
Using Programming Language Theory to Make
Automatic Differentiation Sound and Efficient

Barak A. Pearlmutter1 and Jeffrey Mark Siskind2

1 Hamilton Institute, National University of Ireland Maynooth, Co. Kildare, Ireland
barak@cs.nuim.ie

2 School of Electrical and Computer Engineering, Purdue University, 465 Northwestern
Avenue, West Lafayette IN 47907-2035 USAqobi@purdue.edu

Summary. This paper discusses a new Automatic Differentiation (AD) system that correctly
and automatically accepts nested and dynamic use of the AD operators, without any manual
intervention. The system is based on a new formulation of AD as highly generalized first-
class citizens in aλ -calculus, which is briefly described. Because theλ -calculus is the basis
for modern programming-language implementation techniques, integration of AD into the
λ -calculus allows AD to be integrated into an aggressive compiler. We exhibita research
compiler which does this integration. Using novel analysis techniques, it accepts source code
involving free use of a first-class forward AD operator and generatesobject code which at-
tains numerical performance comparable to, or better than, the most aggressive existing AD
systems.

Key words: Nesting, lambda calculus, multiple transformation, forward mode, optimization

1 Introduction

Over sixty years ago, Church [1] described a model of computation which included higher-
order functions as first-class entities. Thisλ -calculus, as originally formulated, did not allow
AD operators to be defined, but Church did use the derivative operator as an example of a
higher-order function with which readers would be familiar. Although theλ -calculus was orig-
inally intended as a model of computation, it has found concrete applicationin programming
languagesvia two related routes. The first route came from the realization that extremelyso-
phisticated computations could be expressed crisply and succinctly in theλ -calculus. This led
to the development of programming languages (LISP, ALGOL, ML , SCHEME, HASKELL, etc.)
that themselves embody the central aspect of theλ -calculus: the ability to freely create and
apply functions including higher-order functions. The second route arose from the recognition
that various program transformations and programming-language theoretic constructs were
naturally expressed using theλ -calculus. This resulted in the use of theλ -calculus as the cen-
tral mathematical scaffolding of programming-language theory (PLT): both as the formalism
in which the semantics of programming-language constructs (conditionals, assignments, ob-
jects, exceptions, etc.) are mathematically defined, and as the intermediateformat into which
computer programs are converted for analysis and optimization.

2 Barak A. Pearlmutter and Jeffrey Mark Siskind

A substantial subgroup of the PLT community is interested in advanced or functional
programming languages, and has spent decades inventing techniquesby which programming
languages with higher-order functions can be made efficient. These techniques are part of the
body of knowledge we refer to as PLT, and are the basis of the implementation of modern
programming-language systems: JAVA , C♯, theGHC HASKELL compiler, GCC 4.x, etc. Some
of these techniques are being gradually rediscovered by the AD community. For instance, a
major feature in TAPENADE [2] is the utilization of a technique by which values to which a
newly-created function refer are separated from the code body of thefunction; this method is
used ubiquitously in PLT, where it is referred to aslambda lifting or closure conversion [4].

We point out that—like it or not—the AD transforms are higher-order functions: func-
tions that both take and return other functions. As such, attempts to build implementations of
AD which are efficient and correct encounter the same technical problems which have already
been faced by the PLT community. In fact, the technical problems facedin AD are a super-
set of these, as the machinery of PLT, as it stands, is unable to fully express the reverse AD
transformation. The present authors have embarked upon a sustained project to bring the tools
and techniques of PLT—suitably augmented—to bear on AD. To this end, novel machinery
has been crafted to incorporate first-class AD operators (functions that perform forward- and
reverse-mode AD) into theλ -calculus. This solves a host of problems: (1) the AD transforms
are specified formally and generally; (2) nesting of the AD operators, and inter-operation with
other facilities like memory allocation, is assured; (3) it becomes straightforward to integrate
these into aggressive compilers, so that AD can operate in concert with code optimization
rather than beforehand; (4) sophisticated techniques can migrate various computations from
run time to compile time; (5) a callee-derives API is supported, allowing AD tobe used in a
modular fashion; and (6) a path to a formal semantics of AD, and to formal proofs of correct-
ness of systems that use and implement AD, is laid out.

Due to space limitations, the details of how theλ -calculus can be augmented with AD
operators is beyond our scope. Instead, we will describe the basic intuitions that underly the
approach, and exhibit some preliminary work on its practical benefits. This starts (Sect. 2)
with a discussion of modularity and higher-order functions in a numericalcontext, where we
show how higher-order functions can solve some modularity issues thatoccur in many cur-
rent AD systems. We continue (Sect. 3) by considering the AD transforms as higher-order
functions, and in this context we generalize their types. This leads us (Sect. 4) to note a rela-
tionship between the AD operators and the pushforward and pullback constructions of differ-
ential geometry, which motivates some details of the types we describe as well as some of the
terminology we introduce. In Sect. 5 we discuss how constructs that appear to the program-
mer to involve run-time transforms can, by appropriate compiler techniques, be migrated to
compile-time. Section 6 describes a system which embodies these principles. It starts with a
minimalist language (theλ -calculus augmented with a numeric basis and the AD operators)
but uses aggressive compilation techniques to produce object code that is competitive with the
most sophisticated current FORTRAN-based AD systems. Armed with this practical benefit,
we close (Sect. 7) with a discussion of other benefits which this new formalism for AD has
now put in our reach.

2 Functional Programming and Modularity in AD

Let us consider a few higher-order functions which a numerical programmer might wish to
use. Perhaps the most familiar is numerical integration,

double nint(double f(double), double x0, double x1);

Sound and Efficient AD 3

which accepts a functionf : R→ R and range limitsa andb and returns an approximation of∫ b
a f (x)dx. In conventional mathematical notation we would say that this function has the type

nint : (R→ R)×R×R→ R.

There are a few points we can make about this situation.
First, note that the caller ofnint might wish to pass an argument function which is

not known, at least in its details, until run time. For example, in the straightforward code to
evaluate

n

∑
i=1

∫ 2

1
(sinx)cos(x/i) dx

the caller needs to make a function which mapsx 7→ (sinx)cos(x/i) for each desired value ofi.
Although it is possible to code around this necessity by givingnint a more complicated API
and forcing the caller to package up this extra “environment” information,this is not only
cumbersome and error prone but also tends to degrade performance. The notation we will
adopt for the construction of a function, “closed” over the values of any relevant variables in
scope at the point of creation, is a “λ expression,” after which theλ -calculus is named. Here,
it would be(λx . (sinx)ˆ(cos(x/i))).

Second, note that it would be natural to define two-dimensional numerical integration in
terms of nested application ofnint . So for example,

double nint2(double f2(double x, double y),
double x0, double x1,
double y0, double y1)

{ return nint((λx . nint((λy . f(x,y)), y0, y1)),
x0, x1); }

Similar nesting would occur, without the programmer being aware of it, if a seemingly-simple
function defined in a library happened to use AD internally, and this library function were
invoked within a function to which AD was applied.

Third, it turns out that programs written in functional-programming languages are rife
with constructs of this sort (for instance,map which takes a function and a list and returns
a new list whose elements are computed by applying the given function to corresponding
elements of the original list); because of this, PLT techniques have been developed to allow
compilers for functional languages to optimize across the involved procedure-call barriers.
This sort of optimization has implications for numerical programming, as numerical code
often calls procedures likenint in inner loops. In fact, benchmarks have shown the efficacy
of these techniques on numerical code. For instance, code involving a double integral of this
sort experienced an order of magnitude improvement over versionsin hand-tuned FORTRAN

or C, when written in SCHEME and compiled with such techniques (seeftp://ftp.ecn.
purdue.edu/qobi/integ.tgz for details.)

Other numeric routines are also naturally viewed as higher-order functions. Numerical
optimization routines, for instance, are naturally formulated as procedures which take the
function to be optimized as one argument. Many other concepts in mathematics, engineer-
ing, and physics are formulated as higher-order functions: convolution, filters, edge detectors,
Fourier transforms, differential equations, Hamiltonians, etc. Even more sophisticated sorts
of numerical computations that are difficult to express without the machinery of functional-
programming languages, such as pumping methods for increasing rates of convergence, are
persuasively discussed elsewhere [3] but stray beyond our present topic. If we are to raise
the level of expressiveness of scientific programming we might wish to consider using simi-
lar conventions when coding such concepts. As we see below, with appropriate compilation
technology, this can result in anincrease in performance.

4 Barak A. Pearlmutter and Jeffrey Mark Siskind

3 The AD Transforms Are Higher-Order Functions

The first argumentf to thenint procedure of the previous section obeys a particular API:
nint can call f , but (at least in any mainstream language) there are no other operations
(with the possible exception of a conservative test for equality) that can be performed on a
function passed as an argument. We might imagine improvingnint ’s accuracy and efficiency
by having it use derivative information, so that it could more accuratelyand efficiently adapt its
points of evaluation to the local curvature off . Of course, we would want an AD transform of
f rather than some poor numerical approximation to the desired derivative. Upon deciding to
do this, we would have two alternatives. One would be to change the signature ofnint so that
it takes an additional argumentdf that calculates the derivative off at a point. This alternative
requires rewriting every call tonint to pass this extra argument. Some call sites would be
passing a function argument tonint that is itself a parameter to the calling routine, resulting
in a ripple effect of augmentation of various APIs. This can be seen above, wherenint2
would need to accept an extra parameter—or perhaps two extra parameters. This alternative,
which we might callcaller-derives, requires potentially global changes in order to change a
local decision about how a particular numerical integration routine operates, and is therefore
a severe violation of the principles of modularity.

The other alternative would be fornint to be able to internally find the derivative off ,
in a callee-derives discipline. In order to do this, it would need to be able to invoke AD upon
that function argument. To be concrete, we posit two derivative-takingoperators which per-
form the forward- and reverse-mode AD transforms on the functionsthey are passed.3 These
have a somewhat complex API, so as to avoid repeated calculation of the primal function dur-

ing derivative calculation. For forward-mode AD, we introduce
−→
J which we for now give

a simplified signature
−→
J : (Rn → R

m)→ ((Rn×R
n)→ (Rm×R

m)). This takes a numeric
function R

n → R
m and returns an augmented function which takes what the original func-

tion took along with a perturbation direction in its input space, and returns what the original
function returned along with a perturbation direction in its output space. Thismapping from
an input perturbation to an output perturbation is equivalent to multiplication by the Jacobian.
Its reverse-mode AD sibling has a slightly more complex API, which we cancaricature as
←−
J : (Rn→R

m)→ (Rn→ (Rm× (Rm→R
n))). This takes a numeric functionRn→R

m and
returns an augmented function which takes what the original function tookand returns what
the original function returned paired with a “reverse phase” function that maps a sensitivity in
the output space back to a sensitivity in the input space. This mapping of anoutput sensitivity
to an input sensitivity is equivalent to multiplication by the transpose of the Jacobian.

These AD operators are (however implemented, and whether confinedto a pre-processor
or supported as dynamic run-time constructs) higher-order functions, but they cannot be writ-
ten in the conventionalλ -calculus. The machinery to allow them to be expressed is somewhat
involved [6, 7, 8].

Part of the reason for this complexity can be seen innint2 above, which illustrates
the need to handle not only anonymous functions but also higher-orderfunctions, nesting,
and interactions between variables of various scopes that correspondto the distinct nested
invocations of the AD operators. Ifnint is modified to take the derivative of its function
argument, then the outer call tonint insidenint2 will take the derivative of an unnamed
function which internally invokesnint . Since this innernint also invokes the derivative

operator, the
−→
J and

←−
J operators must both be able to be applied to functions that internally

3 One can imagine hybrid operators; we leave that for the future.

Sound and Efficient AD 5

invoke
−→
J and

←−
J . We also do not wish to introduce a new special “tape” data type onto which

computation flow graphs are recorded, as this would both increase the number of data types
present in the system, and render the system less amenable to standard optimizations.

Of course, nesting of AD operators is only one sort of interaction between constructs, in
this case between two AD constructs. We wish to make all interaction between all available
constructs both correct and robust. Our means to that end are uniformity and generality, and

we therefore generalize the AD operators
−→
J and

←−
J to apply not only to numeric functions

R
n→ R

m but to any functionα → β , whereα andβ are arbitrary types. Note thatα andβ
might in fact be function types, so we will be assigning a meaning to “the forward derivative
of the higher-order functionmap,” or to the derivative ofnint . This generalization will allow
us to mechanically transform the code bodies of functions without regardto the types of the
functions called within those code bodies. But in order to understand this generalization, we
briefly digress into a mathematical domain that can be used to define and linkforward- and
reverse-mode AD.

4 AD and Differential Geometry

We now use some concepts from differential geometry to motivate and roughly explain the
types and relationships in our AD-augmentedλ -calculus. It is important to note that this is a
cartoon sketch, with many details suppressed or even altered for brevity, clarity, and intuition.

In differential geometry, a differentiable manifoldN has some structure associated with
it. Each pointx ∈N has an associated vector space called its tangent space, whose members
can be thought of as directions in whichx can be locally perturbed inN . We call this atangent

vector of x and write it
−⇁
x . An elementx paired with an element

−⇁
x of the tangent space

of x is called a tangent bundle, written−⇀x = (x,
−⇁
x). A function between two differentiable

manifolds, f : N →M , which is differentiable atx, mapping it toy = f (x), can be lifted
to maptangent bundles. In differential geometry this is called the pushforward off . We will

write −⇀y = (y,
−⇁
y) =

−⇀
f (−⇀x) =

−⇀
f (x,
−⇁
x). (This notation differs from the usual notation of

TMx for the tangent space ofx ∈M .)
We import this machinery of the pushforward, but reinterpret it quite concretely. Whenf

is a function represented in a concrete expression in our augmentedλ -calculus, we mechan-

ically transform it into
−⇀
f =
−→
J (f). Moreover whenx is a particular value, with a particular

shape, we define the shape of
−⇁
x , an element of the tangent space ofx, in terms of the shape

of x. If x : α , meaning thatx has type (or shape)α , we say that
−⇁
x :
−⇁
α and−⇀x : −⇀α . These

proceed by cases, and (with some simplification here for expository purposes) we can say

that a perturbation of a real is real,
−⇁
R = R; the perturbation of a pair is a pair of perturba-

tions,
−−−⇁
α×β =

−⇁
α ×

−⇁
β , and the perturbation of a discrete value contains no information, so

−⇁
α = void whenα is a discrete type likebool or int . This leaves the most interesting:

−−−−⇁
α → β ,

the perturbation of a function. This is well defined in differential geometry, which would give
−−−−⇁
α → β =

−⇁
α →

−⇁
β , but we have an extra complication. We must regard a mappingf : α→ β

as depending not only on the input value, but also on the value of any free variables that oc-
cur in the definition off . Roughly speaking then, ifγ is the type of the combination of all

the free variables of the mapping under consideration, which we write asf : α γ
→ β , then

−−−−⇁
α γ
→ β =

−⇁
α
−⇁
γ
→
−⇁
β . However we never map such raw tangent values, but always tangent bun-

6 Barak A. Pearlmutter and Jeffrey Mark Siskind

dles. These have similar signatures, but with tangents always associatedwith the value whose
tangent space they are elements of.

The powerful intuition we now bring from differential geometry is that justas the above
allows us to extend the notion of the forward-mode AD transform to arbitrary objects by
regarding it as a pushforward of a function defined using theλ -calculus, we can use the notion
of a pullback to see how analogous notions can be defined for reverse-mode AD. In essence,
we use the definition of a cotangent space to relate the signatures of “sensitivities” (our term
for what are called adjoint values in physics or elements of a cotangent space in differential
geometry) to the signatures of perturbations. Similarly, the reverse transform of a function is
defined using the definition of the pullback from differential geometry.

If
−⇀
f : (x,

−⇁
x) 7→ (y,

−⇁
y) is a pushforward off : x 7→ y, then the pullback is

↼−
f :

↽−
y 7→

↽−
x ,

which must obey the relation
↽−

y •
−⇁
y =

↽−
x •
−⇁
x , where• is a generalized dot-product. If

−→
J : f 7→

−⇀
f , then

←−
J : f 7→ (λx . (f (x),

↼−
f)), and some type simplifications occur. The most

important of these is that we can generalize
−→
J and

←−
J to apply not just tofunctions that map

between objects of any type, but to apply toany object of any type, with functions being a spe-

cial case:
−→
J : α →

−⇁
α and

←−
J : α →

↽−
α. A detailed exposition of this augmentedλ -calculus

is beyond our scope here. Its definition is a delicate dance, as the new mechanisms must be
sufficiently powerful to implement the AD operators, but not so powerful as to preclude their
own transformation by AD or by standardλ -calculus reductions. We can however give a bit

of a flavor: constructs like
−→
J (
←−
J) and its cousins, which arise naturally whenever there is

nested application of the AD machinery, require novel operators like
←−
J −1.

5 Migration to Compile Time

In the above exposition, the AD transforms are presented as first-classfunctions that operate
on an even footing with other first-class functions in the system, like+. However, compilers
are able to migrate many operations that appear to be done at run time to compile time. For
instance, the code fragment(2+3) might seem to require a run-time addition, but a suffi-
ciently powerful compiler is able to migrate this addition to compile time. A compilerhas
been constructed, based on the above constructs and ideas, which is able to migrate almost
all scaffolding supporting the raw numerical computation to compile time. Inessence, a lan-
guage calledVLAD consisting of the above AD mechanisms in addition to a suite of numeric
primitives is defined. A compiler forVLAD called STALINGRAD has been constructed which
uses polyvariant union-free flow analysis [10]. This analysis, for many example programs
we have written, allows all scaffolding and function manipulation to be migrated to compile
time, leaving for run time a mix of machine instructions whose floating-point density com-
pares favorably to that of code emitted by highly tuned AD systems based on preprocessors
and FORTRAN. Although this aggressive compiler currently handles only the forward-mode
AD transform, an associatedVLAD interpreter handles both the forward- and reverse-mode
AD constructs with full general nesting. The compiler is being extended to similarly optimize
reverse-mode AD, and no significant barriers in this endeavor are anticipated.

Although it is not a production-quality compiler (it is slow, cannot handle large exam-
ples, does not support arrays or other update-in-place data structures, and is in general un-
suitable for end users) remedying its deficiencies and building a production-quality compiler
would be straightforward, involving only known methods [5, 11]. The compiler’s limitation
to union-free analyses and finite unrolling of recursive data structurescould also be relaxed
using standard implementation techniques.

Sound and Efficient AD 7

6 Some Preliminary Performance Results

We illustrate the power of our techniques with two examples. These were chosen to illustrate
a hierarchy of mathematical abstractions built on a higher-order gradient operator [8]. They
werenot chosen to give an advantage to the present system or to compromise performance
of other systems. They do however show how awkward it can be to express these concepts in
other systems, even overloading-based systems.

Figure 1 gives the essence of the two examples. It starts with code shared between these
examples:multivariate-argmin implements a multivariate optimizer using adaptive
näıve gradient descent. This iteratesxi+1 = xi−η∇ f (xi) until either‖∇ f (x)‖ or ‖xi+1−xi‖
is small, increasingη when progress is made and decreasingη when no progress is made. The

VLAD primitives bundle and tangent construct and access tangent bundles,j * is
−→
J ,

andreal shields a value from the optimizer. Omitted are definitions for standard SCHEME

primitives and the functionssqr that squares its argument,map-n that maps a function over
the list (0 . . .n−1) , reduce that folds a binary function with a specified identity over a
list, v+ andv- that perform vector addition and subtraction,k* v that multiplies a vector by a
scalar,magnitude that computes the magnitude of a vector,distance that computes the
l2 norm of the difference of two vectors, ande that returns thei-th basis vector of dimensionn.

The first example,saddle , computes a saddle point: min(x1,y1) max(x2,y2) f (x,y) where

we use the trivial functionf (x,y) = (x2
1 + y2

1)− (x2
2 + y2

2). The second example,particle ,
models a charged particle traveling non-relativistically in a plane with positionx(t) and
velocity ẋ(t) and accelerated by an electric field formed by a pair of repulsive bodies,
p(x;w) = ‖x− (10,10−w)‖−1 + ‖x− (10,0)‖−1, wherew is a modifiable control param-
eter of the system, and hits thex-axis at positionx(t f). We optimizew so as to minimize

(define ((gradient f) x)
(let ((n (length x))) ((map-n (lambda (i) (tangent ((j * f) (bundle x (e i n)))))) n)))

(define (multivariate-argmin f x)
(let ((g (gradient f)))

(letrec ((loop (lambda (x fx gx eta i)
(cond ((<= (magnitude gx) (real 1e-5)) x)

((= i (real 10)) (loop x fx gx (* (real 2) eta) (real 0)))
(else (let ((x-prime (v- x (k * v eta gx))))

(if (<= (distance x x-prime) (real 1e-5))
x
(let ((fx-prime (f x-prime)))

(if (< fx-prime fx)
(loop x-prime fx-prime (g x-prime) eta (+ i 1))
(loop x fx gx (/ eta (real 2)) (real 0)))))))))))

(loop x (f x) (g x) (real 1e-5) (real 0)))))

(define (multivariate-argmax f x) (multivariate-argmin (lambda (x) (- (real 0) (f x))) x))

(define (multivariate-max f x) (f (multivariate-argmax f x)))

(define (saddle)
(let * ((start (list (real 1) (real 1)))

(f (lambda (x1 y1 x2 y2) (- (+ (sqr x1) (sqr y1)) (+ (sqr x2) (sqr y2)))))
((list x1 * y1 *) (multivariate-argmin

(lambda ((list x1 y1)) (multivariate-max
(lambda ((list x2 y2)) (f x1 y1 x2 y2)) start)) start))

((list x2 * y2 *) (multivariate-argmax (lambda ((list x2 y2)) (f x1 * y1 * x2 y2)) start)))
(list (list (write x1 *) (write y1 *)) (list (write x2 *) (write y2 *)))))

(define (naive-euler w)
(let * ((charges (list (list (real 10) (- (real 10) w)) (list (real 1 0) (real 0))))

(x-initial (list (real 0) (real 8)))
(xdot-initial (list (real 0.75) (real 0)))
(delta-t (real 1e-1))
(p (lambda (x) ((reduce + (real 0)) ((map (lambda (c) (/ (real 1) (distance x c)))) charges)))))

(letrec ((loop (lambda (x xdot)
(let * ((xddot (k * v (real -1) ((gradient p) x))) (x-new (v+ x (k * v delta-t xdot))))

(if (positive? (list-ref x-new 1))
(loop x-new (v+ xdot (k * v delta-t xddot)))
(let * ((delta-t-f (/ (- (real 0) (list-ref x 1)) (list-ref xdot 1)))

(x-t-f (v+ x (k * v delta-t-f xdot))))
(sqr (list-ref x-t-f 0))))))))

(loop x-initial xdot-initial))))

(define (particle)
(let * ((w0 (real 0)) ((list w *) (multivariate-argmin (lambda ((list w)) (naive-euler w)) (list w0))))

(write w *)))

Fig. 1.The essence of thesaddle andparticle examples.

8 Barak A. Pearlmutter and Jeffrey Mark Siskind

Table 1.Run times of our examples normalized relative to a unit run time for STALINGRAD .

Language/Implementation

Example STALINGRAD ADIFOR TAPENADE FADBAD++

saddle 1.00 0.49 0.72 5.93
particle 1.00 0.85 1.76 32.09

E(w) = x0(t f)
2, with the goal of finding a value forw that causes the particle’s path to inter-

sect the origin.
Näıve Euler ODE integration (ẍ(t) = − ∇x p(x)|x=x(t); ẋ(t + ∆ t) = ẋ(t)+ ∆ t ẍ(t); x(t +

∆ t) = x(t)+∆ t ẋ(t)) is used to compute the particle’s path, with a linear interpolation to find
the x-axis intersect (whenx1(t + ∆ t) ≤ 0 we let∆ t f = −x1(t)/ẋ1(t); t f = t + ∆ t f ; x(t f) =

x(t)+ ∆ t f ẋ(t) and calculate the final error asE(w) = x0(t f)
2.) The final error is minimized

with respect tow by multivariate-argmin .
Each task models a class of real-world problems (rational agent-agentinteraction and

agent-world interaction) that appear in game theory, economics, machine learning, automatic
control theory, theoretical neurobiology, and design optimization. Eachalso requires nesting:
a single invocation of even higher-order AD is insufficient. Furthermore, they use standard
vector arithmetic which, without our techniques, would require allocation and reclamation of
new vector objects whose size might be unknown at compile time, and access to the compo-
nents of such vectors would require indirection. They also use higher-order functions: ones
like map-n and reduce , that are familiar to the functional-programming community, and
ones likegradient and multivariate-argmin , that are familiar to numerical pro-
grammers. Without our techniques, these would require closures and indirect function calls to
unspecified targets.

STALINGRAD performed a polyvariant union-free flow analysis on both of these exam-
ples, and generated Fortran-like code. Variants of these examples were also coded in SCHEME,
ML , HASKELL, C++, and FORTRAN, and run with a variety of compilers and AD implemen-
tations. Here we discuss only theC++ and FORTRAN versions. ForC++, the FADBAD++
implementation of forward AD was used, compiled withG++. For FORTRAN, the ADIFOR

and TAPENADE implementations of forward AD were used, compiled withG77. In all vari-
ants attempts were made to be faithful to both the generality of the mathematicalconcepts
represented in the examples and to the standard coding style of each language. This means in
particular that “tangent-vector” mode was used where available, which put STALINGRAD at a
disadvantage of about a factor of two. (Although STALINGRAD does not implement a tangent-
vector mode it would be straightforward to add such a facility by generalizing bundle and
tangent to accept and return lists of tangent values, respectively.)

Although the most prominent high-performance AD systems (ADIFOR, TAPENADE, and
ADIC) claim to support nested use of AD operators, it is “well known” within the AD commu-
nity they do not (Jean Utke, personal communication), as the present authors discovered when
attempting to assess the performance of other AD systems on the above tasks. Implement-
ing these examples in those systems required enormous effort, to diagnose the various warn-
ing and silently incorrect results and to craft intricate work-arounds where possible. These
included both rewriting input source code to meet a variety of unspecified, undocumented,
and unchecked restrictions, and modifying the output code produced by some of the tools
[9]. Table 1 summarizes the run times, normalized relative to a unit run timefor STALIN -

Sound and Efficient AD 9

GRAD. Source code for all variants of our examples, the scripts used to produce Table 1, and
the log produced by running those scripts are available athttp://www.bcl.hamilton.
ie/ ˜ qobi/ad2008/ . This research prototype exhibits an increase in performance of one to
three orders of magnitude when compared with the overloading-based forward AD implemen-
tations for both functional and imperative languages (of which only the fastest is shown) and
roughly matches the performance of the transformation-based forward AD implementations
for imperative languages.

7 Discussion and Conclusion

The TAPENADE 2.1 User’s Guide [2, pp 72] states:

10. KNOWN PROBLEMS AND DEVELOPMENTS TO COME
We conclude this user’s guide of TAPENADE by a quick description of known prob-
lems, and how we plan to address them in the next releases. [. . .] we focus on missing
functionalities. [. . .]
10.4 Pointers and dynamic allocation
Full AD on FORTRAN95 supposes pointer analysis, and an extension of the AD
models on programs that use dynamic allocation. This is not done yet.
Whereas the tangent mode does not pose major problems for programs with pointers
and allocation, there are problems in the reverse mode. For example, how should we
handle a memory deallocation in the reverse mode? During the reverse sweep, the
memory must be reallocated somehow, and the pointers must point backinto this
reallocated memory. Finding the more efficient way to handle this is still an open
problem.

The Future Plans section on the OPENAD web site
http://www-unix.mcs.anl.gov/ ˜ utke/OpenAD/ states:

4. Language-coverage and library handling in adjoint code
2. language concepts (e.g., array arithmetic, pointers and dynamic memory al-
location, polymorphism):
Many language concepts, in particular those found in object-oriented languages,
have never been considered in the context of automatic adjoint code generation. We
are aware of several hard theoretical and technical problems that need to be consid-
ered in this context. Without an answer to these open questions the correctness of the
adjoint code cannot be guaranteed.

In PLT, semantics are defined by reductions which transform a program from the source
language into theλ -calculus, or an equivalent formalism like SSA. Since we have defined the
AD operators in aλ -calculus setting in an extremely general fashion, these operators inter-
operate correctly with all other constructs in the language. This addresses, in particular, all the
above issues, and in fact all such issues: by operating in this framework, the AD constructs
can be made available in a dynamic fashion, with extreme generality and uniformity. This
framework has another benefit: compiler optimizations and other compilerand implementa-
tion techniques are already formulated in the same framework, which allows the AD constructs
to be integrated into compilers and combined with aggressive optimization. This gives the nu-
merical programmer the best of both worlds: the ability to write confidently inan expressive
higher-order modular dynamic style while obtaining competitive numericalperformance.

10 Barak A. Pearlmutter and Jeffrey Mark Siskind

Theλ -calculus approach also opens some exciting theoretical questions. Thecurrent sys-

tem is based on the untypedλ -calculus. Can the
−→
J and

←−
J operators be incorporated into

a typedλ -calculus? Many models of real computation have been developed; canthis system
be formalized in that sense? Can the AD operators as defined be provedcorrect, in the sense
of matching a formal specification written in terms of limits or non-intuitive differential geo-
metric constructions? Is there a relationship between this augmentedλ -calculus and synthetic
differential geometry? Could entire AD systems be built and formally proven correct?

Acknowledgement. This work was supported, in part, by NSF grant CCF-0438806, Science
Foundation Ireland grant 00/PI.1/C067, and a grant from the Higher Education Authority of
Ireland. Any opinions, findings, and conclusions or recommendationsexpressed in this mate-
rial are those of the author(s) and do not necessarily reflect the viewsof the funding agencies.

References

1. Church, A.: The Calculi of Lambda Conversion. Princeton University Press, Princeton,
NJ (1941)

2. Hascöet, L., Pascual, V.: TAPENADE 2.1 user’s guide. Rapport technique300, INRIA,
Sophia Antipolis (2004). URLhttp://www.inria.fr/rrrt/rt-0300.html

3. Hughes, J.: Why functional programming matters. The Computer Journal32(2), 98–107
(1989). URLhttp://www.md.chalmers.se/ ˜ rjmh/Papers/whyfp.html

4. Johnsson, T.: Lambda lifting: Transforming programs to recursive equations. In: Func-
tional Programming Languages and Computer Architecture. Springer-Verlag, Nancy,
France (1985)

5. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-Verlag,
New York (1999)

6. Pearlmutter, B.A., Siskind, J.M.: Reverse-mode AD in a functionalframework: Lambda
the ultimate backpropagator. ACM Trans. on Programming Languages and Systems
(2008). In press

7. Siskind, J.M., Pearlmutter, B.A.: First-class nonstandard interpretations by opening clo-
sures. In: Proceedings of the 2007 Symposium on Principles of Programming Languages,
pp. 71–6. Nice, France (2007)

8. Siskind, J.M., Pearlmutter, B.A.: Nesting forward-mode AD in a functional framework.
Higher-Order and Symbolic Computation (2008). To appear

9. Siskind, J.M., Pearlmutter, B.A.: Putting the automatic back into AD: Part I, What’s
wrong. Tech. Rep. TR-ECE-08-02, School of Electrical and Computer Engineering, Pur-
due University, West Lafayette, IN, USA (2008). URLftp://ftp.ecn.purdue.
edu/qobi/TR-ECE-08-02.pdf

10. Siskind, J.M., Pearlmutter, B.A.: Using polyvariant union-free flow analysis to compile
a higher-order functional-programming language with a first-class derivative operator to
efficient Fortran-like code. Tech. Rep. TR-ECE-08-01, School ofElectrical and Computer
Engineering, Purdue University, West Lafayette, IN, USA (2008). URL http://docs.
lib.purdue.edu/ecetr/367/

11. Wadler, P.L.: Comprehending monads. In: Proceedings of the 1990 ACM Conference on
L ISP and Functional Programming, pp. 61–78. Nice, France (1990)

