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Abstract

Iterative gradient methods like Levenberg-Marquardt (Llske in
widespread use for source localization from electroenalegiaphic
(EEG) and magnetoencephalographic (MEG) signals. Unfately
LM depends sensitively on the initial guess, particuladpd counter-
intuitively) at higher signal-to-noise ratios, necedsiig repeated runs.
This, combined with LM’s high per-step cost, makes its cotapanal
burden quite high. To reduce this burden, we trained a ray#i per-
ceptron (MLP) as a real-time localizer. We used an analytivadel
of quasistatic electromagnetic propagation through trae e map ran-
domly chosen dipoles to sensor activities, and trained ai® Kiinvert
this mapping in the presence of various sorts of noigéth realistic
noise, our MLP is about five hundred times faster thastart-LM with
n = 4 to match accuracies, while our hybrid MLP-start-LM is abéaur
times more accurate and thirteen times faster than 4-dthft-

1 Introduction

Source localization of EEG and MEG signals is important irdioal diagnosis of con-
ditions like epilepsy, in surgical planning, and in neuiesce research. Assuming dipo-
lar sources, there are a number of localization methodsén(ldamalainen et al., 1993).
Among them, optimization using an iterative gradient mdthike LM (Levenberg, 1944;
Marquardt, 1963) is one of the best, in terms of accuracy antpatational burden. How-
ever, gradient methods require both a differentiable fodwaodel and an initial guess.
As we shall see, the efficiency and accuracy of the most popuaient method for this
problem, LM, depends sensitively on the initial guess,ipaldrly at higher S/N ratios.

There is therefore motivation to build faster and more aateusource localizers. This is
particularly important for our real time MEG brain-compuitgerface system, as we need
to localize BSS-separated components in real time.

Since itis easy to create synthetic data consisting of patsrresponding dipole locations
and sensor signals, it is tempting to train a universal agprator to solve the inverse
problem directlyj.e.to map sensor signals directly to the dipole location and er@nirhe

multilayer perceptron (MLP) of Rumelhart et al. (1986) hasib popular for this purpose.



MLPs were first used for EEG dipole source localization aresented as feasible source
localizers by Abeyratne et al. (1991), and a MLP structurapaosed of six separate net-
works was later used for EEG dipole localization by Zhangl.ef1®98). Kinouchi et al.
(1996) first used MLPs for MEG source localization by traghon a noise-free dataset in
spherical shell, while Yuasa et al. (1998) studied the tigmie case for EEG dipole source
localization under the assumption that each source digale & restricted region. Hoey
et al. (2000) investigated EEG measurements for both spiend realistic head models,
trained on a randomly generated noise-free dataset, asdnieal a comparison between
MLP and iterative methods for localization with noisy sigmat three fixed dipole loca-
tions. Sun and Sclabassi (2000) adapted an MLP to calcdatafd EEG solutions from
a spheroidal head model.

Here we train an MLP to localize dipoles from MEG measuremsaarid measure the effi-
cacy of the resulting network under a variety of conditioits most interesting use is as a
generator of the initial parameter values for LM, a role inahfit excels.

2 Synthetic data

The synthetic data used in our experiments consists _

of corresponding pairs of dipole locations and mo-Test"9 Region
ments, and sensor activations. The sensor activa-
tions are calculated by adding the results of a for-
ward model and a noise model.

9c 10cm

Dipoles within the training and testing set werg
drawn uniformly from a spherical region with a
slice removed, as shown on the right. The train
ing set used dipoles from the larger region, while,

the test set contained only dipoles from the smaller ™,
inner region. )

2.1 Forward mode€

Training Region

We use a standard analytic forward model of quasistatidreleagnetic propagation in a
spherical head model (Sarvas, 1987; Mosher et al., 199¢),the sensor geometry of a
4D Neuroimaging Neuromag-122 gradiometer.

2.2 Noise mode

For single trial data, the sensors in MEG systems have pdor&ios since MEG data is
strongly contaminated not only by intrinsic sensor noisg,abso by external fields, fields
generated by various parts of the body (heart, eye musdtsa), and parts of the brain
not under study. Blind source separation of MEG data cartidedly improve the situation
by segregating noise from signal (Vigario et al., 1998;drahal., 1999), and the sensor
attenuation vectors of the BSS-separated components caelbkcalized to equivalent
current dipoles (Tang et al., 2000). However, the recovéedd maps can be quite noisy,
and conventional localization techniques require mamitataction.

In order to properly compare the performance of variouslipess, we need a dataset for
which we know the ground truth, but which contains the sdrtgise encountered in actual
MEG recordings (Kwon et al., 2000). To this end, we createdemoise processes with
which to additively contaminate synthetic sensor readifigese are: uncorrelated Gaus-
sian noise, correlated noise, and actual noise. The udatgdeGaussian noise is generated
by simply drawing a Gaussian-distributed random numbeg#oh sensor. Correlated noise
is made using the method of Liutkenhodner (1994),



1. equally well distribute 900 dipoles on a spherical swefagith dipole moments
drawn from a zero-mean spherical Gaussian.

2. calculate a sensor activation through the analytic fodwaodel for each dipole
for each sensor and sum over all dipoles at each sensor.

3. scale the resultant sensor activation vector to yieldtatse RMS power.
4. use this vector as the noise.

Actual noise was taken from MEG recordings during periodg/irich the brain region
of interest in the experiment was quiescent. These signate wot averaged. The actual
noise, without scaling, has an RMS of rougif§y = 50—100 fT/cm.

We scaled the additive noise to make the RMS power of the warsorts of noise equal.
We measured the S/N ratio of a data set using the ratios ofdlvens in the signal and the
noise: S/N (in dB)= 10log,, P*/P™ whereP* is the RMS (square root of mean square)
of the sensor readings from the dipole aftl is the RMS of the sensor readings from the
noise.

3 Multilayer Perceptron

The MLP charged with approximating the inverse mapping heidjput layer of 122 units,
one for each sensor; two hidden layers withandn, units respectively, and an output
layer of 6 units, representing the dipole locatiany, z) and momentm,, m,,m.). The
output units had a linear activation functions, while thédan units had hyperbolic tangent
activation functions to accelerate training (LeCun et®#91). All units had bias inputs,
adjacent layers were fully connected, and there were ntheatigh connections.

The 122 MEG sensor activations were scaled so that the RM@ vads 0.5, and the corre-
sponding dipole moment was scaled by the same factor. Dipcdgion and dipole moment
parameters were further scaled down to ensure that theyuneler 80% of saturation of
the output units.

The network weights were initialized with uniformly diditited random values between
+0.1. Vanilla online backpropagation was used for training. Nanmentum was used, and
1 was chosen empirically.

3.1 MLP structural optimization

Beginning with intuitions drawn from the explorations oftable numbers of hidden units
by Hoey et al. (2000) for EEG localization, we empirically asared the tradeoff between
approximation accuracy and computation time. Generaizatas not a serious consid-
eration, since training sets of arbitrary size could belgasinstructed: our training sets
ranged from 5,000-20,000, as circumstances dictated.

For practical reasons, we constrained our experimentstteonies with no more than 110
hidden units in either hidden layer. We varied the numberiddién units in each layer
from 10 to 110, in steps of 10, with; > n.. Each MLP was trained with a noise-free
training dataset of 5,000 training exemplars, and the meealization error for a noise-
free test dataset of 2,500 was measured after 500 epoclagrofig. Training each network
took up to two hours on an 800 MHz AMD Athlon computer. For esicle, five runs were
performed and the errors averaged.

The calculation time was measured in terms of equivalens &afch forward pass.e. a lo-
calization. The number of equivalent additions per addijtiaultiplication, and hyperbolic
tangent were about 1, 3, and 33, as measured on the above @GBlgUivalent floating



points additions for the 122:x—n,—6 MLP structure is thereforl22n; + nyny + 6ns) +
3(nin2 + 123n4 + Tna + 6) + 33(n1 + na).

Figure 1 shows both average lo-

calization error for training and - *°[ ¢ " Training fesut—e—
testing versus calculation time & % Testing result -~
for a localization. Each point 8
in the figure describes a different';
network architecture. When the 2
number of additions is small lo- :
calization error is high. Increas-
ing the computation reduces theg
localization error. The accuracys °°[
levels off after a while, probably
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ocaliz

due to incomplete convergence % 2 4 6 8 10 1
of the network training. From Number of floating points addtions for one localization (% 10
this result we choose the suit- Each point depicts a different MLP structure.

able MLP size as 122-60—20-6,

as indicted in Figure 1. For our Figure 1: Mean localization error versus calculation
purposes this seemed a reasoritme, as a parametric function of MLP structure. A
able tradeoff between computa-noise-free synthetic dataset was used for both training
tion and accuracy. and testing.

We constructed four training datasets, each with 20,00énela's, differing only in the
type of noise: none, gaussian white, correlated, and atde&ltion 2.2). No matter what a
network was trained with, we always tested using actualendds described in Section 2,
the S/N ratio was controlled by scaling the additive noise.

It took 500 epochs and about four hours on an 800 MHz AMD Athtorirain a network
of the selected architecture on a noisy dataset.

4 Effect of theinitial guesson LM L ocalization

To see how the initial guess effects the LM localizer, we roezd the localization per-
formance of LM as a function of the distance from the initigdale location to the actual
location. The initial guess was chosen randomly on a sphferadausd centered on the
target.

For each S/N ratio, 300 noisy exemplars were created. Ther&ijed from 0-11 dB,
and the distancé from 0—-6 cm in steps of 1 cm. For each sensor activation atiglini
guess, LM finds the dipole parameters that minimize a quiadiatction (Hamalainen
et al., 1993) of the difference between the predicted andtisgnsor activations,

c(x) = [[B(x,Q(x)) = Bull5-s 1)

where||v]|% = v Av, we defineB(x, Q) = F(x)Q, andx andQ denote a source dipole
location vector and a source dipole moment vector, @xcan be expressed by the least
square method a€)(x) = (FIF) 'F'B,,.

B,, andB(x, Q(x)) are 122-element vectors with measured and calculated rsectsea-
tions through the forward model, respectively, dnk) is the kernel of a spherical head
model (Mosher et al., 1999) is the noise covariance matrix, which is an identity matrix
for spherical zero mean unit variance gaussian noise. Ifithee is known, the covariance
matrix can be easily calculated. However noise is geneualknown, so in reality people
often assume a spherical covariance matrix. Alternatjaig can measure the sensor ac-
tivations before stimulation or long after stimulationdagalculate the covariance matrix
of those measurements. Since both of these techniquesputapave simulate each. Fig-
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Figure 2: Mean localization error of 1-start-LM as a funaotiwf S/N at varying distances
d between the initial guess and the actual source dipole: &pfterical covariance matrix.
Right: measured covariance matrix.

ure 2 shows the mean localization error for 300 test setsrging S/N, for both spherical
and empirical covariance matrices.

Figure 3 shows the mean localization error
for 3,300 activations with various S/N asg ° e .
the distance between the targetand the ing ,| i
tial guess is varied. Figure 2 shows that the
closer the initial guess, the better the perg
formance, for the both covariance assumpg
tions. With a good initial guess the empir-¢
ical covariance yields much better local-2
ization performance, but at the expense of
performance when the initial guess is fur-
ther from the target.

¢

Distance from an initial guess to the exact source dipole location

These experiments show that signals hay-. N :
ing high g/N show a greater deggradatio\r#'gure 3: Localization error versus distante

as the initial guess is moved away fronP€Ween LM using spherical covariance and
the target! One can attempt to compensa using measured covariance. S/N ranges
for this effect by trying multiple random fom 0-11dB.

restarts, for am-start-LM algorithm. Localization performance of this & out quickly,
with the point of diminishing returns at about= 4.

These results motivated us to construct a hybrid systemhiolwthe MLP’s output is used
as the initial guess for LM. As we shall see in the next sectiois MLP-start-LM performs
very well indeed.

5 Comparative Performance: MLP, LM, MLP-start-L M

We tuned LM for good performance. We settled on LM with fousstarts at the fixed
initial points (0., —6.9282,1.), (—6.,3.4641,1.), (6.,3.4641,1.),and(0.01,0.01, 6.1962),

in units of cm. The covariance matrix was calculated fronualohoise. We call this tuned
system “4-start-LM.” Modestly increasing the number oftaets increases the computa-
tional burden without much decreasing localization error.

Each of the MLP localizers from Section 3 was used as an LNhiiger, for four variant
MLP-start-LM localizers. The performance of all three Iization systems, trained with
various sorts of noise, is shown as a function of S/N in FigureMILP-start-LM shows
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Figure 4: Mean localization error versus S/N for 4-start;LUMLP, and MLP-start-LM.
Four different sorts of training noise are shown. In all casesting used actual noise.

algorithm 4-start-LM MLP MLP-start-LM
trained noise — N W C B N W C B
time (ms) 448.6 05| 05| 05| 05 | 57.4] 42.1| 456 346
error (mm) 116 29.2] 17.7] 195|119 109| 5.0 | 6.1 | 28

Table 1: Comparison of performance on actual-noise testfsatnventional Levenberg-

Marquardt source localizer; trained MLP; and hybrid syst&ach number is an average
over 4,500 localizations, so the error bars are negligibe training used various sorts of
noise (N=None, W=White, C=Correlated, B=Actual). Natlyrglerformance is best when

the training noise is drawn from the same distribution adeék#ng noise.

the best localization performance across a broad rangaiaofrig noise and S/N. A grand
summary, averaged across various S/N conditions, is showalile 1.

6 Conclusion

We showed that initial guess is very important for the LevegbMarquardt localization

method, and that LM performs much better with a good initiségs. The multilayer per-

ceptron was shown to give good performance with reasona@bleracy across a range of
mismatches between training and testing noise.

The MLP’s localization accuracy was comparable to 4-diddis, at one five hundredth
the computational burden. This motivated us to construgtaith system, MLP-start-LM,
which improves the localization accuracy beyond any othactical techniques available
to us (by a factor of about four) while reducing the compuotadi burden to less than a
tenth that of 4-start-LM.

A number of extensions are planned in the immediate future:will integrate a more
sophisticated forward model already developed in our latooy, we will experiment with

The reason the computational burden is reduced by more tfaaaa of four, even though there
is one LM instead of four, is that the initial guess is closette LM optimization is much faster.



secondary dipoles as the noise, and we will do a post-LM de@ass with an MLP trained
to remove the bias that LM can introduce.
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