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ABSTRACT

Discovering a parsimonious representation that reflects the
structure of audio is a requirement of many machine learn-
ing and signal processing methods. Such a representation can
be constructed by Non-negative Matrix Factorisation (NMF),
which is a method for finding parts-based representations of
non-negative data. We present an extension to NMF that is
convolutive and forces a sparseness constraint. Combined
with spectral magnitude analysis of audio, this method dis-
covers auditory objects and their associated sparse activation
patterns.

1. INTRODUCTION

A preliminary step in many data analysis tasks is to find a
suitable representation of the data. Typically, methods ex-
ploit the latent structure in the data. For example, ICA [1]
reduces the redundancy of the data by projecting the data
onto its independent components, which can be discovered
by maximising a statistical measure such as independence [2]
or non-Gaussianity [3].

Given a non-negative matrixV, Non-negative Matrix Fac-
torisation (NMF) approximately decomposesV into a prod-
uct of two non-negative matricesW andH [4, 5]. NMF is a
parts-based approach that does not make a statistical assump-
tion. Instead, it assumes that for the domain at hand, negative
numbers would be physically meaningless. The lack of sta-
tistical assumptions makes it difficult to prove that NMF will
give correct decompositions, although it has been shown ge-
ometrically that NMF provides a correct decomposition for
some classes of images [6].

For data that contains negative components, for example
audio, a non-negative representation must be found. In this
case a spectrogram representation may be used. Spectrograms
have been used in audio analysis for many years [7] and com-
bined with NMF have been applied to variety of problems
such as monaural speech separation [8], identification of au-
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ditory objects with time-varying spectra [9], and automatic
transcription of music [10].

In this paper we combine the previous extension of con-
volutive NMF [9] with a sparseness constraint [11] and apply
it to the analysis of audio. The paper is structured as follows.
In Section 2 we present NMF and discuss its performance
using experiments on synthetic data. We then present con-
volutive NMF in Section 3 and discuss its advantages over
conventional NMF. In Section 4 we add an additional sparse-
ness constraint to the convolutive NMF objective and present
an experiment on music.

2. NON-NEGATIVE MATRIX FACTORISATION

NMF is a linear non-negative approximate factorisation and
is formulated as follows. Given a non-negativeM × N ma-
trix V ∈ R

≥0,M×N the goal is to approximateV as a prod-
uct of two non-negative matricesW ∈ R

≥0,M×R andH ∈
R
≥0,R×N

V ≈ W · H (1)

whereR ≤ M , such that the reconstruction error is min-
imised. Two NMF algorithms were introduced by Lee and
Seung [4, 12], each implementing a different cost function by
which the quality of the approximation can be measured. The
first cost function presented is the Euclidean distance between
V andWH, the second is a generalised version of Kullback-
Leibler divergence. We will use the latter

D(V‖W,H) =

∥

∥

∥

∥

V ⊗ log
V

W · H
− V + W · H

∥

∥

∥

∥

(2)

where⊗ denotes an element-wise (also known as Hadamard
or Schur) product and division is also element-wise. NMF
can now be written as an optimisation problem.

min
W,H

D(V‖W,H) W,H ≥ 0

The above objective is convex inW andH individually but
not together. Therefore algorithms usually alternate updates
of W andH. These admit to multiplicative updates, which



can be interpreted as diagonally rescaled gradient descent[4]:

H = H ⊗
W

T · V

WH

WT · 1
, W = W ⊗

V

WH
· HT

1 · HT
(3)

where1 is anM × N matrix with all its elements equal to
unity and divisions are element-wise. As the algorithm iter-
ates the factors converge to a local optimum of Eq. 2.

The parameterR, which defines the number of columns in
W and rows inH, defines the rank of the approximation. If
R < M thenW is under-determined and NMF reveals low-
rank features of the data. The columns ofW will contain the
basis for the data while the rows ofH will contain activation
patterns for each basis. The selection of an appropriate value
of R is usually based on prior knowledge and is necessary for
good approximation.

2.1. NMF applied on audio spectra

To illustrate the application of NMF on audio data consider
the example shown in Figure 1. The signal under considera-
tion is composed of two band-limited noise bursts with mag-
nitude spectra constant over time. The first burst is centred
around 2 kHz and occurs four times, while the second burst
is centred around 6 kHz and occurs three times. The signal’s
spectrogram is aM × N matrixV with magnitude informa-
tion for M frequency bins atN time intervals. NMF is ap-
plied toV with R = 2 and the resultant factors shown. In this
example both the frequency spectra of the bursts (columns of
W) and their activations in time (rows ofH) have been identi-
fied. This decomposition has successfully revealed the struc-
ture of theV by correctly describing its constituent elements
in both the frequency and time domains.

Now consider the example presented in Figure 2. Here,
the signal under consideration is composed of two auditory
objects that have differing frequency sweeps over time. The
first object is centred around 2 kHz and the second object is
centred around 6 kHz, each occurring four times. NMF is ap-
plied to the data with the same parameters as above and the
factors are shown. It is evident from the columns ofW that
the identified spectra contain frequency components that are
centred around both 2 kHz and 6 kHz. Thus, NMF fails to
identify the spectra of each object and instead discovers ob-
jects that are a combination of both. The reason for this is that
the spectra of the auditory objects evolve over time and that
NMF is not expressive enough to reveal this temporal struc-
ture. Therefore, in order to reveal a correct decomposition,
the expressive properties of NMF need to be extended to con-
sider the evolution of each object’s spectrum.

3. CONVOLUTIVE NMF

Typically, the temporal relationship between multiple obser-
vations over nearby intervals of time are discovered using a
convolutive generative model. Such a model has previously
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Fig. 1. Spectrogram of a signal composed of band-limited
noise bursts, and its factors obtained by NMF.
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Fig. 2. Spectrogram of a signal composed of auditory objects
with time-varying spectra, and its factors obtained by NMF.

been used to extend ICA [13] and NMF [9]. For conventional
NMF, each object is described by its spectrum and corre-
sponding activation in time, while for convolutive NMF each
object has a sequence of successive spectra and correspond-
ing activation pattern across time. The generative model of
Eq. 1 is extended to the convolutive case

V ≈

T−1
∑

t=0

Wt ·
t→

H

whereV ∈ R
≥0,M×N is the input to be decomposed,Wt ∈

R
≥0,M×R andH ∈ R

≥0,R×N are its two factors, andT is



the length of each spectrum sequence. Thei-th column of
Wt describes the spectrum of thei-th objectt time steps after

the object has begun. The
i→

(·) denotes a column shift operator
that moves its argumenti places to the right, as each column
is shifted off to the right the leftmost columns are zero filled.

Conversely, the
←i

(·) operator shifts columns off to the left, with
zero filling on the right.

Using the previously presented framework for NMF, the
new cost function for the convolutive generative model is

D(V‖Λ) =

∥

∥

∥

∥

V ⊗ log
V

Λ
− V + Λ

∥

∥

∥

∥

(4)

whereΛ is the approximation toV and is defined as

Λ =
T−1
∑

t=0

Wt ·
t→

H

This new cost function can be viewed as a set ofT conven-
tional NMF operations that are summed to produce the final
result. Consequently, as opposed to updating two matrices
(W andH) as in conventional NMF,T + 1 matrices require
an update, including allWt andH. The resultant convolutive
NMF update equations are

H = H ⊗
W

T

t ·
←t

[V
Λ

]

WT
t · 1

, Wt = Wt ⊗
V

Λ
·

t→

H

T

1 ·
t→

H

T
(5)

At each iterationH and allWt are updated, whereH is up-
dated to the average result of its updates for allWt [9]. It
can easily be seen that forT = 1 this reduces to conventional
NMF (Eq. 3).

3.1. Convolutive NMF applied on audio spectra

We have shown that conventional NMF reveals a correct de-
composition for auditory objects with constant spectra but
fails for objects that exhibit time-varying spectra. Now let us
consider convolutive NMF applied to this example. The per-
formance of the algorithm now depends on two parameters
R andT , whereT must be larger than the time each object
exists. Convolutive NMF is applied to the data withR = 2
and T = 2 seconds, and the resultant factors presented in
Figure 3. It is evident from spectra sequences obtained (i-th
column ofWt, for t = 0, 1, · · · , T − 1) that the time-varying
spectra of each object has been revealed and that the rows of
H identify the start of each object. This decomposition has
successfully revealed the structure ofV by correctly describ-
ing the spectral evolution of each object and its position in
time.
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Fig. 3. Spectrogram of a signal composed of auditory objects
with time-varying spectra, and its factors obtained by convo-
lutive NMF.

4. CONVOLUTIVE NMF WITH ADDITIONAL
CONSTRAINTS

For some tasks it my be advantageous to perform NMF with
additional constraints placed on eitherW or H. One increas-
ingly popular and powerful constraint is that the rows ofH

have a parsimonious activation pattern for each basis con-
tained in the columns ofW. This is the so calledSparse-
ness Constraint[14, 15]. A signal is said to be sparse when
it is zero or nearly zero more than might be expected from
its variance. Such a signal has a probability density function
or distribution of values with a sharper peak at zero and fat-
ter tails than a Gaussian. A standard sparse distribution isthe
Laplacian distribution (p(c) ∝ exp−|c|). The advantage of
a sparse signal representation is that the probability of two or
more activation patterns being active simultaneously is low.
Thus, sparse representations lend themselves to good separa-
bility [16]. Although convolutive NMF produces activation
patterns that tend to be sparse, the addition of the sparseness
constraint onH provides a means of trading off the sparseness
of the representation against accurate reconstruction.

The most widely used method for multi-objective optimi-
sation is the weighted sum method. This method creates an
aggregate objective function by multiplying each constituent
cost function by a weighting factor and summing the weighted
costs. Combining our reconstruction cost function (Eq. 4)
with a sparseness constraint onH results in the following ob-
jective function

G(V‖Λ) = D(V‖Λ) + λ
∑

ij

Hij (6)

The left term of the objective function corresponds to NMF,



while the right term is an additional constraint onH that en-
forces sparsity by minimising theL1-norm of its columns
[17]. The parameterλ controls the trade off between sparse-
ness and accurate reconstruction.

This objective creates a new problem: the right term is a
strictly increasing function of the absolute value of its argu-
ment, so it is possible that the objective can be decreased by
scaling upW and scaling downH (W 7→ αW andH 7→
(1/α)H, with α > 1). This situation does not alter the left
term in the objective function, but will cause the right term
to decrease, resulting in the elements ofW growing without
bound andH tending toward zero. Consequently, the solu-
tion arrived at by the optimisation algorithm is not influenced
by the right term of the objective function and the resultant
H matrix is not sparse. Therefore another constraint needs to
be introduced in order to make the cost function well-defined.
This is achieved by fixing the norm of thei-th object ofW
(over allt = [0, 1, · · · , T − 1]) to unity which constrains the
scale of the elements inW andH.

4.1. New Update rules

The classic NMF update rules [4] implement gradient descent
and our new updates will also follow this approach. First we
consider the update forH, where the gradient descent update
is

H = H + ηH▽HG(V‖Λ)

Taking the gradient of Eq. 6 with respect toH gives

▽HG(V‖Λ) = W
T

t ·

←t
[

V

Λ

]

− W
T

t · 1 + λ · 1

Diagonally rescaling the variables [4, 11] and setting the learn-
ing rate to

ηH =
H

WT
t · 1 + λ · 1

gives the new update rule forH

H = H ⊗
W

T

t ·
←t

[V
Λ

]

WT
t · 1 + λ · 1

(7)

Similarly, we define the update forW

W = W + ηW▽WG(V‖Λ)

where the gradient of Eq. 6 with respect toW is

▽WG(V‖Λ) =
V

Λ
·

t→

H

T

− 1 ·
t→

H

T

The additional unit norm constraint onW complicates the
update rule and impedes the discovery of a suitable form for
ηW that would result in a multiplicative update [11], thus re-
sulting in the following update

W = W + ηW

[

V

Λ
·

t→

H

T

− 1 ·
t→

H

T]

(8)
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Fig. 4. Spectrogram of a signal composed of an over-
complete basis, and its factors obtained by convolutive NMF.
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Fig. 5. Spectrogram of a signal composed of an over-
complete basis, and its factors obtained by sparse convolutive
NMF.

As long asηW is sufficiently small the update should reduce
Eq. 6. Subsequent to this update any negative values inW are
set to zero (non-negativity constraint) and each object con-
tained inW is rescaled to unit norm.

4.2. Sparse Convolutive NMF applied on audio spectra

An interesting property of the sparseness constraint is that it
enables the discovery of an over-complete basisi.e.a basis that
contains more basis functions than are necessary to span the
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projection space.

To illustrate the performance of convolutive NMF on data
generated from an over-complete basis consider the example
presented in Figure 4. The signal under consideration is com-
posed of three auditory objects each occurring twice, where
the first object is an exponentially decreasing then increas-
ing frequency sweep centred around 4 kHz, the second object
is the reverse of the first, and the third object is a combina-
tion of the first two. Convolutive NMF is applied to the data
with R = 3 andT = 2 seconds, and the resultant factors
presented. It is evident from the results that only the first two
auditory objects are identified. This is because the third object
can be expressed in term of the first two and the signal can be
described by using just the first two objects. Thus, convolu-
tive NMF achieves its optimum with just the first two linearly
independent objects without the need for an over-complete
representation.

When the sparseness constraint is introduced to the ob-
jective the existence of an over-complete representation helps
minimise the objective and allows for a sparser descriptionof
the signal. Sparse convolutive NMF is applied to the same

signal (Figure 5). Here, all three objects and their associated
activation patterns are identified. Therefore, this decomposi-
tion has successfully revealed the over-complete basis used to
generate the signal.

4.3. Sparse Convolutive NMF applied on music

To see the performance of sparse convolutive NMF in a real-
world context, we apply it to a simple music example. The
data consists of synthesised rudimentary guitar sounds, where
each string produces only its fundamental frequency. The
arrangement is simple, composed of three sections: the six
notes of a G chord are played individually in descending or-
der; all six notes of the chord are played simultaneously; and
each note is played in reverse order. Each note is played for
one second, and the frequencies of the notes are 98.00 Hz (G),
123.47 Hz (B), 146.83 Hz (D), 196.00 Hz (G), 246.94 Hz (B)
and 392.00 Hz (G).

Both sparse convolutive NMF and convolutive NMF are
applied to the music and the resultant factors are presentedin
Figure 6. It is evident from the spectrogram that the music can



be represented by an over-complete representation consisting
of each individual note and the chord. Convolutive NMF is
applied withR = 7 , T = 1 second and the resultant factors
are presented in rows 5 & 6. As can be seen from the acti-
vation pattern, the algorithm has failed to represent the chord
as an individual auditory object and instead represents it as
a combination of notes. Sparse convolutive NMF is applied
with the same parameters above and withλ selected on an
ad hocbasis. The resultant factors are presented in rows 3 &
4. Here, it is evident that an over-complete representationis
discovered and that the chord is represented as an individual
auditory object.

5. CONCLUSIONS

In this paper we have presented a sparse convolutive version
of NMF that effectively discovers a sparse parts based rep-
resentation for non-negative data. This method extends the
convolutive NMF objective by including a sparseness con-
straint on the activation patterns, enabling the discoveryof
over-complete representations. We have shown how the ex-
pressive properties of NMF can be improved by reformula-
tion of the problem in a convolutive framework and how the
addition of a sparseness constraint can lead to the discovery
of over-complete representations in music.

References

[1] P. Comon. Independent component analysis: A new
concept.Signal Processing, 36:287–314, 1994.

[2] A. J. Bell and T. J. Sejnowski. An information-
maximization approach to blind separation and blind de-
convolution.Neu. Comp., 7(6):1129–1159, 1995.

[3] A. Hyvärinen and E. Oja. A fast fixed-point algorithm
for independent component analysis.Neu. Comp., 9(7):
1483–1492, Oct. 1997.

[4] D. D. Lee and H. S. Seung. Algorithms for non-negative
matrix factorization. InAdv. in Neu. Info. Proc. Sys. 13,
pages 556–562. MIT Press, 2001.

[5] P. Paatero and U. Tapper. Positive matrix factorization:
A nonnegative factor model with optimal utilization of
error estimates of data values.Environmetrics, 5:111–
126, 1994.

[6] D. Donoho and V. Stodden. When does non-negative
matrix factorization give a correct decomposition into
parts? InAdv. in Neu. Info. Proc. Sys. 16. MIT Press,
2004.

[7] R. K. Potter, G. A. Kopp, and H. C. Green.Visible
Speech. D. Van Nostrand Company, 1947.

[8] T. Virtanen. Sound source separation using sparse cod-
ing with temporal continuity objective. Inin Proceed-
ings of the International Computer Music Conference
(ICMC 2003), 2003.

[9] P. Smaragdis. Non-negative matrix factor deconvolu-
tion; extraction of multiple sound sources from mono-
phonic inputs. InFifth International Conference on
Independent Component Analysis, LNCS 3195, pages
494–499, Granada, Spain, Sep. 22–24 2004. Springer-
Verlag.

[10] S. A. Abdallah and M. D. Plumbley. Polyphonic tran-
scription by non-negative sparse coding of power spec-
tra. InProceedings of the 5th International Conference
on Music Information Retrieval (ISMIR 2004), pages
318–325, 2004.

[11] P. O. Hoyer. Non-negative sparse coding. InIEEE Work-
shop on Neural Networks for Signal Processing, 2002.

[12] D. D. Lee and H. S. Seung. Learning the parts of objects
with nonnegative matric factorization.Nature, 401:788–
791, 1999.

[13] R. H. Lambert.Multichannel Blind Deconvolution: FIR
Matrix Algebra and Separation of Multipath Mixtures.
PhD thesis, Univ. of Southern California, 1996.

[14] B. A. Olshausen and D. J. Field. Sparse coding of sen-
sory inputs.Curr Opin Neurobiol, 14(4):481–487, 2004.

[15] D. J. Field. What is the goal of sensory coding?Neural
Computation, 6:559–601, 1994.

[16] M. Zibulevsky and B. A. Pearlmutter. Blind source sep-
aration by sparse decomposition in a signal dictionary.
Neu. Comp., 13(4):863–882, 2001.

[17] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic
decomposition by basis pursuit.SIAM Journal on Sci-
entific Computing, 20(1):33–61, 1998.


