Using Programming Language Theory to Make
Automatic Differentiation Sound and Efficient

Barak A. Pearlmuttérand Jeffrey Mark Siskirf

1 Hamilton Institute, National University of Ireland Maynooth, Co. Kildareland
barak@cs.nuim.ie

2 school of Electrical and Computer Engineering, Purdue Universiy,Morthwestern
Avenue, West Lafayette IN 47907-2035 Ugabi@purdue.edu

Summary. This paper discusses a new Automatic Differentiation (AD) system thegaity
and automatically accepts nested and dynamic use of the AD operatorsutrthy manual
intervention. The system is based on a new formulation of AD as highlyrgkred first-
class citizens in & -calculus, which is briefly described. Because Ahealculus is the basis
for modern programming-language implementation techniques, integratié\D into the
A-calculus allows AD to be integrated into an aggressive compiler. We exhitasearch
compiler which does this integration. Using novel analysis techniques;épés source code
involving free use of a first-class forward AD operator and genemaltgect code which at-
tains numerical performance comparable to, or better than, the mgiEtsaiye existing AD
systems.

Key words: Nesting, lambda calculus, multiple transformation, forward mode, opttiniza

1 Introduction

Over sixty years ago, Church [1] described a model of computatidohaihcluded higher-
order functions as first-class entities. TRisalculus, as originally formulated, did not allow
AD operators to be defined, but Church did use the derivative opeaatan example of a
higher-order function with which readers would be familiar. Althoughthealculus was orig-
inally intended as a model of computation, it has found concrete appligatifjmogramming
languagewia two related routes. The first route came from the realization that extresnely
phisticated computations could be expressed crisply and succinctly Ar¢a&ulus. This led
to the development of programming languagess@, ALGOL, ML, SCHEME, HASKELL, etc.)
that themselves embody the central aspect ofAttzalculus: the ability to freely create and
apply functions including higher-order functions. The second rowtgesfirom the recognition
that various program transformations and programming-languageetie constructs were
naturally expressed using thecalculus. This resulted in the use of thecalculus as the cen-
tral mathematical scaffolding of programming-language theory (Phdth as the formalism
in which the semantics of programming-language constructs (conditj@saignments, ob-
jects, exceptions, etc.) are mathematically defined, and as the internfediase into which
computer programs are converted for analysis and optimization.

2 Barak A. Pearlmutter and Jeffrey Mark Siskind

A substantial subgroup of the PLT community is interested in advancednatidnal
programming languages, and has spent decades inventing techioyowaich programming
languages with higher-order functions can be made efficient. Thesei¢ees are part of the
body of knowledge we refer to as PLT, and are the basis of the impletientgf modern
programming-language systemavd, cf, theGHC HASKELL compiler, GCC 4.x, etc. Some
of these techniques are being gradually rediscovered by the AD coitymigor instance, a
major feature in APENADE [2] is the utilization of a technique by which values to which a
newly-created function refer are separated from the code body &dtistion; this method is
used ubiquitously in PLT, where it is referred tolasbda lifting or closure conversion [4].

We point out that-}ke it or not—the AD transforms are higher-order functions: func-
tions that both take and return other functions. As such, attempts to buildiraptations of
AD which are efficient and correct encounter the same technicalggnswhich have already
been faced by the PLT community. In fact, the technical problems faeccA® are a super-
set of these, as the machinery of PLT, as it stands, is unable to fullgexpine reverse AD
transformation. The present authors have embarked upon a sdgpaiject to bring the tools
and techniques of PLT—suitably augmented—to bear on AD. To this em&) ntachinery
has been crafted to incorporate first-class AD operators (functiohpénfarm forward- and
reverse-mode AD) into th&-calculus. This solves a host of problems: (1) the AD transforms
are specified formally and generally; (2) nesting of the AD operatacsjrder-operation with
other facilities like memory allocation, is assured; (3) it becomes straigtufa to integrate
these into aggressive compilers, so that AD can operate in concert @dth @ptimization
rather than beforehand; (4) sophisticated techniques can migratesaomputations from
run time to compile time; (5) a callee-derives API is supported, allowing Abetaised in a
modular fashion; and (6) a path to a formal semantics of AD, and todbpnoofs of correct-
ness of systems that use and implement AD, is laid out.

Due to space limitations, the details of how thecalculus can be augmented with AD
operators is beyond our scope. Instead, we will describe the basic intuthat underly the
approach, and exhibit some preliminary work on its practical benefitis Jtarts (Sect. 2)
with a discussion of modularity and higher-order functions in a numecimatext, where we
show how higher-order functions can solve some modularity issuestiat in many cur-
rent AD systems. We continue (Sect. 3) by considering the AD transfasrhigher-order
functions, and in this context we generalize their types. This leads us @3¢ note a rela-
tionship between the AD operators and the pushforward and pullbasitrootions of differ-
ential geometry, which motivates some details of the types we describellessvgome of the
terminology we introduce. In Sect. 5 we discuss how constructs thatappéhe program-
mer to involve run-time transforms can, by appropriate compiler tecksidgee migrated to
compile-time. Section 6 describes a system which embodies these printtigiests with a
minimalist language (th& -calculus augmented with a numeric basis and the AD operators)
but uses aggressive compilation techniques to produce object cadetbmpetitive with the
most sophisticated currentoRTRAN-based AD systems. Armed with this practical benefit,
we close (Sect. 7) with a discussion of other benefits which this new formédis AD has
now put in our reach.

2 Functional Programming and Modularity in AD

Let us consider a few higher-order functions which a numericalraragner might wish to
use. Perhaps the most familiar is numerical integration,
double nint(double f(double), double x0, double x1);

Sound and Efficient AD 3

which accepts a functioh: R — R and range limit& andb and returns an approximation of
fab f (x) dx. In conventional mathematical notation we would say that this function leetyte

nint :(R—R)xRxR—-R.

There are a few points we can make about this situation.
First, note that the caller afint might wish to pass an argument function which is
not known, at least in its details, until run time. For example, in the straigidia code to

evaluate
- /2- cosx/i) 4
2 (sinx) X
G5 1

the caller needs to make a function which maps (sinx)°°3*/!) for each desired value of
Although it is possible to code around this necessity by giviij a more complicated API
and forcing the caller to package up this extra “environment” informatiois, is not only
cumbersome and error prone but also tends to degrade perfamEme notation we will
adopt for the construction of a function, “closed” over the values gfratevant variables in
scope at the point of creation, is & expression,” after which th&-calculus is named. Here,
it would be(Ax. (sinx)"(cogx/i))).

Second, note that it would be natural to define two-dimensional nunhartegration in
terms of nested application afnt . So for example,

double nint2(double f2(double x, double vy),
double x0, double x1,
double y0, double y1)
{ return nint((Ax .onint((Ay . f(xy)), YO, yl)),
x0, x1); }
Similar nesting would occur, without the programmer being aware of it,éeasngly-simple
function defined in a library happened to use AD internally, and this librangtion were
invoked within a function to which AD was applied.

Third, it turns out that programs written in functional-programming laggs are rife
with constructs of this sort (for instanceap which takes a function and a list and returns
a new list whose elements are computed by applying the given functionrtesponding
elements of the original list); because of this, PLT techniques have @toged to allow
compilers for functional languages to optimize across the involved grmeecall barriers.
This sort of optimization has implications for numerical programming, @sarical code
often calls procedures likeint in inner loops. In fact, benchmarks have shown the efficacy
of these technigues on numerical code. For instance, code involvingtdeadintegral of this
sort experienced an order of magnitude improvement over versidrand-tuned BRTRAN
or ¢, when written in 8HEME and compiled with such techniques ($g®//ftp.ecn.
purdue.edu/qobi/integ.tgz for details.)

Other numeric routines are also naturally viewed as higher-order funsctddumerical
optimization routines, for instance, are naturally formulated as proeseduhich take the
function to be optimized as one argument. Many other concepts in mathepeigineer-
ing, and physics are formulated as higher-order functions: convaolititers, edge detectors,
Fourier transforms, differential equations, Hamiltonians, etc. Everersophisticated sorts
of numerical computations that are difficult to express without the machiof functional-
programming languages, such as pumping methods for increasisgofatenvergence, are
persuasively discussed elsewhere [3] but stray beyond ournpriegec. If we are to raise
the level of expressiveness of scientific programming we might wislotsider using simi-
lar conventions when coding such concepts. As we see below, with@apdecompilation
technology, this can result in ancrease in performance.

4 Barak A. Pearlmutter and Jeffrey Mark Siskind
3 The AD Transforms Are Higher-Order Functions

The first argument to thenint procedure of the previous section obeys a particular API:
nint can callf, but (at least in any mainstream language) there are no other operation
(with the possible exception of a conservative test for equality) that egmeblformed on a
function passed as an argument. We might imagine impraviimg 's accuracy and efficiency

by having it use derivative information, so that it could more accuraetiefficiently adapt its
points of evaluation to the local curvaturefafOf course, we would want an AD transform of

f rather than some poor numerical approximation to the desired deevatpon deciding to

do this, we would have two alternatives. One would be to change the sigrdihint so that

it takes an additional argumedift that calculates the derivative bfat a point. This alternative
requires rewriting every call taint to pass this extra argument. Some call sites would be
passing a function argumentmint that is itself a parameter to the calling routine, resulting
in a ripple effect of augmentation of various APIs. This can be seerealvegherenint2

would need to accept an extra parameter—or perhaps two extra garanienis alternative,
which we might callcaller-derives, requires potentially global changes in order to change a
local decision about how a particular numerical integration routine ¢g®rand is therefore

a severe violation of the principles of modularity.

The other alternative would be foint to be able to internally find the derivative bf
in acallee-derives discipline. In order to do this, it would need to be able to invoke AD upon
that function argument. To be concrete, we posit two derivative-tategators which per-
form the forward- and reverse-mode AD transforms on the functioey are passetiThese
have a somewhat complex API, so as to avoid repeated calculation airtired function dur-
ing derivative calculation. For forward-mode AD, we introduﬁ which we for now give
a simplified signature7 (R RM — (R"x R") — (RM™x RM)). This takes a numeric
function R" — R™ and returns an augmented function which takes what the original func-
tion took along with a perturbation direction in its input space, and returns tivbariginal
function returned along with a perturbation direction in its output space.mafgping from
an input perturbation to an output perturbation is equivalent to multiplicagidhdJacobian.

Its reverse-mode AD sibling has a slightly more complex API, which wecazaitature as
:ﬂ (R"—-RM) — (R" — (RM™x (R™— R"))). This takes a numeric functidR" — R™ and
returns an augmented function which takes what the original functionaodketurns what
the original function returned paired with a “reverse phase” functionrtizgs a sensitivity in
the output space back to a sensitivity in the input space. This mappingoeftpuat sensitivity
to an input sensitivity is equivalent to multiplication by the transpose of thebia.

These AD operators are (however implemented, and whether comdirrepre-processor
or supported as dynamic run-time constructs) higher-order functiorn$hey cannot be writ-
ten in the conventional -calculus. The machinery to allow them to be expressed is somewhat
involved [6, 7, 8].

Part of the reason for this complexity can be seemiim2 above, which illustrates
the need to handle not only anonymous functions but also higher-aurdetions, nesting,
and interactions between variables of various scopes that corregpahd distinct nested
invocations of the AD operators. ifint is modified to take the derivative of its function
argument, then the outer call nt insidenint2 will take the derivative of an unnamed
function which internally invokesint . Since this innenint also invokes the derivative

operator, the7 and? operators must both be able to be applied to functions that internally

3 One can imagine hybrid operators; we leave that for the future.

Sound and Efficient AD 5

invoke? and?. We also do not wish to introduce a new special “tape” data type onto which
computation flow graphs are recorded, as this would both increase thigenwf data types
present in the system, and render the system less amenable to stastadaizhtions.

Of course, nesting of AD operators is only one sort of interaction betweastructs, in
this case between two AD constructs. We wish to make all interaction betiemragable
constructs both correct and robust. Our means to that end are uitjfemna generality, and
we therefore generalize the AD operatt?aé and? to apply not only to numeric functions
R" — R™ but to any functioror — 3, wherea and are arbitrary types. Note that and3
might in fact be function types, so we will be assigning a meaning to “theduat derivative
of the higher-order functiomap,” or to the derivative ofint . This generalization will allow
us to mechanically transform the code bodies of functions without regatte types of the
functions called within those code bodies. But in order to understand thesrglezation, we
briefly digress into a mathematical domain that can be used to define arfotmrd- and
reverse-mode AD.

4 AD and Differential Geometry

We now use some concepts from differential geometry to motivate arghhp explain the
types and relationships in our AD-augmenfedalculus. It is important to note that this is a
cartoon sketch, with many details suppressed or even altered for bataitigy, and intuition.

In differential geometry, a differentiable manifald” has some structure associated with
it. Each pointx € .#” has an associated vector space called its tangent space, whose member
can be thought of as directions in whigkhan be locally perturbed int”. We call this aangent
vector of x and write it X . An elementx paired with an element of the tangent space
of x is called a tangent bundle, writtéR = (x, ?). A function between two differentiable
manifolds, f : 4/~ — ., which is differentiable ak, mapping it toy = f(x), can be lifted
to maptangent bundlei In differinial geometry this is called the pushforwardfoie will
write V = (y, y) = f (X)= f (x, X). (This notation differs from the usual notation of
T ./ for the tangent space afe .#.)

We import this machinery of the pushforward, but reinterpret it quitecoetely. Whenf
is a function represenfd in a concrete expression in our augmérteltulus, we mechan-
ically transform itinto f = j(f). Moreover wherx is a particular value, with a particular
shape, we define the shapegf, an element of the tangent spacexpin terms of the shape
of x. If x: a, meaning thak has type (or shapej, we say thatx : o andX : . These
proceed by cases, and (with some simplification here for expositogopes) we can say
that a perturbation of a real is redk = R; the perturbation of a pair is a pair of perturba-
tions,a x f = o x [, and the perturbation of a discrete value contains no information, so
o = void whena is a discrete type likbool or int. This leaves the most interesting:— ﬁ,
the perturbation of a function. This is well defined in differential geomethich would give
a— ﬁ =ad— E’ but we have an extra complication. We must regard a mappirg— S8
as depending not only on the input value, but also on the value of asywémables that oc-
cur in the definition off. Roughly speaking then, if is the type of the combination of all

the free variables of the mapping under consideration, which we write: as > B, then

al E —dX E However we never map such raw tangent values, but always teloigien

6 Barak A. Pearlmutter and Jeffrey Mark Siskind

dles. These have similar signatures, but with tangents always assogititéde value whose
tangent space they are elements of.

The powerful intuition we now bring from differential geometry is that jastthe above
allows us to extend the notion of the forward-mode AD transform to aritoéjects by
regarding it as a pushforward of a function defined using\tloalculus, we can use the notion
of a pullback to see how analogous notions can be defined for ren@de-AD. In essence,
we use the definition of a cotangent space to relate the signatures otitstes’ (our term
for what are called adjoint values in physics or elements of a cotanpganésn differential
geometry) to the signatures of perturbations. Similarly, the reversddransf a function is
defineiusing the definition of the pullback from differential geometry. L

If £ :(x, X) (y, Y) is apushforward of : x— y, then the pullback isf : 'y — X,
which must obey the relationy ¢ y' :/_7 e X, wheree is a generalized dot-product. If
? fe f ,then? :f— (Ax. (f(x), f)), and some type simplifications occur. The most
important of these is that we can general;?eand? to apply not just tdunctions that map
between objects of any type but to appl;atly object of any type, with functions being a spe-
cial case/ a— o and/ a — "a. A detailed exposition of this augmentaecalculus
is beyond our scope here. Its definition is a delicate dance, as the nedvamigras must be
sufficiently powerful to implement the AD operators, but not so poulea$ to preclude their
own transformation by AD or by standaidcalculus reductions. We can however give a bit
of a flavor: constructs Iike}(?) and its cousins, which arise naturally whenever there is
nested application of the AD machinery, require novel operatorsjkel.

5 Migration to Compile Time

In the above exposition, the AD transforms are presented as firstfalasttons that operate
on an even footing with other first-class functions in the system,Hikdowever, compilers
are able to migrate many operations that appear to be done at run time pdectime. For
instance, the code fragmef+3) might seem to require a run-time addition, but a suffi-
ciently powerful compiler is able to migrate this addition to compile time. A compibes
been constructed, based on the above constructs and ideas, whidd is atigrate almost
all scaffolding supporting the raw numerical computation to compile timesbence, a lan-
guage called/LAD consisting of the above AD mechanisms in addition to a suite of numeric
primitives is defined. A compiler fovLAD called SALINGRAD has been constructed which
uses polyvariant union-free flow analysis [10]. This analysis, fonynexample programs
we have written, allows all scaffolding and function manipulation to be migredecompile
time, leaving for run time a mix of machine instructions whose floating-pagnisidy com-
pares favorably to that of code emitted by highly tuned AD systems basedeprocessors
and FORTRAN. Although this aggressive compiler currently handles only the formande
AD transform, an associated. AD interpreter handles both the forward- and reverse-mode
AD constructs with full general nesting. The compiler is being extendeiirtidesly optimize
reverse-mode AD, and no significant barriers in this endeavor i@pted.

Although it is not a production-quality compiler (it is slow, cannot handlgdagxam-
ples, does not support arrays or other update-in-place data s&sicaund is in general un-
suitable for end users) remedying its deficiencies and building a prodegptiality compiler
would be straightforward, involving only known methods [5, 11]. Thenpder’s limitation
to union-free analyses and finite unrolling of recursive data structuelsl also be relaxed
using standard implementation techniques.

Sound and Efficient AD 7

6 Some Preliminary Performance Results

We illustrate the power of our techniques with two examples. These weseglto illustrate
a hierarchy of mathematical abstractions built on a higher-order gradjeerator [8]. They
werenot chosen to give an advantage to the present system or to compronfisernaerce
of other systems. They do however show how awkward it can be t@sgphese concepts in
other systems, even overloading-based systems.

Figure 1 gives the essence of the two examples. It starts with codaldbeteeen these
examplesmultivariate-argmin implements a multivariate optimizer using adaptive
nave gradient descent. This iteratgs; = xi —nOf (xi) until either||Of (x)|| or ||Xi+1 — Xi|
is small, increasing when progress is made and decreagjighen no progress is made. The

VLAD primitives bundle andtangent construct and access tangent bundjes,s ?
andreal shields a value from the optimizer. Omitted are definitions for standarESE
primitives and the functionsgr that squares its argumemtap-n that maps a function over
the list(0 ...n—1), reduce that folds a binary function with a specified identity over a
list, v+ andv- that perform vector addition and subtractiém,v that multiplies a vector by a
scalarmagnitude that computes the magnitude of a vectiistance that computes the
12 norm of the difference of two vectors, aadhat returns théth basis vector of dimensian
The first examplesaddle , computes a saddle point: myjpy,) maxy, v,) f(x,y) where

we use the trivial functiorf (x,y) = (x{ +y2 x2+y2). The second examplearticle
models a charged patrticle traveling non-relativistically in a plane with posi{oh and
velocity x(t) and accelerated by an electric field formed by a pair of repulsive hodies
p(X;w) = ||x — (10,20—w)|| "1 + [[x — (10,0)|| "%, wherew is a modifiable control param-
eter of the system, and hits tlxeaxis at positionx(tf). We optimizew so as to minimize

(define ((gradient N . .
(let ((n ?Iength X)) Z(map»n (lambda (i) (tangent ((j * f) (bundle x (e i n))))) n))

(define (mulnvanate argmin f x)
(et (g (gradient ©
(letrec Ioop (Iambda (x fx gx eta
(cond ((<= (magnn ude x) (real 1e-5)) x)
(I i Igtl (]io)ni (vxxf (kgx (oy * (regl %) eta) (real 0)))
eise ($ (Fl (distance x x-prime) (reaI lg gff

(Iet E(fxg)nrne (f x prime)))

loop xprlme fx-prime (g x-prime) eta (+ i 1))
(foop x (f %) (g %) (real 1e-5) (real O)) Eloop x fx gx (/ eta (real 25)) (real 0)))))))))))

(define (multivariate-argmax f x) (multivariate-argmin (lambda (x) (- (real 0) (f x))) x))
(define (multivariate-max f x) (f (multivariate-argmax f x)

(define (saddle)
(let = ((start (Ilst (real 1) (real 1)))
f (lambda’ (x llyl X2 y2) (- (+ (Sqr Xl) (sar y1)) (+ (sar x2) (sqr y2))))
(list xl * yIx) (multivariate-argmi
(lambda ((list xl y1)) (multivariate-| max

st x2 2 " ; Jambda (i tam2 az((llst x2 y2)) (f x1 y1 X2 yz))zsta%n;) ?atn}g
(list (Iist(((l\?vril)é Y)*mtjw'r\f%”?/f ar%rﬂ}afns(xa?\)vmg (et x y)))(vSme y2) v y2)) starg
(define (naive-euler w)
(let » ((charges HIISt (list (real 10) (real 10) w)) (list (real 1 0) (real 0))))
x-initial (list (real 0? 6
é’ém |n|t(|a| fllsi!e({ea 75) (real 0)))
da (x) ((reduce + (real 0)) ((map (lambda (c) (/ (real 1) (distance x c)))) charges)))))
(letrec (i oop (Iamb a’ (X xdot
(let * ((xddot (k =*v (real 1} ((gradient p) x))) (x-new (v+ x (k *v delta-t xdot))))
(if (posmve” (Ilst ref X- new 1)

w o (V+ ((k *v delta-t xddot)))
Iet * ((dellatf (/ (— real 0) (list-ref x 1)) glst—ref xdot 1)))

sl tf th *v delta-t-f xdot))))
(loop x-initial xdot-initial)))) (sar (istef x- nm

(defme (particle) . - . " . N
(let * ((wO Sreal 0)) ((list w *) (multivariate-argmin (lambda ((list w)) (naive-euler w)) (list wO0))))
(write W *)))

Fig. 1. The essence of theaddle andparticle examples.

8 Barak A. Pearlmutter and Jeffrey Mark Siskind

Table 1.Run times of our examples normalized relative to a unit run time f@L8IGRAD.

Language/Implementation

Example STALINGRAD ADIFOR TAPENADE FADBAD++

saddle 1.00 0.49 0.72 5.93
particle 1.00 0.85 1.76 32.09

E(w) = Xo(ts)2, with the goal of finding a value faw that causes the particle’s path to inter-
sect the origin.

Naive Euler ODE integration¥(t) = — Dlx P(X)|x—x); X(t +At) = X(t) + AtX(t); x(t +
At) = x(t) + Atx(t)) is used to compute the particle’s path, with a linear interpolation to find
the x-axis intersect (whemy (t + At) < 0 we letAts = —xq(t)/Xq(1); tr =t + Ats; X(tr) =
x(t) + Atgx(t) and calculate the final error &w) = xo(t)2.) The final error is minimized
with respect tav by multivariate-argmin

Each task models a class of real-world problems (rational agent-ageraction and
agent-world interaction) that appear in game theory, economics, neale@ming, automatic
control theory, theoretical neurobiology, and design optimization. Bethrequires nesting:
a single invocation of even higher-order AD is insufficient. Furthermtirey use standard
vector arithmetic which, without our techniques, would require allocatiahraalamation of
new vector objects whose size might be unknown at compile time, andsat@éhe compo-
nents of such vectors would require indirection. They also use highler-éunctions: ones
like map-n andreduce , that are familiar to the functional-programming community, and
ones likegradient and multivariate-argmin , that are familiar to numerical pro-
grammers. Without our techniques, these would require closures dinglatifunction calls to
unspecified targets.

STALINGRAD performed a polyvariant union-free flow analysis on both of thesenexa
ples, and generated Fortran-like code. Variants of these examplesisercoded in SHEME,
ML, HASKELL, c++, and FORTRAN, and run with a variety of compilers and AD implemen-
tations. Here we discuss only tle+ and FORTRAN versions. Forc++, the FADBAD++
implementation of forward AD was used, compiled wih+. For FORTRAN, the ADIFOR
and TAPENADE implementations of forward AD were used, compiled wah7. In all vari-
ants attempts were made to be faithful to both the generality of the mathenetizadpts
represented in the examples and to the standard coding style of eachdanghis means in
particular that “tangent-vector” mode was used where available, whitBaLINGRAD at a
disadvantage of about a factor of two. (AlthoughaSINGRAD does not implement a tangent-
vector mode it would be straightforward to add such a facility by generglizimdle and
tangent to accept and return lists of tangent values, respectively.)

Although the most prominent high-performance AD systeAtsKOR, TAPENADE, and
ADIC) claim to support nested use of AD operators, it is “well known” within tH2 @mmu-
nity they do not (Jean Utke, personal communication), as the prastatra discovered when
attempting to assess the performance of other AD systems on the abkselhaglement-
ing these examples in those systems required enormous effort, to séatireovarious warn-
ing and silently incorrect results and to craft intricate work-aroundsrevpessible. These
included both rewriting input source code to meet a variety of unspecifiedbcumented,
and unchecked restrictions, and modifying the output code producadrbe of the tools
[9]. Table 1 summarizes the run times, normalized relative to a unit run fom&TALIN -

Sound and Efficient AD 9

GRAD. Source code for all variants of our examples, the scripts used tagecthble 1, and

the log produced by running those scripts are availabitétpt//www.bcl.hamilton.

ie/ ~qobi/ad2008/ . Thisresearch prototype exhibits an increase in performance of one to
three orders of magnitude when compared with the overloading-basedrfl AD implemen-
tations for both functional and imperative languages (of which only theéhis shown) and
roughly matches the performance of the transformation-based M@ implementations

for imperative languages.

7 Discussion and Conclusion

The TAPENADE 2.1 User’s Guide [2, pp 72] states:

10. KNOWN PROBLEMS AND DEVELOPMENTS TO COME

We conclude this user’s guide oAPENADE by a quick description of known prob-
lems, and how we plan to address them in the next releasdsvé focus on missing
functionalities. [..]

10.4 Pointers and dynamic allocation

Full AD on FORTRAN95 supposes pointer analysis, and an extension of the AD
models on programs that use dynamic allocation. This is not done yet.

Whereas the tangent mode does not pose major problems for pgitpointers
and allocation, there are problems in the reverse mode. For exampishloald we
handle a memory deallocation in the reverse mode? During the reveesp sthe
memory must be reallocated somehow, and the pointers must pointritacthis
reallocated memory. Finding the more efficient way to handle this is still @&m op
problem.

The Future Plans section on the@ENAD web site
http://www-unix.mcs.anl.gov/ ~utke/OpenAD/ states:

4. Language-coverage and library handling in adjoint code

2. language concepts (e.g., array arithmetic, pointers and dymaic memory al-
location, polymorphism):

Many language concepts, in particular those found in object-orientedidgeg,
have never been considered in the context of automatic adjoint codeagien. \We
are aware of several hard theoretical and technical problems tbdttade consid-
ered in this context. Without an answer to these open questions the ces®ofrihe
adjoint code cannot be guaranteed.

In PLT, semantics are defined by reductions which transform a profiam the source
language into tha -calculus, or an equivalent formalism like SSA. Since we have defireed th
AD operators in a -calculus setting in an extremely general fashion, these operators inter-
operate correctly with all other constructs in the language. This addreésgrrticular, all the
above issues, and in fact all such issues: by operating in this frarkgether AD constructs
can be made available in a dynamic fashion, with extreme generality anarmaitif. This
framework has another benefit: compiler optimizations and other congrittimplementa-
tion techniques are already formulated in the same framework, whichsall@yAD constructs
to be integrated into compilers and combined with aggressive optimizatiesgives the nu-
merical programmer the best of both worlds: the ability to write confidentbnirxpressive
higher-order modular dynamic style while obtaining competitive numepegbrmance.

10 Barak A. Pearlmutter and Jeffrey Mark Siskind

TheA-calculus approach also opens some exciting theoretical questionsufirbat sys-

tem is based on the untyp@dcalculus. Can the;¢> and;_] operators be incorporated into
a typedA -calculus? Many models of real computation have been developedhisasystem
be formalized in that sense? Can the AD operators as defined be mawedt, in the sense
of matching a formal specification written in terms of limits or non-intuitiveetintial geo-
metric constructions? Is there a relationship between this augmértattulus and synthetic
differential geometry? Could entire AD systems be built and formally gmazorrect?

Acknowledgement. This work was supported, in part, by NSF grant CCF-0438806, Seienc
Foundation Ireland grant 00/P1.1/C067, and a grant from the Highac&ion Authority of
Ireland. Any opinions, findings, and conclusions or recommendaéirpsessed in this mate-
rial are those of the author(s) and do not necessarily reflect the witive funding agencies.

References

1. Church, A.: The Calculi of Lambda Conversion. Princeton UmsitgiPress, Princeton,
NJ (1941)

2. Hascét, L., Pascual, V.: TAPENADE 2.1 user’s guide. Rapport techn2i@ INRIA,
Sophia Antipolis (2004). URIbttp://www.inria.fr/rrrt/rt-0300.html

3. Hughes, J.: Why functional programming matters. The Computenat32(2), 98—-107
(1989). URLhttp://www.md.chalmers.se/ ~ rjmh/Papers/whyfp.html

4. Johnsson, T.: Lambda lifting: Transforming programs to reearsguations. In: Func-
tional Programming Languages and Computer Architecture. Sprvertag, Nancy,
France (1985)

5. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program AsialySpringer-Verlag,
New York (1999)

6. Pearlmutter, B.A., Siskind, J.M.: Reverse-mode AD in a functiér@amhework: Lambda
the ultimate backpropagator. ACM Trans. on Programming LanguaggsSgstems
(2008). In press

7. Siskind, J.M., Pearimutter, B.A.: First-class nonstandard inteiwas by opening clo-
sures. In: Proceedings of the 2007 Symposium on Principles of@roging Languages,
pp. 71-6. Nice, France (2007)

8. Siskind, J.M., Pearlmutter, B.A.: Nesting forward-mode AD in acfional framework.
Higher-Order and Symbolic Computation (2008). To appear

9. Siskind, J.M., Pearlmutter, B.A.: Putting the automatic back into ADt Ranhat's
wrong. Tech. Rep. TR-ECE-08-02, School of Electrical and Cderdtingineering, Pur-
due University, West Lafayette, IN, USA (2008). URitp://ftp.ecn.purdue.
edu/qobi/TR-ECE-08-02.pdf

10. Siskind, J.M., Pearimutter, B.A.: Using polyvariant union-fregvfanalysis to compile
a higher-order functional-programming language with a first-clagsatae operator to
efficient Fortran-like code. Tech. Rep. TR-ECE-08-01, Scho&lettrical and Computer
Engineering, Purdue University, West Lafayette, IN, USA (2008 LWttp://docs.
lib.purdue.edu/ecetr/367/

11. Wadler, P.L.: Comprehending monads. In: Proceedings ofa®@ ACM Conference on
Lispand Functional Programming, pp. 61-78. Nice, France (1990)

