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Abstract

Independent component analysis (ICA) is a class of decomposition methods
that separate sources from mixtures of signals. In this chapter, we used sec-
ond order blind identification (SOBI), one of the ICA method, to demonstrate
its advantages in identifying magnetic signals associated with neural informa-
tion processing. Using 122-channel MEG data collected during both simple
sensory activation and complex cognitive tasks, we explored SOBI’s ability to
help isolate and localize underlying neuronal sources, particularly under rela-
tively poor signal-to-noise conditions. For these identified and localized neu-
ronal sources, we developed a simple threshold-crossing method, with which
single-trial response onset times could be measured with a detection rate as
high as 96%. These results demonstrated that, with the aid of ICA, it is pos-
sible to non-invasively measure human single trial response onset times with
millisecond resolution for specific neuronal populations from multiple sen-
sory modalities. This capability makes it possible to study a wide range of
perceptual and memory functions that critically depend on the timing of dis-
crete neuronal events.

The goal of this chapter is to introduce the basic concept of independent compo-
nent analysis (ICA), a class of algorithms that decompose a multidimensional time
series into a set of components, each with a one-dimensional time course and a fixed
spatial distribution. For magnetoencephalography (MEG) as well as electroen-
cephalography (EEG), the multidimensional time series corresponds to the mul-
tichannel MEG or EEG recordings, the component time series to simultaneously
separated and temporally overlapping signals from various neuronal populations,
and the spatial distributions to the set of attenuations from the neuronal sources to
the sensors. While the component time series provides temporal information about
the evoked neuronal responses and ongoing activity, the sensor projection vectors
give information about the spatial locations of the neuronal sources.

One particular ICA algorithm, the second order blind identification (SOBI) (Be-
louchrani et al., 1993; Cardoso, 1994) will be used as an example to illustrate
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the procedures for separating the mixture of noise and neuromagnetic signals into
neurophysiological and neuroanaotmically meaningful components, for localizing
their corresponding source generators, and for measuring single-trial response on-
set times from the localized neuronal populations. Systematic comparisons between
SOBI and alternative ICA algorithms (e.g., InfoMax (Bell and Sejnowski, 1995) and
fICA (Hyvärinen and Oja, 1997)) using the same data set remain to be conducted.

The chapter is organized into six parts.

• Part one defines the ICA problem and offers the reader considerations in se-
lecting a specific ICA algorithm. Second order blind identification (SOBI),
will be introduced as our algorithm of choice for separation of MEG data.
The relationship between ICA and other decomposition and source localiza-
tion methods will be briefly discussed.

• Part two discusses the task conditions under which ICA is most likely to be
beneficial, specifically low S/N conditions resulting from large trial-to-trial
variability and small number of trials in behavioral tasks. The behavioral
tasks used in this chapter will be described.

• Part three describes the process of SOBI application to neuromagnetic sig-
nals. SOBI components will be characterized in both time and space using
MEG images and field maps respectively. A variety of common neuronal and
non-neuronal SOBI components will be identified using both temporal and
spatial information as constraints.

• Part four describes the process of finding equivalent current dipole models
for SOBI neuronal components. The time-invariance of a SOBI component’s
field map and the resulting reduction in the subjectivity of localization process
will be discussed. Cross-task and cross-subject reliability will be examined.
Systematic comparisons between source localizations with and without the
aid of SOBI will be made.

• Part five describes the process of detecting single-trial response onset times
in SOBI separated neuronal components. An iterative threshold-crossing
method will be used in measuring single-trial response onset times. Examples
of onset time detection will be provided for three major sensory modalities.
Cross-subject reliability will be demonstrated for each of three major sensory
modalities.

• Part six summarizes capabilities and advantages that SOBI offers to the anal-
ysis of MEG data and discusses assumptions and future directions.

2



We assume that the readers have a basic knowledge of MEG and the standard
analysis tools offered by commercially available Neuromag software. Comprehen-
sive reviews on ICA algorithms will be avoided due to space limitation. For reviews
of ICA see Amari and Cichocki (1998); Cardoso (1998); Hyvärinen (1999); Vigário
et al. (2000).

1 Introduction

1.1 ICA: Definition

Let x(t) be an n-dimensional vector of sensor signals, which we assume to be an
instantaneous linear mixture of n unknown independent underlying components
si(t), via the unknown n × n mixing matrix A,

x(t) = A s(t) (1)

The ICA problem is to recover s(t), given the measurements x(t) and nothing else.
This is accomplished by finding a matrix W which approximates A

−1.
For MEG, xi(t) corresponds to either continuous or averaged sensor readings

from a magnotometer or gradiometer and si(t) to a recovered neuronal or noise
source. n is the number of sensors available. ICA decomposes the mixed sensor
signals x(t) into n components.

The output of the algorithm is a n × n matrix, W, which maps from the vector
of sensor values x(t) to the vector of recovered component values ŝ(t) = W x(t)
(Fig. 1), up to a scaling and permutation of the components.

The types of true sources that affect MEG sensor readings are summarized on
the left side of Fig. 1. When ICA does a good job, the recovered components ŝ(t)
correspond to the true sources.

1.2 ICA Components in Time

The recovered components ŝi(t) can be displayed as a plot of signal strength as a
function of time, or alternatively in an MEG image (e.g. Fig. 4 right), a pseudo-
colored bitmap in which the responses of a given component during an entire ex-
periment can be parsimoniously displayed (Jung et al., 1999b). Typically, each row
represents one discrete trial of stimulation and multiple trials are ordered vertically
from top to bottom. MEG images can be very informative in providing not only
averaged but trial-to-trial temporal information about the source activation, such as
the single-trial response onset times of a given separated component. For exam-
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Figure 1: The ICA process. Signals from the brain and other noise sources s(t)
are mixed through an unknown linear mixing process A, resulting in the sensor
readings x(t) = As(t). ICA finds an unmixing matrix W that maps from the sensor
signals to recovered components ŝ(t) = Wx(t). The entries of the attenuation
matrix A = W

−1 describe how strongly each sensor responds to each component.

ples of MEG images of noise sources see Fig. 4 right and of neuronal sources, see
Fig. 12b, Fig. 13cd, and Fig. 14b.

1.3 ICA Components in Space

Although ICA does not assume any physical model of the neuronal source gener-
ators, spatial information concerning a separated component is given by the field
map of the component, which represents the measured sensor response to the ac-
tivation of the component ŝi(t). In other words, the field map of a neuronal com-
ponent gives the sensor readings when the corresponding neuronal source alone is
activated. Examples of field maps for a visual, somatosensory, and auditory com-
ponents are shown in Fig. 5b. The field map of the ith component ŝi(t) is the ith

column of the estimated attenuation matrix Â, where Â = W
−1. In combination

with the structural MRI, the field maps can be used as input to any localization
tools for localizing the separated components within the brain. For example, after
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calculating its sensor projection, we can repackage a component for localization by
Neuromag dipole modeling tools.

1.4 Selection of ICA Methods

ICA algorithms (for review, see Amari and Cichocki (1998); Cardoso (1998); Hyvärinen
(1999); Vigário et al. (2000)) fall between two extremes: instantaneous and sum-
mary algorithms, that differ in whether each point in time is considered in isola-
tion. Instantaneous algorithms (such as Bell-Sejnowski Infomax and fICA) make
repeated passes through the dataset to update the unmixing matrix in response to the
data at each time-point. Signals are assumed to have no temporal correlation, and
the results are meant to be invariant to shuffling of the data. In contrast, summary
algorithms, such as SOBI (Belouchrani et al., 1993; Cardoso, 1994), first make a
pass through the data while summary statistics are accumulated by averaging; they
then operate solely upon the summary statistics to find the separation matrix.

In selection of ICA algorithms for MEG applications, one important consider-
ation is the robustness of the algorithm to noise. In general, summary algorithms
are more likely to be less sensitive to noise because their summary statistics are
averages over time. The relatively poor signal-to-noise ratio in MEG data suggests
the choice of a summary algorithm, such as SOBI, over an instantaneous algorithm.
When it can be assumed that each source has a broad autocorrelation function, as is
the case with brain signals, SOBI can give high quality separation while imposing
rather modest computational requirements.

SOBI extracts a large set of statistics from the dataset, which it uses for the
separation. Each of these statistics is calculated by averaging across the dataset,
which makes the algorithm robust against noise. The particular statistics calculated
are the correlations between pairs of sensors at a fixed delay, 〈xi(t)xj(t + τ)〉. This
makes good use of abundant but noisy data, and most importantly, SOBI can be
tuned by modifying its set of delays, allowing its users to gently integrate a very
weak form of prior knowledge.

1.5 Second Order Blind Identification

SOBI is considered blind as it makes no assumptions about the form of the mixing
process. In other words, SOBI does not attempt to solve the inverse problem or
use the physics of the situation in any way. It does not try to estimate currents,
or know about Maxwell’s equation or any of its consequences. The only physical
assumption made about the mixing process is that it is instantaneous and linear.

As stated before, the ICA problem is to recover s(t), given the measurements
x(t) and nothing else. This is accomplished by finding a matrix W which approx-
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imates A
−1, up to permutation and scaling of its rows. SOBI assumes that the

components are statistically independent in time, and not necessarily orthogonal in
space. It finds W by minimizing the total correlations between one component at
time t and another at time t + τ , computed with a set of time delays (τs) 1

The particular set of delays τ can be chosen to cover a reasonably wide interval
without extending beyond the support of the autocorrelation function. Measured in
units of samples at a 300 Hz sampling rate, a reasonable set of delays is

τ ∈ { 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12, 14, 16, 18,
20, 25, 30, 35, 40, 45, 50, 55,
60, 65, 70, 75, 80, 85, 90, 95, 100 }.

It is important to point out that the choice of delays can affect the results of
separation. Depending on the types of sources activated by the behavioral task,
the selection of delays can have complex interactions with the latency of evoked
responses. Prior knowledge about the sources can be incorporated by setting these
parameters.

1.6 ICA versus Other Decomposition Methods

Both PCA (Hotelling, 1933) and ICA (Comon, 1994) can be thought of as decom-
posing the matrix whose rows are the sensor values at various points in time into a
sum of rank-one matrices. Each of these rank-one matrices is an outer product of
two vectors: one representing a time course, the other a set of spatial attenuations.
The question is: what is the best decomposition. PCA assumes that the data is Gaus-
sian and requires the vectors that form the outer products to be orthogonal, while
ICA models the data as generated by statistically independent but non-Gaussian
processes.

Jung et al. (1999a) applied both PCA and ICA to EEG data and assessed their
ability to segregate various known sources of noise. They found that ICA was su-
perior in this regard. Vigário et al. (1999) applied both methods to MEG data and
the auditory and somatosensory ICA components were physiologically more rea-
sonable than the PCA components. These results are not surprising, given the poor
match between PCA’s assumptions (Gaussian, orthogonal) and the actual processes
generating the data (highly non-Gaussian, highly correlated spatial attenuations.)

1For justification for this minimization, see Sec 6.1.
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1.7 ICA and Other Source Modeling Methods

Beside ICA, a variety of algorithms have been developed (Mosher et al., 1992; Ioan-
nides et al., 1995; Kinouchi et al., 1996; Sekihara et al., 1997; Nagano et al., 1998;
Mosher and Leahy, 1998; Uutela et al., 1998; Mosher and Leahy, 1999; Schwartz
et al., 1999; Sekihara et al., 2000; Huang et al., 2000; Aine et al., 2000; Ermer
et al., 2000; Schmidt et al., 1999) to localize neuronal sources or to simultaneously
localize and recover the time course of these neuronal sources from a mixture of
source signals recorded at multiple sensors. Because ICA can generate sensor pro-
jections of functionally independent components, ICA can be viewed, not as an
alternative to existing source modeling method, but as a pre-processing tool that
generate “cleaner” sensor readings from functionally unique neuronal populations.
Given their ability to separate the noise from neuronal signals, ICA algorithms are
expected to benefit all source localization methods by providing them with input
signals that are more likely to be associated with functionally independent neuronal
sources.

1.8 ICA and MEG

Application of ICA to MEG was preceded by its application to EEG five years ago
(Makeig et al., 1996). Since then, several independent component analysis (ICA)
algorithms, such as second-order blind identification (SOBI) (Belouchrani et al.,
1993; Cardoso, 1994), Bell and Sejnowski (1995) Infomax, and fast independent
component analysis (fICA) (Hyvärinen and Oja, 1997), have been applied to EEG
data (Makeig et al., 1997, 1999; Jung et al., 2000a,b) and MEG data (Vigário et al.,
1998; Tang et al., 2000a,b; Vigário et al., 1999, 2000; Wübbeler et al., 2000; Ziehe
et al., 2000; Cao et al., 2000). In both applications, ICA methods have proven use-
ful for artifact removal (Jung et al., 2000a,b; Vigário et al., 1998; Tang et al., 2000a;
Ziehe et al., 2000). Neurophysiologically meaningful components have been sepa-
rated (Makeig et al., 1997, 1999; Vigário et al., 1999; Tang et al., 2000a; Wübbeler
et al., 2000; Tang et al., 2002a,b). For MEG, these neurophysiologically meaningful
ICA components have been further localized using equivalent current dipole models
(Vigário et al., 1999; Tang et al., 2000c). Most recently, single-trial response on-
set times have been estimated with an over 90% success rate from these functional
components (Tang et al., 2002a).
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2 When to Use ICA?

Typical magnetic signals associated with neuronal activity are on the order of one
hundred fT, while the noise signals within a shielded room tend to be much larger
(Lewine and Orrison, 1995). Furthermore, the intrinsic sensor noise is comparable
in magnitude to some small neuronal signals. Therefore, what the sensors record
during an experiment is always a mixture of small neuromagnetic and large noise
signals. This poor signal-to-noise ratio2 can affect the estimation of temporal profile
and localization of neuronal activity.

Because one strength of ICA is its ability to separate various noise sources from
the signals of interest, ICA is most likely to be useful when the experimental con-
ditions necessitate relatively poor S/N . For example, the somatosensory responses
associated with thumb mouse-button presses without any constrains on the resting
position of the hand and on how the hands holding the mouse would have a rel-
atively poor S/N while somatosensory responses associated with well-controlled
median nerve stimulation would have a much higher S/N . If more or few trials of
stimulation are conducted, the S/N in the average responses can be higher or lower
accordingly. ICA is expected to be particularly useful when a small number of tri-
als of data were collected, when the behavioral tasks involve large variability in
stimulus presentation or behavioral responses requirement, when neuronal sources
of interests lie beyond the early sensory processing areas, and when the tasks are
highly cognitive in contrast to sensory activation tasks. Therefore, ICA may sup-
port experimental designs that more closely approximate perceptual, motor, and
cognitive processing taking place in the real world.

As the details of the behavioral tasks are critical in assessing the utility of ICA,
we briefly describe the tasks used in generating the data for the following ICA
application. We collected MEG data from four subjects during four visual reaction
time tasks, originally designed for studying temporal lobe memory (Tang et al.,
2002a,b). In each task, a pair of colored patterns was presented on the left and right
halves of the display screen. The subject was instructed to press either the left or
right button when the target appeared on the left or right, respectively. In all tasks,
the target was not described to the subject prior to the experiment. The subject was
to discover the target by trial and error using auditory feedback (low and high tones
corresponded to correct and incorrect responses, respectively). All subjects were
able to discover the rule within a few trials.

The tasks differed in the memory load required for determining which of the

2Unless otherwise indicated, we use signal-to-noise ratio in the sense defined in signal detec-
tion theory. Signals refer to the neuromagnetic signal of interest. Noise refers to all other signals
including environmental and sensor noise and other background brain signals.

8



pair is the target. Task one served to familiarize the subjects with all visual pat-
terns. The subjects simply viewed the stimuli and were asked to press either the left
or right button at their own choice while making sure approximately equal num-
bers of left and right button presses were performed. As such, task one placed little
memory demand on the subject. Task two involved remembering a single target
pattern which appeared on each trial paired with other patterns. Subjects were to
press the corresponding button to indicate the side of the screen on which the target
pattern was displayed. Task three involved remembering multiple targets, each al-
ways paired with the same non-targets. Task four was the most complex, in which
whether a pattern was a target was context sensitive as in the game of rock-paper-
scissors. The amount of cognitive processing beyond the initial sensory processing
increased from task one to task four.

We used data from these complex cognitive tasks to evaluate the capability of
SOBI because of the relatively poor signal-to-noise ratios involved in comparison
to simple sensory activation tasks. Specifically, these tasks involved (1) large visual
field stimulation without the use of fixation points, (2) incidental somatosensory
stimulation as a result of button presses during reaction time tasks, and (3) highly
variable button press responses because precisely what form of the thumb move-
ment should be made, how the mouse was held, and where the hands rest were not
specified. These sources of variability in visual and somatosensory activation can
lead to poor signal-to-noise ratios in the average responses, making it particularly
difficult to localize the neuronal sources from unprocessed averaged sensor data.
In addition, the involvement of higher level cognitive functions, memory demand,
and the small number of trials collected under each task condition, 90 trials in most
cases, could further decrease the signal-to-noise ratio in the average sensor data.
As such, these tasks offer challenging cases in which the unique advantages of ICA
methods may be revealed.

To include data from high signal-to-noise experimental conditions, data from
a separate auditory sensory activation task (binaural 500 Hz tone, 200 ms dura-
tion, 3.25±0.125 ms SOA, 150 trials) will also be used. Together, these tasks of-
fer data collected under both poor and good signal to noise conditions (cognitive
tasks: poor; sensory activation task: good) and data involving activation of neu-
ronal sources from three major sensory modalities.

3 Identification of SOBI Neuronal Components

Using SOBI, continuous MEG signals from 122 channels were separated into 122
components. Each of the components has a time course, which can be averaged
across multiple trials using either the visual stimulus onset or the button press as
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Figure 2: Event-triggered averages for groups of SOBI components (N = 90 tri-
als). (a) Components showing visual-stimulus-triggered responses, triggered on
visual stimulus onset. (b) Components showing button-press-triggered responses,
triggered on button presses. (c) All components, triggered on visual stimulus onset.
(d) All components, triggered on button presses.

a trigger. As shown in the overlay plots of the visual stimulus and button press
triggered averages for all 122 SOBI components (Fig. 2cd), only a small fraction of
the components showed task related responses, shown separately in Fig. 2ab.

The SOBI components can be displayed in the sensor domain by using the Neu-
romag software xfit (fullview). The sensor projections for two SOBI components
are shown: one for a visual component (Fig. 3a) and the other for a right sensory-
motor component (Fig. 3b). It is clear that the two SOBI components are pro-
jected selectively to sensors over the visual and right sensory-motor cortices. In
contrast, the fullview plots of the sensor projections from the corresponding raw
data (mixture of all components) have much wider distributions of sensor activtion
(Fig. 3c,d).

In the following example, 122 SOBI components were separated from continu-
ous 122-channel data collected during cognitive and simple sensory activation tasks
(300 Hz and 600 Hz sampling rate respectively and band-pass filtered at 0.03–

10



150 fT/cm

−100 − 400 (ms) −100 − 400 (ms)

214 fT/cm

−100 − 400 (ms)

190 fT/cm

−100 − 400 (ms)

80 fT/cm

(a)

(b)

(c)

(d)

Figure 3: Sensor projections of SOBI components (ab) and of the mixed raw
MEG data (cd) (N = 90 trials, (ac): visual-stimulus-triggered; (bd): button-press-
triggered averages). (a) A SOBI component showing selective sensor activation
over the occipito-parietal cortex. (b) A SOBI component showing selective acti-
vation over the right fronto-parietal cortex. (c) All components (unseparated data),
triggered on visual stimulation. (d) All components (unseparated data), triggered
on button presses. Aberrant sensors are shaded.

100 Hz).
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3.1 SOBI Non-Neuronal Components

As illustrated in Fig. 1, MEG records magnetic signals associated with both noise
and neuronal signals. These non-neuronal noise sources include ambient noises,
such as 60hz or slow DC drift, ocular artifacts related signals, sensor jump related
signals, and other unknown noise sources. Ocular artifacts were identified by the
component’s characteristic activation patterns in the field map and large amplitude
responses in the MEG image (Fig. 4a), which match responses in the EOG (not
shown). In these particular experimenters, a motor response typically triggered an
eye blink response. The 60 Hz source was identified by the component’s clearly
visible cyclic activity in the MEG images in Fig. 4b. Components corresponding to
sensor jumps were easily identified by the single-sensor activation in the field maps
and sometimes by high contrast lines or dots in the MEG images (Fig. 4c). DC drift
can be identified in the MEG image by a change of color from one block of trials
to another and sources associated with such drift tend to have a broad activation
pattern in the scalp projection (data not shown, but see Tang et al. (2000a)).

3.2 SOBI Neuronal Components

Before one can localize a neuronal source or estimate its single-trial response onset
times, neuronal sources must first be identified among all n separated components
(n = number of sensors). The first step in identification is to compute various
event-triggered averages for each of the n components, e.g. visual, auditory, or so-
matosensory stimulus-locked, or motor-response-locked averages. If a component
unambiguously shows an event-triggered response in the average, it becomes a can-
didate for being a neuronal source.

To identify neuronal sources that are directly task-related, both temporal and
spatial constraints are used. For a task related component, if its field map and
time course were consistent with known neurophysiological and neuroanatomical
facts, we considered it a neuronal component reflecting the activity of a neuronal
generator. For example, if the field map of a component shows activation over
the occipital cortex and the visual stimulus triggered average for this component
contains an evoked response that peaks between 50–100ms, then it is considered to
reflect the activity of a visual source in the occipital lobe.

Fig. 5a shows the stimulus or response triggered averages for the evoked visual,
somatosensory, and auditory responses in three SOBI components. The field maps
of these SOBI components (Fig. 5b) have activations over the occipital-parietal,
parietal, and temporal lobes that correspond to the expected visual, somatosensory,
and auditory activation. For more details on the interpretation of these components
in relation to the cognitive tasks, see Tang et al. (2002a,b). For identification of

12



(a)

100ms

equiv
fT/cm

+1077.7

+352.8

(b)

100ms

equiv
fT/cm
−591.4

−1056.2

(c)

100ms

equiv
fT/cm

+2671.8

−3627.7

Figure 4: Field maps and unfiltered MEG images for (a) an ocular artifact compo-
nent, (b) 60 Hz component, and (c) sensor jump component.

SOBI components within the same modality see Tang et al. (2000a).

4 Localization of SOBI Components

For the identified SOBI neuronal components, equivalent current dipoles can be
fitted using the field maps as inputs to any source localization algorithm. As defined
in Sec. 1.1, W is the estimated unmixing matrix, the estimated time courses for the
sources are ŝ(t) = W x(t), and the corresponding estimated mixing matrix is Â =
W

−1. Using these, the sensor signals resulting from just one of the components
can be computed as x̂(t) = ÂDW x(t) = ÂD ŝ(t), where D is a matrix of zeros
except for ones on the diagonal entries corresponding to each component which is
to be retained. To localize a single SOBI component, one computes
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Figure 5: Examples of SOBI separated visual (left), somatosensory (middle), and auditory (right) components, shown
in (a) event triggered averages (N = 90 trials), (b) field maps, (c) contour plot, and (d) the fitted dipole superimposed on
the subject’s own MRI. All sensors (channels) were used in generating the contour plots and fitting the dipoles.
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x̂
(i)(t) = ŝi(t) â

(i) (2)

where â
(i) is the ith column of Â and x̂

(i)(t) is the sensor-space image of source i.
Because x̂

(i)(t) is at each point in time equal to the unchanging vector â
(i), scaled

by the time course ŝi(t), dipole fitting algorithms will localize x̂
(i)(t) to the same

location no matter what window in time is chosen.
Theoretically, one sampling point in time across all sensors contains all infor-

mation about the source. In practice, Neuromag software needs a time series of
at least several samples. Therefore, we calculated the event-locked average for the
component of interest and made a .fif file containing such averages for the dipole
fitting algorithm.

4.1 Localization Across Multiple Modalities

The process of localizing SOBI components is simple. For each components of
interest, we compute its sensor projections as above and we repackage a .fif file for
the Neuromag dipole fitting software. One can select any time during the average
time window to fit the dipole because the dipole solution is invariant to time. In
contrast, when localizing sources directly from the mixed sensor data, the resulting
dipole solution is sensitive to the dipole fitting time. The independence of SOBI
localization from time selection can significantly simplify the dipole localization
process by reducing the subjective input needed during time selection.

The contour plots of the visual, somatosensory, and auditory components and
their corresponding dipole locations are shown in Fig. 5cd. These SOBI compo-
nents have naturally dipolar contour plots without channel selection or reduction.
Without SOBI pre-processing, in order to obtain dipolar field patterns, manually se-
lecting a subset of channels (20-30) or exclusion of channels is often needed when
modeling dipole sources from the mixed sensor data. Using SOBI pre-processing,
we can remove this subjective step from the localization process.

Localization results shown in Fig. 5cd can be obtained directly from fitting
dipoles to the field maps by a naive user who simply follows instructions without
selecting dipole fitting time and without selecting channels.

4.2 Cross-Task and Cross-Subject Reproducibility

To show how reproducible the localization of SOBI components can be across the
four cognitive tasks, we examined SOBI separated visual components from one
subject. Across four tasks, the two occipito-parietal visual sources can be reliably
localized within the same subjects for two SOBI separated components (Fig. 6cd).

15



For both visual sources, the time course of the response is highly repeatable across
multiple tasks, as shown in the overlay plot (Fig. 6ab). The earlier visual responses
were almost identical in both amplitude and response latency, (Fig. 6a) while the
later responses varied only in amplitude across tasks (Fig. 6b). These visual SOBI
components were localized to similar locations within the occipital and parietal
lobes, as shown in Fig. 6c,d, in which fitted dipoles from multiple experiments are
superimposed on the subject’s own structural MRI. Notice that, in the field map, the
right side of the head is shown on the right whereas in the MRI image, following
radiological convention, the right is shown on the left.

To show how reproducible the localization of SOBI components can be across
subjects, we examined SOBI separated somatosensory components from three sub-
jects.3 In all three subjects, we reliably identified two components (left and right)
with button-press-locked responses in the somatosensory areas. Fig. 7 shows the
time course, field map, contour plot, and fitted dipole for the SOBI somatosensory
components in the right hemisphere of the three subjects. Notice the cross-subject
similarity in the field maps, contour plots, and dipole locations (somatosensory cor-
tex in the anterior parietal lobe, post-central sulcus).

4.3 Localization with and without SOBI

To offer quantitative comparison in the relative performance of source localization
with and without SOBI, we attempted to identify and localize the most reliable
occipito-parietal visual source, and both the left and right somatosensory sources
in four subjects and four cognitive tasks4 from SOBI components and from the un-
processed data. As all four tasks involved bilateral presentation of visual stimuli,
we expected that at least one visual source would be found active in the occipito-
parietal cortex. Similarly, because separate left and right button presses were re-
quired by all the tasks, we also expected that at least one left and one right so-
matosensory source would be active. For these expected sources, we attempted to
localize the source with dipole fitting from SOBI components and from the raw sen-
sor data (without SOBI). The percentage of the expected sources for which dipole
solutions can be found are compared for localization with and without the aid of
SOBI.

For a SOBI component to be considered a detectable neuronal source, there
must be an evoked response that clearly deviates from the baseline in the averaged
component data. We rejected all SOBI components with any ambiguity on this

3The fourth subject did right-hand index-mid finger button presses which differed from the rest
of the subjects.

4For detailed description of the tasks, see Tang et al. (2002a,b)
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Figure 6: Cross-task consistency in the temporal profile (ab) and dipole location
(cd) of two SOBI visual components. Occipital (ac) and occipito-parietal (bd)
sources can be identified and localized consistently across multiple tasks (overlay).
(ab) Visual stimulus-locked averages from 4 visual tasks, overlaid (N = 90 trials
per task). (cd) Corresponding single ECDs for visual sources in (ab). Notice con-
sistency of the dipole locations across-tasks. Notice also the temporal profile of the
earlier visual source (a) did not differ across tasks, but the amplitude of the later
visual source (c) was modulated by the task conditions.

criterion. Secondly, the SOBI components must have a field map showing focal
activation of sensors over the relevant brain regions (occipito-parietal cortex and
anterior parietal cortex in this study). Thirdly, the contour plot for the SOBI com-
ponent must be dipolar. Finally, the fitted dipole must be in the relevant cortical
areas. For a source to be considered detectable using the conventional method of
localization, one must first identify a sensor at which the largest evoked response
is found. Secondly, the contour plot must be dipolar at the peak time. Finally, in
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Figure 7: Somatosensory sources can be identified and localized consistently across multiple subjects (shown for the left
source). Similar to Fig. 5 except the responses were locked onto the button press.
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a few cases when multiple dipole solutions are needed, at least one of the dipoles
is localized to the expected brain region. By allowing multiple dipole solutions for
localization without SOBI pre-processing, our comparison biased against the SOBI
method.

4.3.1 Visual Sources

Among all SOBI components, for each subject and each task, we were able to
identify and localize an occipito-parietal visual source with a single dipole (100%
detectability). These occipito-parietal components invariantly had very focal sensor
projections, and the contour plots were invariantly dipolar even without channel
selection (for example, see field map and contour plot in Fig. 5bc, left). A subset of
channels over the occipito-parietal lobe (20–30 channels) were used for the purpose
of fair comparison with the conventional analysis method without the aid of SOBI.
The peak response latencies of these SOBI components (N = 16) were 139.0±7.6
and the dipole coordinates (X,Y,Z) were 7.5±2.6, −49.4±3.2, and 68.6±3.4 mm.

Using the conventional method of source localization directly from the unsep-
arated sensor data, dipoles were fitted using the same or similar subset of channels
selected over the occipito-parietal cortex. In all subjects and all tasks, the conven-
tional method identified and localized at least one visual source in the occipito-
parietal lobe (100% detectability). Of a total of 16 expected sources (4 tasks by
4 subjects), 10 could be fitted with a single dipole, 4 were fitted with two-dipole
solutions, 1 was fitted with a three-dipole solution, and 1 was fitted with a four-
dipole solution. When multiple dipole solutions were needed, at least one of them
was localized to the occipito-pariental cortex. This variation in dipole solutions
may reflect some individual differences in visual processing occurring outside of
the occipito-parietal cortex. The peak response latencies of these occipito-pariental
visual sources (N = 16) were 143.6±5.5 and the dipole coordinates (X,Y,Z) were
4.21±4.8, −55.89±2.68, and 59.42±3.83 mm.

4.3.2 Somatosensory Sources

For each subject and each task, with only two failures we were able to identify and
localize 22 out of the 24 expected left and right somatosensory sources with a sin-
gle dipole from SOBI components (3 subjects by 4 tasks by 2 hemispheres). All 22
somatosensory components invariantly had very focal sensor projections (see field
maps) and the contour plots were invariantly dipolar even without channel selection
(for example, see field map and contour plot in Fig. 7bc.) Single dipoles were fit-
ted for these components, with a subset of channels over the somatosensory cortex
(20–30 channels) selected for the purpose of fair comparison with the conventional
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analysis method. The peak response latencies were 33.3±4.2 and 30.8±3.4 ms for
the left (N = 11) and right (N = 11) somatosensory sources. The dipole coordi-
nates (X,Y,Z) were −39.4±2.4, 7.8±2.7, and 84.6±1.7 for the left and 45.69±2.1,
5.6±2.2, and 84.1±3.1 for the right somatosensory sources.

Using the conventional method of source localization directly from the unsep-
arated sensor data, dipoles were fitted using the same or similar subset of channels
selected over the somatosensory cortex. Of 24 sources expected, in 7 cases, no
visible peak response could be identified in any of the sensors. Of the remaining
17 cases in which peak responses could be found in at least one sensor over the
somatosensory cortex, 4 did not have dipolar fields, and 4 resulted in dipole loca-
tions outside of the head or in the auditory cortex. Single dipole solutions were
found in only 9 cases. The peak response latencies of these somatosensory sources
were 24.8±2.5 for the left hemisphere (N = 5) and 31.6±1.8 for the right hemi-
sphere (N = 4). The dipole coordinates (X,Y,Z) were −43.3±3.9, 12.1±5.6, and
82.8±3.8 for the left 42.3±5.5, 15.9±2.7 and 89.9±1.4 for the right sources.

4.3.3 Statistical Comparisons

There was no significant differences in the detectability for the occipito-parietal
source measured with and without SOBI. In both cases, 100% detectability (16 out
of 16 expected sources) was found. In contrast, SOBI resulted in an increase in the
detectability of the expected somatosensory sources (22 out of 24 for SOBI and 9
out of 24 for unprocessed data; χ2 test p < .0001) (Fig. 8). The peak response
latencies for the visual and somatosensory sources did not differ significantly when
measured using and without using SOBI. For the visual sources, the precise dipole
locations estimated with and without SOBI did not differ in the X and Y dimensions
but nearly differed significantly in the Z dimension (p = 0.05). For the somatosen-
sory sources, the precise dipole locations differed significantly in the Y dimension
(p < 0.05) for the left source and in Y and Z dimensions for the right source
(p < 0.05). As the true accuracy of source locations cannot be determined from
these experiments without a depth-electrode, no quantitative comparisons can be
made concerning accuracy.

4.4 SOBI Reduced Subjectivity and Labor

Because each component has a fixed field map, the dipole fitting solutions for SOBI
components were neither sensitive to the time at which the dipoles were fitted nor
to the sensor used for determining the time of fit. Within this map, each sensor
reading reflects only activation due to a single source generator, or several tempo-
rally coherent generators as opposed to activation due to a combination of multiple
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Figure 8: SOBI increased the detectability of expected neuronal sources for the
more variable somatosensory activation.

generators, each with a different time course. Therefore, using SOBI, there is no
need to subjectively select a time from a sensor for dipole fitting. One way to view
the difference between dipole localization with and without SOBI processing is to
view SOBI as an automatic and objective tool that allows the isolation of sensor
activation due to an already isolated functionally independent generator. Secondly,
simple SOBI components, which have field activation over early sensory process-
ing areas, were almost always dipolar even without channel selection/reduction.5

Using the Neuromag software, one can simply load in the average sensor signals
for a given component and hit the fit button to get the dipole solution. The reduced
subjectivity and time required to find dipole solutions can make data analysis and
training of new researchers for MEG more cost-effective.

4.5 SOBI Improved Detectability of Neuronal Sources

SOBI separation of the data resulted in a greater detectability of somatosensory
sources, but did not increase the detectability of visual sources. This modality-
specific improvement in source detectability depended on the S/N ratio in the sen-
sor data. Given this specific set of experiments, visual responses could be clearly
identified from the raw sensor data even without the aid of SOBI, there was no
room for further improvement in detectability by SOBI. In contrast, the relatively
poor S/N ratio in the raw sensor data for the somatosensory responses caused many

5SOBI also separated out many complex components which have multiple patches or very board
field activation. These components reflect synchronized activation in multiple brains. Functional
connectivity may be inferred among these brain regions.
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failures in identifying a sensor at which a peak response could be found and in de-
termining the peak response time. Under this poor signal to noise condition, in
all but two cases, SOBI resulted in components with the characteristic field map,
characteristic temporal response profile, and the correct dipole location for a so-
matosensory source. These findings suggest another advantage that ICA algorithms
can offer: improving the ability to detect and localize neuronal sources that are oth-
erwise difficult to detect or are undetectable under relatively poor signal-to-noise
conditions.

This improvement has significant practical implications. First, brain regions
involved in higher level cognitive processing tend to show greater trial-to-trial vari-
ability in their activation, and therefore, have a lower signal-to-noise ratio in the
average response. Second, behavioral tasks that bear greater resemblance to real
world situations tend to involve greater variability in both stimulus presentation
and subsequent processing. Finally, studies of clinical patients and children are of-
ten limited by the length of the experiment, and therefore, often provide data from
a limited number of trials. Our results suggest that ICA may offer an improved
capability in detecting and localizing neuronal source activations in these difficult
situations.

It should be mentioned that fICA-separated components have been shown to
yield localization results qualitatively similar to those arrived at without ICA pre-
processing (Vigário et al., 1999). It may appear from this study that no substantial
benefits from ICA could be found for neuromagnetic source localization. The ex-
periment in this study was optimally designed to produce strong and focal activation
of a small number of neuromagnetic sources and the S/N was high. Under such an
optimal condition, the advantages of ICA algorithms are likely to be masked by a
ceiling effect.

4.6 Summary

We identified and localized visual and somatosensory sources activated in four sub-
jects during four cognitive tasks. Due to the relatively large variability involved
in highly cognitive tasks and the small number of trials collected, these tasks were
characterized by relatively poor signal-to-noise ratios in the sensor data and there-
fore were ideal for evaluating differential localization performance. Our results
showed that despite the large variability associated with the visual and somatosen-
sory activations during these particular tasks, SOBI was able to separate and iden-
tify visual and somatosensory components that were localized to expected cortical
regions. Most importantly, for the most variable somatosensory activation evoked
by incidental stimulation during button presses, SOBI pre-processing resulted in a
greater rate of detection and localization for the expected somatosensory sources
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than that obtained from localization using the raw sensor data. Furthermore, the
process of generating dipole solutions for SOBI components was simpler, more
efficient, and less subjective.

5 Single-Trial Response Onset Time Detection

Single-trial response onset time detection is performed only when there is an evoked
response that clearly deviates from the baseline in the averaged component data. For
all identified neuronal sources, we estimated response onset times by the leading
edge of the response, rather than the time of the peak response. This measure is
more robust against noise and also better captures the intuitive goal of detecting the
time of the earliest detectable response, rather than of the maximal response.

The process of single-trial response onset detection is iterative: both the thresh-
old and detection windows are adjusted until no further reduction in false detection
can be achieved. An initial threshold was set between the peak amplitude and one-
half of the peak amplitude in the event triggered average plot (not shown). The
beginning of the detection window initially was set at the time the event triggered
averages first exceeded the range of baseline fluctuation. Typically, the baseline
window is approximately 100 ms to 200 ms prior to stimulus onset. The detection
window ended when the event triggered averages first returned to the same level
as when the detection window began. (These initial values are not critical because
they will be adjusted in both directions as described below.)

Because single-trial responses can be very different from the event triggered
averages, the threshold and detection windows were adjusted through an iterative
process to ensure that no responses were excluded. Using the initial threshold and
detection window, response onset times were determined and graphically superim-
posed on the MEG image (detected response time (DRT) curve) to allow visual
verification of the detected onset times. Because the detection windows should be
sufficiently large to capture the entire distribution of response onset times, the DRT
curve should be smooth. When multiple events were detected exactly at the be-
gining of the detection window, it is most likely that the signal amplitude of the
component has crossed the threshold before the begining of the detection window.
Therefore, these events were considered false detections and were not marked by (or
removed from) the DRT curve. For components showing biphasic responses, most
of the single-trial response time analysis presented here was performed on the initial
phase of the response, when the amplitude of the initial response was sufficiently
large. Some results on the later phases are shown when the early phase response had
such low amplitude as to make them difficult to detect using the method presented
here.
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Figure 9: Examples, all from the same source, of sub-optimal detection due to (a)
too high a threshold; (b) too low a threshold; (c) an early window beginning wb;
(d) a late window beginning wb; (e) an early window end we; and (f) a late window
end we. In (g) we show an optimal detection. See Table 1 for associated detection
parameters and results.

5.1 Threshold

If the threshold is set too high not only can many trials remain undetected, but one
will also overestimate the onset times by missing the initial onset. Overestimation
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Cases Detection Parameters Detection Result

Threshold wb we Rate Quality
(fT/cm) (ms) (ms)

high threshold 150 70 120 177/350 missing onsets
low threshold −100 70 120 97/350 missing onsets

early wb 10 25 120 189/350 missing & false onsets
late wb 10 95 120 91/350 missing onsets

early we 10 70 85 90/350 missing onsets
late we 10 70 320 313/350 false onsets
optimal 10 70 120 305/350

Table 1: Detection parameters (threshold and detection window) and detection re-
sults for the examples given in Fig 9. Thresholds are relative to a per-trial 100 ms
pre-stimulus baseline.

of onset times is easily seen as a right shift in the DRT curve from the leading edge
of color change associated with the responses (Fig. 9a). Because the threshold is
set too high, many single-trial responses were missed (detection rate: 177/350).
Because all trials with responses detected are displayed on top of the MEG image
and sorted by detected response latency, and trials with no responses detected are
displayed at the bottom, missing responses are apparent under visual inspection as
shown at the bottom of Fig. 9a. If the threshold is set too low, false detection can oc-
cur when the amplitude of baseline fluctuation is relatively large. In this case, many
false detections would be made at the begining of the detection window (253/350),
resulting in a low detection rate (97/350) as shown in Fig. 9b. In both cases, the
threshold could be either lowered or raised accordingly in the next iteration until
the DRT curves captures the edge of the color change associated with the apparent
response onset times.

5.2 Detection Window

Once the detection threshold is determined, one further examines the MEG image
for false detections associated with incorrect settings of the beginning and ending
of the detection window, wb and we. If wb is too early, the response window will in-
clude a part of the baseline. As a result, the DRT curve shows a discontinuity, with
the point of discontinuity separating trials of false detection (left portion) from trials
of correct detection (right portion), as in Fig. 9c. If wb is too late, many single-trial
responses would be detected at a time later than the time when the signal amplitude
first crosses the threshold. These false detections were made exactly at the begin-
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ing of the detection window. These false detections (246/350) were automatically
removed from the DRT curves and the corresponding trials were displayed at the
bottom portion of the MEG image (Fig. 9d).

If we is too early, later response onsets may be missing (see bottom portion of
Fig. 9e). This case is apparent upon visual inspection. If we is too late, the later
portion of a biphasic response will be falsely detected as the initial response. This
form of false detection is easily seen near the tail end of the DRT curve (Fig. 9f)
where initial responses were clearly missed, while the second phase of the responses
were marked. In any of the above cases, one can adjust the detection window
parameters for the next iteration.

For each neuronal component, this iterative process continues until no fur-
ther reduction in the frequency of false detections or missing responses can be
achieved. The final result is shown in Fig. 9g. Statistics on the detected onset
times (mean±sem) are then computed and reported along with the resulting MEG
image (Fig. 9g). The same procedure can be performed on a control window of
equal size either prior to or following the actual detection window. The resulting
number of detected onsets within the control windows can be compared statically
with that obtained for the detection window.

5.3 Effect of Filter Length on Detected Onset Times

As filtering can affect response onset times, we first investigated the effect of a low-
pass filter, as such a filter is often used to remove noise unrelated to the evoked
responses. Fig. 10 and Fig. 11 display the result of response onset time detec-
tion using different low-pass filter parameters for a SOBI component with audi-
tory evoked responses. Filtering visibly reduced the amount of background noise,
thus highlighting the evoked responses (Fig. 10). There was no apparent change in
the detected onset times or in the number of detections as the low-pass filter was
changed from no filter, to 40 Hz, 20 Hz and 10 Hz (Fig. 10) and as the roll off
parameter was changed from 0.5 Hz to 5 Hz (Fig. 11). A quantitative comparison
between the detected onset times using different low-pass filter parameters revealed
very small changes in the number of onsets detected. When a more aggressive low-
pass filter was used, the number of events detected was reduced from to 145 to 141
(4 from a total of 150 trials).

If an onset time is only detectable when no filter is used, it is possible that such
a detected response is a result of false detection due to noisy ongoing background
activity. Therefore, by using a more aggressive low-pass filter, one can reduce the
chance of false detection. On the other hand, a more aggressive filter can change
the detected onset times. Thus, a change in the number of onsets detected caused by
different low-pass filters could be a result of better onset time estimation associated
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with a reduction in false detection or worse estimation due to temporal smearing
after filtering. To ensure that temporal smearing was not the cause of the change in
the detected onset times, we always performed the detection procedure both with
and without filtering, and examined graphically whether the filtering altered the
temporal profile of the evoked response. As shown in Fig. 10, filtering with a 10 Hz
low-pass filter changed the estimated onset times by less than 2 ms, and did not
distort the profile of the evoked responses.

A more aggressive low-pass filter can reduce the influence of ongoing back-
ground activity, and thereby minimize false detection, without significantly altering
the temporal profile of the evoked responses. Therefore, in the following analysis, a
low-pass filter of 10 Hz with a roll off of 5 Hz was used unless otherwise specified.
It is important to note that for different neuronal sources, the effect of a given filter
on response onset times will be different. When a filter significantly changes the
temporal profile of the evoked responses, a less aggressive filter should be used for
an accurate estimation of response onsets.

5.4 Response Onset Time Detection Across Sensory Modalities

In this section we demonstrate that single-trial response onset time detection can
be achieved in three major sensory modalities and under experimental conditions
of both large and small trial-to-trial variability. Single-trial onset time detection
with large trial-to-trial variability was performed for the visual and somatosensory
evoked responses recorded during the four cognitive tasks. Single-trial onset time
detection with small trial-to-trial variability was performed for the auditory evoked
responses recorded during the simple binaural pure tone presentation.

The detected response onset times are shown in MEG images (Fig. 12b), with
the evoked responses aligned to the stimulus onset (time zero, marked by the verti-
cal line on the left side of the MEG image) and the detected response times marked
as a curve to the right of the stimulus onset line (DRT curve). The detection results
are shown sorted by latency from stimulus to detected response onset. The stimulus
triggered average (Fig. 12a), sensor projections or field maps (Fig. 12c), and dipole
location superimposed on the subject’s structural MRI images (e.g. Fig. 12d) are
also provided, for comparison with results from standard analysis. For the visual
source shown in Fig. 12a-d, the single-trial response onsets were detected in 64 of
90 trials (71.1%). The estimated onset times were 111±1 ms. Its temporal profile
in the average response, the field map, the contour plot, and the dipole location
were characteristic of typical visual sources from the occipito-parietal lobes. For
comparison with typical visually evoked responses, see Brenner et al. (1975); Hari
(1994); Supek et al. (1999).

For the somatosensory source shown in Fig. 13a-f, the single-trial response on-
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Figure 10: Effect of low-pass filter on response onset time detection (onset times, %
response detected). (a) No filter: 90±1 ms; 96.7% (b) low-pass at 40 Hz: 91±1 ms;
96% (c) low-pass at 20 Hz: 92±1 ms; 95.3%. (d) low-pass at 10 Hz: 92±1 ms;
94%. For all panels, a roll-off of 5 Hz was used.

sets were detected in 129 of 150 trials (86%) when the contralateral thumb pressed
the mouse button and in 105 of 120 trials (87.5%) when the ipsilateral thumb
pressed the mouse button. The response onset times from the time when the button
press was detected on the trigger line were −1±2 ms and 15±1 ms for the contra-
and ipsilateral activation respectively. These numbers indicate that the somatosen-
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Figure 11: Effect of filter roll-off on response onset time detection (onset times, %
response detected). (a) 10 Hz low-pass and 5 Hz roll-off: 92±1 ms, 94%. (b) 10 Hz
low-pass and 0.5 Hz roll-off: 92±1 ms, 94%. (c) 40 Hz low-pass and 5 Hz roll-off:
91±1 ms, 96%. (d) 40 Hz low-pass and 0.5 Hz roll-off: 91±1 ms, 96%.

sory responses could start as soon as the thumb movement was initiated; as soon as,
or even before, the mouse button was completely depressed. The temporal profile
in the average responses was slower to rise and broader in width than the typical
responses evoked by electrical stimulation (Brenner et al., 1978; Hari and Forss,
1999; Karhu and Tesche, 1999). This was expected because somatosensory stim-
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ulation due to button press movement and feedback is much more prolonged and
variable than stimulation by the brief and well-controlled median nerve shock. The
field map, contour plot, and dipole location are consistent with activation of the
hand region of the somatosensory cortex.

For the auditory source shown in Fig. 14a-e, the single-trial response onsets
were detected in 141 of 150 trials (94%). The estimated response onset times were
92±1 ms. The temporal profile in the average response, field map, contour plot,
and dipole location were characteristic of typical auditory sources. This particular
auditory SOBI component had a two-dipole solution, one in each of the two hemi-
spheres, and (necessarily, due to the SOBI decomposition) both having the same
time course of response. This is consistent with the binaural stimulation used in
this experiment.6 The temporal profile in the average response, the field map, the
contour plot, and the dipole location were characteristic of typical auditory sources
in the temporal lobes. For comparison with typical auditory evoked responses, see
Hari et al. (1980); Romani et al. (1982); Roberts et al. (2000).

5.5 Cross-Subject Response Onset Detection: Visual

As previously discussed (Tang et al., 2000b, 2002a), visual sources were identifi-
able along both the ventral and dorsal streams. The occipito-parietal sources along
the dorsal stream varied less in location and in response profile. In contrast, the
occipito-temporal sources along the ventral stream showed greater variability in re-
sponse profile and precise location. To give the readers a sense of how well the
single-trial onset time detection procedure can perform across a variety of visual
sources, we show detection for the visual responses from a variety of visual areas
from multiple subjects.

In 13 of 16 (81%) expected visual sources along the ventral processing stream,7

single-trial onset time detection could be performed. The detection rate was 71±2%,
and the estimated response onset times were 133±5 ms (N = 13). Fig. 12e,f,g
shows results of onset time detection for the visual sources from three additional
subjects. Sources were chosen to reflect variability in the responses and in the de-
tection.

6It is possible to obtain two separate components from the left and right hemisphere if there is
sufficient hemispherical asymmetry in the temporal details of neuronal responses from the left and
right auditory cortices.

7Given the tasks involved memory of visual forms, we expected at least one visual source to
be activated along the ventral processing pathway. A total of 16 such sources are expected for 4
experiments in 4 subjects.
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Figure 12: (a)–(d) Detection of single-trial response onset times from an occipito-
parietal source that responded to a visual stimulus. (a) Visual stimulus triggered
average response (unfiltered); (b) detected single-trial response times marked on
an MEG image; (c) field map of the parietal source; (d) fitted ECD superimposed
on the subject’s structural MRI images. (e)–(g) Single-trial visual response onset
detection in visual sources across three additional subjects, sorted by onset latency.
(b), (e)–(g): subjects 1–4. N = 90 trials except for (d), N = 270 trials.
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5.6 Cross-Subject Response Onset Detection: Somatosensory

Somatosensory sources were identified in all subjects who made button press re-
sponses during the four cognitive tasks. Single-trial response onset time detection
was attempted on one of the SOBI somatosensory components for each subject in at
least one of the four tasks. Because the activation of these somatosensory sources
was highly variable, in only 7 of 24 (29%) of the somatosensory sources could
single-trial onset time detection be performed. Among these sources, for the con-
tralateral button presses, single-trial onset times were estimated to be 0±3 ms with
a detection rate of 81±2% (N = 7). For the ipsilateral button presses, single-trial
onset times were estimated to be 5±3 ms with a detection rate of 76±5% (N = 3).
Fig. 13g,h shows results of onset time detection for the latter source in two addi-
tional subjects.

5.7 Cross-Subject Response Onset Detection: Auditory

Auditory evoked responses from the presentation of a pure tone were the least vari-
able in comparison to the above described visual and somatosensory responses from
the cognitive tasks. In all six subjects, auditory sources can be identified and local-
ized from the SOBI separated components. Single-trial response onset time detec-
tion could be performed in 6 of 6 expected auditory sources8 with a detection rate
of 80±5%, and estimated response onset times of 85±1 ms (N = 6).

Fig. 14f,g,h show results of onset detection for the auditory source from three
additional subjects. As the trial-to-trial variability in auditory stimulation was very
low in comparison to the variability in the visual and somatosensory stimulation
during the cognitive tasks, the average detection rate was higher for these auditory
sources. Furthermore, single-trial response onset time detection could be performed
among a higher percentage of expected sources (100%) for the auditory responses
than for the visual (81%) and somatosensory (29%) responses.

5.8 Statistical Analysis

To determine quantitatively whether the detected responses are due to to baseline
ongoing activity, we performed the detection procedure on a baseline or control
window of equal length immediately before or sometime after the response win-
dow defined by wb and we, using otherwise identical parameters. When a post-
response control window was selected, we made sure that the background fluctua-

8Given the tasks involved auditory stimulation, we expected at least one auditory sources to be
activated in each subject. A total of 6 auditory sources are therefore expected for the 6 subjects.
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tion was comparable to or greater than that of the pre-stimulus baseline. To deter-
mine whether the detected response onsets were more numerous than those detected
in the control windows, we performed a t-test on the difference between the number
of detections during the response window and the number of detections during the
control windows. This test result (t = 9.200, df = 16, p < 0.005) indicates that our
method is capable of detecting evoked responses from single-trial MEG data that
is above background ongoing activity. Fig. 15 shows the result of response onset
time detection for the response window, a pre-response control window, and a post-
response control window. The trials are sorted according to the detected onset times
in Fig. 15a,c,e and the same detection results are shown in chronological order in
Fig. 15b,d,f.

For sources with good apparent signal to noise ratios across multiple subjects,
we applied the detection procedure to both a detection window (wb to we) and a con-
trol window. The detection rates for the response windows were 79 ± 4% (N = 4)
for the somatosensory components, 65 ± 3% (N = 7) for the visual components,
and 80± 5% (N = 6) for the auditory components. When all sources were pooled,
the detection rate within the detection window across all modalities was 74 ± 3%.
The detection rates obtained for the control windows using otherwise identical pa-
rameters were much lower: 14 ± 4% for the somatosensory components, 37 ± 3%
for the visual components, and 27 ± 4% for the auditory components. When all
sources were pooled, the detection rate across all modalities within the control win-
dow was 28 ± 3%. The ratio between the rate of detection for the response and
control windows was 7.11 ± 1.82 for the somatosensory components, 1.84 ± 0.18
for the visual components, and 3.26 ± 0.41 for the auditory components. When all
sources were pooled the ratio across all modalities was 3.58 ± 0.66%.

Because these components were obtained during different experiments, a num-
ber of factors could contribute to the large variation, including differences in stim-
ulus presentation, task complexity, different stages of processing (early vs. later),
pathways (e.g. ventral vs dorsal), modalities of sensory processing (visual, audi-
tory, and somatosensory), different states of alertness (amount of alpha oscillation),
and different levels of power in the background brain activity. The detection for the
visual components seemed to be particularly poor in comparison to those for the
somatosensory and auditory components. It is important to point out that the visual
components included here have a greater intrinsic variability due to the number of
brain regions from which visual components can be localized, in comparison to the
much more homogeneous source locations of the somatosensory and auditory com-
ponents. In addition, the visual cortex tends to have more alpha band background
activity than any of the other sensory cortices (Williamson et al., 1996). Greater
alpha band background activity can contribute to the higher detection rate during
the control window.
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6 Discussion

We will conclude this chapter with a brief discussion of the independence assump-
tion made by all ICA methods, a summary of state-of-art ICA capabilities, and an
outline of future directions.

6.1 Assumptions

SOBI shares a number of weaknesses with all ICA methods: they all assume that
there are as many sensors as sources; they all make some sort of independence as-
sumption; they all assume that the mixing process is linear; and they all assume that
the mixing process is stable. Here, we discuss assumptions of particular relevance
to SOBI and MEG, rather than general issues in ICA. Like all ICA algorithms,
SOBI assumes that the mixing process is stable. In the context of MEG, a stable
mixing process corresponds to assuming that the head is motionless relative to the
sensors. For this reason head stabilization can be particularly important in MEG
when ICA is used. SOBI also assumes that there are at least as many sensors as
sources. For us, this is not a serious problem, as our MEG device has 122 sensors,
yet we recover only a few dozen sources that show task-related evoked responses.
The observation that only a small number of sources are active during typical cogni-
tive and sensory activation tasks is consistent with the results of studies using both
EEG (Makeig et al., 1999) and MEG Vigário et al. (2000). The crucial assumption
in ICA is that of independence. For a thorough discussion of the independence as-
sumption as it pertains to MEG, see Vigário et al. (2000). Here, we will discuss
independence only in the context of the particular measure of independence used
by SOBI.

6.2 The SOBI Independence Assumption

The major concern that EEG and MEG researchers have with the independence
assumption arises from the fact that if one computes correlations between EEG
or MEG sensor readings over multiple brain regions during behavioral tasks, one
would find that some brain regions have non-zero correlations. A good example
of correlated brain activity is the apparently correlated evoked responses from neu-
ronal populations in multiple visual areas along the processing pathway during a
visual stimulus presentation. Based on such an observation, one could conclude
that as the statistical independence assumed by ICA is clearly violated, the results
of ICA must not be trusted. Yet, we have shown that SOBI was able to separate
visual components that clearly correspond to neuronal responses from early and
later visual processing stages that are correlated due to common input (Tang et al.,
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2000b). Others (Makeig et al., 1999; Vigário et al., 2000) have produced behav-
iorally and neurophysiologically meaningful components under a variety of task
conditions.

As different ICA algorithms use the independence assumption differently, we
offer the following explanation that applies specifically to SOBI. One needs to rec-
ognize that correlation is not a binary quantity. Consequently, neither is violation
of the independence assumption. The important question is not whether the as-
sumption is violated but whether the assumption is sufficiently violated such that
the estimated neuronal sources by SOBI are no longer meaningful. The way SOBI
uses the independence assumption is to minimize the total correlations computed
with a set of time delays. As such, each delay-correlation matrix Rτ generally
makes only a small contribution to the objective function. For example, the corre-
lation one would observe between V1 and V2 responses could be high only at or
around one particular time delay, say in R20ms. In optimizing its objective func-
tion, SOBI can leave a particularly large non-zero off-diagonal element, say the
one corresponding to the 20 ms delayed correlation between V1 and V2, in order
to minimize the sum squared off-diagonal elements across all the components and
time delays. Therefore, this particular method of maximizing independence is not
necessarily incompatible with a large correlation at a particular time delay between
two sources sharing common inputs.

Most ICA algorithms, including SOBI, minimize some objective function. It
is possible for the optimization process to find a poor local minimum. In general,
poor results can result from many underlying causes: poor experimental design,
poorly conducted experiments, poor head stabilization, poor optimization within
the ICA algorithm, violation of assumptions, etc. No amount of attention to any
one possible problem can validate ICA-based methods for processing functional
brain imaging data. As with any statistical procedure, the real issue here should not
be whether assumptions are violated at all, but whether the algorithms can robustly
produce components that are behaviorally, neuroanatomically, and physiologically
interpretable, despite some violation of the assumptions under which the algorithms
were derived. For example, t-tests are very robust against the violation of normality
assumption and are therefore regularly performed on data which are not guaran-
teed to be Gaussian. Only empirical results can give confidence that a method is
correctly separating the MEG data.

6.3 ICA Advantages

Applying SOBI, one particular ICA algorithm to data from a total of 10 subjects
(four tested on four cognitive tasks and six from one auditory sensory activation
task), we provided step-by-step demonstration of how to apply ICA to MEG data,
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how to identify neuromagnetic sources of interest, how to localize the identified
sources, and how to measure single-trial response onset times from the identified
neuronal sources. Through this process, we have demonstrated that ICA offers:

• automatic separation of neuronal sources from noise sources (ocular artifacts,
60 Hz, and sensor noise);

• automatic separation of neuronal sources from different modalities (visual,
somatosensory, and auditory);

• automatic separation of neuronal sources within the same sensory modality
(left and right somatosensory sources);

• reduction in subjectivity and simplification of the source modeling process
(no need to set the dipole fitting time and or to select channels);

• increased probability of neuronal source detection and localization under poor
S/N conditions;

• over 90% detection rate in single-trial response onset time measurement.

6.4 Future Directions

A number of important methodological issues remain. The first concerns with the
effect of varying the delays used in the calculation of the correlation matrix and
the interaction between the selection of delays and the temporal property of the
neuronal source activation. The second concerns with the amount of the data needed
for good separation results. The third has to do with how SOBI may interface with
other source modeling method to generate the best localization results. The last but
perhaps the most urgent one is to develop softwares systems that integrate the above
outlined analysis steps in a seamless fashion to support users with a wide range of
computer experience.
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Figure 13: Detection of single-trial response onset times from a somatosensory (SS)
source that responded to left (a) and right (b) button presses. (a)/(b) Left and right
button press triggered average responses (unfiltered). (c)/(d) Detected single-trial
response onset times triggered by left and right button presses respectively, marked
on MEG images; (e) field map of the somatosensory source; (f) fitted ECD super-
imposed on the subject’s structural MRI images. (g)/(h) Single-trial somatosensory
response onset detection across two additional subjects, sorted by onset latency.
(c)/(g)/(h): subjects 1–3. Shown for contralateral activation only. The number of
trials varied from subject to subject.
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Figure 14: Detection of single-trial response onset times from an auditory source.
(a) Auditory stimulus triggered average response (unfiltered). (b) Detected single-
trial response times marked on an MEG image. (c) Field map of the temporal
source. (d)/(e) Fitted ECD superimposed on the subject’s structural MRI images.
(f)–(h) Single-trial auditory response onset detection across three additional sub-
jects, sorted by onset latency. (b), (f)–(h): subjects 1–4. N = 150 trials.
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Figure 15: Detected response onsets for the response and pre- and post-response
control windows, in (a) response window, sorted; (b) response window, unsorted;
(c) pre-control window, sorted; (d) pre-control window, unsorted; (e) post-control
window, sorted; (f) post-control window, unsorted.
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