for the least well

separated soure (error omputed aording to (19).) We also applied the BS Infomax

algorithm (Bell and Sejnowski, 1995) implemented in Makeig (1999) to the spetrogram

oeÆients Y of the sensor signals. Separation errors were slightly larger, at 0.9%, but the

omputing time was improved (from 30 min for BFGS to 5 min for BS Infomax).

For omparison we tested the JADE (Cardoso, 1999a,b), FastICA (Hyv�arinen, 1999,

1998) and BS Infomax algorithms on the raw sensor signals. Resulting relative errors (Fig-

ure 11) on�rm the signi�ant (by a fator of more than 10) superiority of the sparse de-

omposition approah.

The method desribed in this setion, whih ombines a spetrogram transform with the

BS Infomax algorithm, is inluded in the ICA/EEG toolbox (Makeig, 1999).

7 Future researh

We should mention an alternative to the maximum a posteriori approah (12). Considering

the mixing matrix A as a parameter, we an estimate it by maximizing the probability of

the observed signal X

max

A

�

P (XjA) =

Z

P (XjA;C)P (C) dC

�

The integral over all possible oeÆients C may be approximated, for example, by Monte-

Carlo sampling or by a mathing Gaussian, in the spirit of Lewiki and Sejnowski (1998);

Lewiki and Olshausen (1999) or by variational methods (Jordan et al., 1999). It would be

interesting to ompare these possibility to the other methods presented in this paper.

Another important diretion is towards the problem of simultaneous blind deonvolution

and separation, as in Lambert (1996). In this ase the matries A and W will have linear
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Cardoso’s
   JADE

Fast
ICA

   BS
Infomax

Spect−
Infomax

Spect−
BFGS

(8.8%) (8.6%)

(7.1%)

(0.9%) (0.67%)

Figure 11: Perent relative error of separation of seven musial soures reovered by (1)

JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Infomax, applied to the spetrogram

oeÆients, (5) BFGS minimization of the objetive (34) with the spetrogram oeÆients.

�lters as an elements, and multipliation by an element orresponds to onvolution. Even in

this matrix-of-�lters ontext, most of the formulae in this paper remain valid.

8 Conlusions

We showed that the use of sparse deomposition in a proper signal ditionary provides high-

quality blind soure separation. The maximum a posteriori framework gives the most general

approah, whih inludes the situation of more soures than sensors. Computationally more

robust solutions an be found in the ase of an equal number of soures and sensors. We an

also extrat the soures sequentially using quadrati programming with non-onvex quadrati

onstraints. Finally, muh faster solutions may be obtained by using non-overomplete

ditionaries. Our experiments with arti�ial signals and digitally mixed musial sounds

demonstrate a high quality of soure separation, ompared to other known tehniques.
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