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T
his article brings together the various elements that constitute the signal processing
challenges presented by a hemodynamics-driven functional near-infrared spec-
troscopy (fNIRS) based brain-computer interface (BCI). We discuss the use of optically
derived measures of cortical hemodynamics as control signals for next generation
BCIs. To this end we present a suitable introduction to the underlying measurement

principle, we describe appropriate instrumentation and highlight how and where performance
improvements can be made to current and future embodiments of such devices. Key design
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elements of a simple fNIRS-BCI system are highlighted while in
the process identifying signal processing problems requiring
improved solutions and suggesting methods by which this
might be accomplished.

INTRODUCTION
A BCI is a mechanism that allows a user to interact with the
outside world through the measurement of correlates of
neural activity associated with mental processes. Interest in
such devices has increased due to technological advance-
ment, reduction of equipment costs and improved signal
processing methods.

BCIs can be characterized in a number of ways based on the
different modalities of physiological measurement (electroen-
cephalography (EEG) [1], [2]; electrocorticography (ECoG) [3];
magneto-encephalography (MEG); magnetic resonance imaging
(MRI) [4], [5]), mental activation strategies (dependent versus
independent), degree of invasiveness, and so on.

While EEG is the most widespread BCI modality, increas-
ingly researchers are investigating alternative and perhaps
ultimately complementary measurements from which to
derive suitable control signals for BCIs. In this article we
will focus on the detection of hemodynamic correlates of
neural activity using fNIRS and its application to BCI. In
particular, we take a complete performance perspective into
account for a survey, review, and analysis of the key signal
processing challenges that present themselves throughout
the system including hardware, digital signal processing,
and feature extraction.

The main goals in BCI design are maximizing informa-
tion throughput and usability. This entails careful design of
each component of the system. As optimization of commu-
nication throughput, in particular, is heavily dependent on

the modality, we will explore the unique aspects of fNIRS
and its potential for use in a BCI in this regard. Taking a
systems perspective, we will explore avenues for improve-
ment of fNIRS-BCI systems in terms of signal enhance-
ment. This will include examining the capabilities of NIRS
and the physiological effects it can observe, the importance
of the hardware in maintaining signal quality, reviewing
the current status of fNIRS-BCI research, and a detailed
review of digital signal processing methods and feature
extraction techniques. Finally we will discuss the implica-
tions of this article with reference to furthering research
into fNIRS-BCI.

METHOD OF NEAR-INFRARED SPECTROSCOPY

THE HEMODYNAMIC RESPONSE TO 
NEURAL ACTIVATION
During mental activation, neural metabolism is supported
through a localized vascular response that causes an inrush
of oxygen-rich blood to the active area and surrounding tis-
sue. In general, this manifests as an increase in oxyhemoglo-
bin (HbO) and a decrease in deoxyhemoglobin (Hb). Figure 1
is an example of the typical hemodynamic response to activa-
tion [6]. Such features are the measurement basis of existing
fNIRS-BCIs.

NEAR-INFRARED SPECTROSCOPY
Near-infrared spectroscopy (NIRS) is an analysis method
that uses electromagnetic radiation in the near-infrared
spectrum (around 650–950 nm). Radiation at these wave-
lengths is passed through a substance and the collected light
intensities are used to determine the properties of the sub-
stance. NIRS has been used in the areas of quality control,

pharmaceuticals, and medical diag-
nostics [7] to name but a few appli-
cations.  In the context of  this
article, discussion is confined to the
ability of NIRS to interrogate cere-
bral tissue to determine functional
brain activity.

FUNCTIONAL NEAR-INFRARED
SPECTROSCOPY
The scalp, skull, and surrounding tis-
sues of the brain exhibit an optical
window of tissue transparency in the
near-infrared (NIR) range allowing
interrogatory measurements of neu-
rochemistry at the cortex [8]. Initially
used for monitoring cerebral oxygen
saturation, subsequent technological
developments yielded sensitivity suffi-
cient for localized tissue oxygenation
measurements [9]. Using the changes
in detected NIR light intensities, it is

[FIG1] Average of motor cortex activations. Vertical dashed lines denote the beginning and
end of the activation.
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possible to calculate concentrations of absorbers (termed chro-
mophores) in the tissue such as Hb and HbO. The relationship
between light intensities and chromophore concentration is
commonly expressed using the Beer-Lambert law.

LIGHT ABSORPTION AND
CHROMOPHORE CONCENTRATION

BEER-LAMBERT LAW
The Beer-Lambert law states that the attenuation in light
intensity is proportional to the concentration of an absorb-
ing compound in a nonabsorbing
medium and the path length of the
photons.

If we let A be the attenuation in
decibels; I0 , the intensity of the
incident light; I1 , the intensity of
the detected light; l, the distance
that the light travels through the
material (the path length); c, the
concentration of chromophores; α, the absorption coefficient
of the chromophore; λ, the wavelength of the light; and k,
the extinction coefficient then

A = αlc = log10
I0

I1
, α = 4πk

λ
(1)

Equation (1) provides a simple means to relate light absorp-
tion to underlying chemical concentration.

MODIFIED BEER-LAMBERT LAW
When considering the interrogation of brain tissue it is neces-
sary to modify this equation to account for the highly scattering
nature of the medium. The modification must include an addi-
tive term to account for scattering losses and a term for the
change in the optical path length

A = log10
I0

I1
= α l cDPF + G. (2)

The differential path length factor (DPF) is a scaling term
to account for the increased path length due to scattering
while G is an additive scalar term incorporating the scattering
losses. The DPF can be determined from experimentally
derived studies [10] making the key measurement the change
in transmitted light intensity. It is this change that consti-
tutes a signal correlated with neural activity. An fNIRS-BCI
utilizes this measurement principal along with instrumenta-
tion capable of measuring A accurately to determine optical
correlates of hemodynamics.

fNIRS INSTRUMENTATION DESIGN
As with any physiological measurement, the standardization
of sensor placement, coupling, signal preprocessing, and con-
ditioning together with a well-described experimental para-

digm are essential elements in obtaining repeatable perform-
ance, optimizing the signal-to-noise ration (SNR) and hence
reducing the workload on the DSP component. This element
of the signal pipeline is crucial for improved performance
and is discussed here.

INTRODUCTION
Measurement methods for NIRS are primarily based around
three distinct technologies: continuous wave (cw), frequency
domain, and time domain. The latter two allow for direct
measurement of the DPF and hence can be used for absolute

measurement of chromophore con-
centration. Continuous wave systems
yield only relative concentration
measurements but are, in contrast,
relatively simple to implement. As a
fNIRS-BCI only requires knowledge of
the relative concentration changes,
the research favors this modality and
hence this paper will only deal with

its operation. More detail on other NIRS modalities can be
found in [11]. cwNIRS systems can be described in terms of
their optical sources, detectors and amplifier technology.

LIGHT SOURCE
The most basic cwNIRS system requires a light source that
can be modulated by a carrier wave from dc up to several
kilohertz. Both laser diodes and LEDs can achieve this. The
development of high power NIR LEDs, such as those used by
Coyle et al. [12] (average output power 10 mW) allow suffi-
cient photons to reach the depths necessary for cortical tis-
sue interrogation. Perpendicular application of the LEDs
with a narrow beam angle (e.g., 8◦ ) is also important for
maximum light delivery since light incident on the scalp at
grazing angles is less likely to be transmitted through the
epidermis [13]. Laser diodes are commonly used in NIRS but
the short transport scattering length (the distance over
which a collimated beam effectively becomes diffuse) at these
wavelengths remove any coherency advantages although for
quantitative measurements, their stability may be preferable.

A key requirement for reliably separating the Hb and HbO
components is the choice of appropriate wavelengths. Studies
performed by Uludag et al. [14] shows that the careful selection
of wavelengths greatly increases the quality of the hemodynamic
signal. Interestingly, these researchers also indicate that the
wavelengths used by some commercial systems are not the opti-
mal combinations.

DETECTORS
Due to the high attenuation (of the order of 70 dB) at even
optimal wavelengths, it is important to have detectors of
high sensitivity and quantum efficiency [12]. In practice this
leads to two device options: photomultipliers and avalanche
photodiodes (APDs). Both devices can be operated in current
mode or photon-counting mode. Photon-counting methods

BCI SYSTEMS REPRESENT
ARGUABLY THE ULTIMATE IN

HUMAN-COMPUTER INTERFACE
TECHNOLOGY.
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given high integration times can provide signals with low
noise, although in some cases the count rates and response
times limit their application. Current-based detectors
require brighter sources to achieve similarly good statistics.
Photomultipliers in general have lower dark currents, high-
er sensitivity, and lower quantum efficiency than APDs.
Practically, integrated APDs with protection, amplification
and bias electronics are physically more robust and simplify
the implementation of a cwNIRS system.

SIGNAL RECOVERY
Even with highly accurate opti-
cal detection technologies,
cwNIRS systems require algo-
rithms to recover the transmit-
ted signal recorded in very noisy
environments. One method of
signal recovery employed by
fNIRS-BCI is the use of lock-in
amplifiers [12]. Lock-in amplifi-
cation can recover a signal on a
known carrier wave and act as a very narrow-band filter.

Another possible avenue for developing a more scalable
multichannel NIRS system is to use a software-based frequen-
cy demultiplexing system. Specteral analysis is performed on
the data in software to recover the raw intensities at each fre-
quency [15]. Software demultiplexing greatly reduces the cost
and size of the equipment needed for a multichannel system
in comparison to a multiple hardware lock-in based system.

CURRENT EMBODIMENTS OF fNIRS 
IN PROTOTYPE BCI SYSTEMS
Published descriptions of fNIRS-BCI include those developed by
Coyle et al. [12], [16]–[18] and Ranganatha et al. [19]–[21].
Such systems give an excellent exposition of the methods, tech-
nologies, and mental strategies for a basic fNIRS-BCI.

The system by Coyle is a custom-built, continuous-wave
fNIRS-BCI. The system is composed of two lock-in amplifiers

(Ametek 7265), two APDs (Hamamatsu C5460-01), two fiber
optic bundles, an LED driver driving nine triple wavelength
LEDs (760 nm, 800 nm and 880 nm, Opto Diode Corp.
APT0101), and function generators. Two data acquisition sys-
tems are employed (NI USB6009 DAQ and Biopac MP100).
The first is for simple online subject interaction, and the
other is for higher resolution data capture for offline analy-
sis. This system achieved 50–85% accuracy in online trials.
Offline analysis and classification increased this to 70–90%.
In this system only the HbO signal is processed to yield fea-
tures for classification.

Ranganatha et al., harness a commercial, multichannel
NIRS measurement system (OMM-1000, Shimadzu
Corporation). This system emits three wavelengths (780,
805, and 830 nm) with an average output power of 3
mWmm−2. Although no online experimental results are pre-
sented this system achieved similar results to Coyle’s offline
analysis but used both Hb and HbO trends to classify a
response which is believed to be a more accurate measure of
volitional activation [22].

NOISE REMOVAL AND FEATURE EXTRACTION

NOISE REMOVAL
The energy of the optical fNIRS signals are dominated by
noise of both physical and physiological origin. Subject move-

ment, heartbeat, respiration
effects, and other physiological
trends make functional activa-
tion difficult to detect without
substantial post-processing.
Figure 2 shows the frequency
spectrum of a single wavelength
fNIRS time series during an
experiment. The physiological
noise sources are particularly
apparent in this domain.

Many approaches to fNIRS
noise removal evolved from methods used in other brain scan-
ning modalities. Experiences with EEG and fMRI serve as good
examples for extension to fNIRS. Many of these methods have
been implemented in clinical fNIRS research but have yet to be
incorporated into an fNIRS-BCI system. There are still many
avenues available to improve the SNR prior to feature extrac-
tion in an fNIRS-BCI. This section explores the major sources
of noise and examines the methods that have been implement-
ed to deal with these artifacts in all areas of fNIRS research. We
will discuss these methods and highlight those that may prove
most useful to fNIRS-BCIs.

MOTION ARTIFACT
Subject motion is a source of significant disruption in the
fNIRS signal and is termed motion artifact. Motion artifact
disruption is caused by many different factors. Movement of
the optodes and detectors can change the angle of incidence

[FIG2] Sources of noise in the fNIRS signal.
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of the transmitted and detected
light, increasing the affect of the
reflectance of the skin surface.
Motion can cause an increase in
blood flow through the scalp or,
more rarely, an increase in blood
pressure in the interrogated cere-
bral regions. Orientation of the
head can effect the signal due to gravity’s effect on the blood
[23]. These compounded effects are a significant source of
noise especially if the head is not physically restricted.
Implementing fNIRS in a completely mobile scenario increas-
es these effects. The ambulatory interference of walking and
totally free head motion would further increase the amplitude
and change the nature of the artifact.

A common approach to motion artifact removal in
many brain scanning modalities is that of adaptive finite
impulse response (FIR) filtering. This requires the collec-
tion of additional information about the noise to alter the
filter coefficients. Such information can be collected
through accelerometers attached to the head to record any
movement. The advantage of this approach is that it makes
real-time filtering possible. Weiner filtering functions
effectively for offline cleaning of data in both stationary
and ambulatory scenarios but has yet to be implemented
in a fNIRS-BCI [23].

As motion artifacts cause the largest statistical variance with-
in the data set, it is possible to implement a principal compo-
nent analysis filter to remove it. This method is used in the
NIRS analysis software ‘HomER’ [24] and has performed well in
offline BCI analysis [20].

PULSE ARTIFACT
The heart beat constitutes a major source of noise when
searching for target hemodynamic responses with fNIRS. The
systoles cause periodic increases in blood pressure and vol-
ume through the body. This increases the absorption of NIR
radiation, leaving a periodic series of spikes in the data.
Generally this interference resides between 0.8–1.2 Hz.

Reducing this interference is a
problem in nearly all functional
brain scanning modalities. The
simplest approach to removal of
this noise is standard FIR and
infinite impulse response filter-
ing. Online fNIRS-BCIs have
used moving average filters to

reduce the effect of the spikes prior to the thresholding for
feature extraction [17].

The previously mentioned analysis software HomER [24]
uses a Type II Chebyshev low-pass filter by default to smooth
out the heart rate [20]. It is also possible to calculate an aver-
age point over the course of each beat. A line is then interpo-
lated through these points to produce the cleaned signal [18].
Another approach is to use a system where all the beats are
averaged. This average waveform is then matched against each
individual beat using a linear regression algorithm and the
resulting waveform is subtracted from the signal [25].

[FIG3] Effect of subject position on Mayer wave [12].
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FILTERING TECHNIQUE PURPOSE REAL-TIME IMPLEMENTATION CITATION USE IN BCI

MOVING AVERAGE FILTER CARDIAC/RESPIRATION Y [17] Y
DETRENDING MAYER WAVE N [25] N
FIR FILTERING CARDIAC/RESPIRATION Y Y
PULSE REGRESSION CARDIAC/RESPIRATION N [25] N
PEAKS AVERAGE CARDIAC/RESPIRATION N [18] Y
SINE FIT MAYER WAVE N [18] Y
WAVELET DENOISING FAST SIGNAL N [29] N
ICA FAST SIGNAL N [29] N
LMS ADAPTIVE FILTERING CARDIAC Y Y
LMS ADAPTIVE FILTERING MOTION ARTIFACT Y N
LMS ADAPTIVE FILTERING MAYER WAVE Y N
WEINER FILTERING MOTION ARTIFACT N [23] N
WEINER FILTERING CARDIAC/RESPIRATION N [23] N
SAVITZKY-GOLAY SMOOTHER CARDIAC Y Y

[TABLE 1]  NOISE REMOVAL ALGORITHMS IMPLEMENTED FOR INDIVIDUAL ARTIFACTS. ENTRIES WITHOUT REFERENCES WERE
IMPLEMENTED BY THE AUTHORS.

WE FOCUS ON THE DETECTION OF
HEMODYNAMIC CORRELATES OF
NEURAL ACTIVITY USING fNIRS
AND ITS APPLICATION TO BCI. 
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Currently another method in use for offline fNIRS-BCI
analysis is the Savitzky-Golay (SG) smoothing filter. The SG fil-
ter performs a local polynomial regression over a specified
length while still preserving the relative maxima, minima, and
width of the signal distribution. These can be lost using many
standard filtering techniques.

Experiments have also been conducted using least mean
squares (LMS) and recursive mean squares (RMS) adaptive FIR
filters using modeled data but the nonstationary nature of the
pulse artifact presents a more difficult challenge.

MAYER WAVE
Spontaneous low-frequency oscillations of approximately 0.1
Hz exist within the signal and are generally referred to as
the Mayer Wave [26], although
it also has been termed as vaso-
motion, V-signal, and sponta-
neous oscil lations [27].  Its
causes are not well understood
but the dominant hypothesis is
that it relates to baroreceptor-
mediated blood pressure control
[26]. Placing a subject in a near-supine position reduces the
amplitude of the oscillation (Figure 3) but does not entirely
eliminate it. The Mayer Wave is a particularly problematic
noise source given its spectral overlap with volitionally
induced hemodynamic changes. One approach to its removal
is to use an algorithm from IEEE Standard 1057 to fit a sine
wave to the data [18]. This sine wave is then subtracted from
the data to produce the cleaned signal. As with the pulse
artifact, LMS and RMS adaptive FIR filters have been tested
experimentally using modeled data.

NOISE REMOVAL METHODS
Table 1 lists the most common signal processing methods used
in fNIRS. Two of the entries (ICA, wavelet denoising) have only
been employed in the retrieval of the fast optical response to
neuronal activation [28]. This signal is believed to be associated
with the propagation of the action potential and is much smaller
than the vascular response described up to now. Methods used
in the search for this elusive signal may well be applicable in the
area of fNIRS-BCI research. Many of these methods are, as yet,
not implemented in a BCI but there are significant gains possi-
ble from their use.

FEATURE EXTRACTION/CLASSIFICATION
Motor cortex activation is the most common mental strategy for
fNIRS-BCI control. Using both hemispheres of the brain sepa-
rately for control purposes offers the advantage of increasing the
number of channels available. Left- versus right-hand activation
detection can be difficult due to the mirroring of activations in
both hemispheres during motor tasks. The following section
will outline the methods used for interpreting activations in
online and offline situations. We will investigate the advantages
of utilizing changes in regional cerebral blood volume (rCBV)

versus blood oxygenation and look into strategies for differenti-
ating left versus right activation.

CEREBRAL BLOOD VOLUME
An increase in rCBV is indicative of possible activation in the
interrogated region. Using fNIRS this increase in rCBV is char-
acterized by a decrease in detected light intensity because of
higher absorption in the tissue.

BLOOD OXYGENATION
Using the modified Beer-Lambert law outlined earlier, it is pos-
sible to calculate the concentration changes in both Hb and
HbO. These have proven to be a more reliable way to confirm
an activation [9]. fNIRS-BCI implementations have done this

in two ways. The first follows
HbO trends alone and the second
combines the trends of both Hb
and HbO to more accurately
define an activation [22]. During
an activation HbO rises sharply in
the first 3–5 s. This is due to the
“watering-the-garden” effect

where the brain oversaturates an active area to supply neurons
with oxygen [22]. Comparing the HbO levels during activation
to an average of those collected during the rest period is the
first simple method of classifying an activation [17].

Another feature extraction method relies on both Hb and
HbO trends. As can be seen in Figure 1, the Hb level decreases
during an activation. Studies have shown that this is a more
reliable indicator of activation in the interrogated region [22].
This is because the larger HbO response can perfuse into other
areas and a HbO rise may not be directly correlated with an
experimentally derived activation.

More speculatively, a recent study was carried out with ref-
erence to the fast oxygen response in capillary event (FORCE)
[30]. This study stated that there was an oxygen exchange
event occurring in capillaries in the activated region. This
event is detectable using NIRS and occurs faster than the
Hb/HbO trends. Should these results be adequately replicated
this effect holds promise for improving the throughput in an
fNIRS-BCI.

RIGHT-LEFT SEPARATION
During a single handed activation it is assumed that only the
contralateral hemisphere of the brain demonstrates a
response. It has been shown experimentally that both hemi-
spheres can respond similarly [12]. It is therefore necessary to
develop systems to correctly classify differences between left
and right activations. Two methods that have improved classi-
fication rates are hidden Markov models (HMMs) and support
vector machines (SVMs). Using finger tapping and motor
imagery experiments on five subjects these systems were able
to achieve accuracy above 80% for finger tapping and above
70% for motor imagery [20]. HMM performed best overall,
bettering SVM by 16% in motor imagery classification.

MOTOR CORTEX ACTIVATION IS
THE MOST COMMON MENTAL

STRATEGY FOR fNIRS-BCI CONTROL.
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Feature extraction and classification represent the final step
in an optical BCI design process. Ultimately the overall perform-
ance is determined through careful consideration of every stage
in the signal processing schema.

DISCUSSION
The majority of the working examples of BCI technology uti-
lize electrical measurements of neural activity to ascertain
user intention. Such systems offer the signal processing com-
munity an array of challenging problems whose nature and
complexity reflect the electromagnetic origin of the measure-
ment modality itself. The nascent
field of optical brain-computer
interfacing offers similarly diffi-
cult challenges, which so far have
not been so thoroughly explored
and developed. While there are
many hundreds of papers pub-
lished each year on improved
processing of EEG signals for
noninvasive electrical potentials-
based BCIs, the corresponding figure
for even hemodynamics-oriented BCIs are in single figures by
and large. We distinguish hemodynamics from optical corre-
lates of hemodynamics in the present discussion so as to
include reported work in the use of functional magnetic reso-
nance imaging for BCIs. With such systems the BOLD
response is believed to be correlated with localized Hb concen-
trations. In any case the use of such hemodynamic signals
offers unique challenges and a series of intriguing signal pro-
cessing problems. From the source of the signal itself where
the precise features of interest and even the causal relation-
ships between the underlying neural activity and vascular
response is still debated through to the rejection of hemody-
namic events unrelated to the feature of interest, a myriad of
problems present themselves. This article in a very condensed
format has offered an overview of some of these issues, has
suggested solutions to some, has described current prototype
devices, and elucidated to some extent the nature of the prob-
lems inherent in the paradigm from experimental methods
through to artifact rejection. We feel that perhaps the applica-
tion of robust adaptive signal processing to eliminate the
Mayer wave artifact in particular is a key element to an
improved fNIRS-BCI. From an instrumentation viewpoint,
extension to multiple wavelengths and sites allowing topo-
graphic mapping based on more subtle features of the chro-
mophore concentrations changes should also yield
considerable improvements.

Clearly fNIRS is not, as yet, a mainstream BCI technology
and perhaps it may never be. However the current level of
research and development in this area has not been of sufficient
scale to suggest an exhaustion of the potential performance
improvement for such methods. Also given the complementary
nature of the hemodynamics response with respect to the elec-
trical potentials associated with the responsible neural activity,

the possibility of a composite signal based on both measurement
modalities may hold the key to a higher bandwidth communica-
tion stream in future systems.

CONCLUSIONS
BCI systems represent arguably the ultimate in human-
computer interface technology. Notwithstanding that the basic
principle has been realized in very many prototypes and some
commercial devices, there is concerted and accelerating devel-
opment in realizing faster and more convenient systems.
Consequently, there has been inquiry into alternative means for

determining brain state and ulti-
mately user intention to produce
enhanced control signals.
Measurement of hemodynamics
associated with such brain states
has emerged recently as a poten-
tial area worthy of investigation.
Currently, fNIRS represents the
most convenient means for deter-
mining such measurements and

this has been recognized by a num-
ber of research groups who have harnessed the technology for
potential BCI systems. This article has presented these develop-
ments in terms of their efficacy and shortcomings. Further, a
synthesis of the signal processing problem within a BCI frame-
work has been developed.
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