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1.1 Introdu
tion

In blind sour
e separation an N -
hannel sensor signal x(t) arises from

M unknown s
alar sour
e signals s

i

(t), linearly mixed together by an

unknown N �M matrix A, and possibly 
orrupted by additive noise

�(t)

x(t) = As(t) + �(t) (1.1)

We wish to estimate the mixing matrix A and theM -dimensional sour
e

signal s(t). Many natural signals 
an be sparsely represented in a proper

signal di
tionary

s

i

(t) =

K

X

k=1

C

ik

'

k

(t) (1.2)

The s
alar fun
tions '

k

(t) are 
alled atoms or elements of the di
tio-

nary. These elements do not have to be linearly independent, and in-

stead may form an over
omplete di
tionary. Important examples are

wavelet-related di
tionaries (wavelet pa
kets, stationary wavelets, et
.,

see for example Chen et al., 1996; Mallat, 1998 and referen
es therein),

or learned di
tionaries (Lewi
ki and Sejnowski, 1998; Lewi
ki and Ol-

shausen, 1999; Olshausen and Field, 1997; Olshausen and Field, 1996).

Sparsity means that only a small number of the 
oeÆ
ients C

ik

di�er

signi�
antly from zero.

We suggest a two stage separation pro
ess. First, a priori sele
tion

of a possibly over
omplete signal di
tionary in whi
h the sour
es are

assumed to be sparsely representable. Se
ond, unmixing the sour
es by

exploiting their sparse representability.

In the dis
rete time 
ase t = 1; 2; : : : ; T we use matrix notation. X is

1
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an N � T matrix, with the i-th 
omponent x

i

(t) of the sensor signal in

row i, S is an M � T matrix with the signal s

j

(t) in row j, and � is a

K � T matrix with basis fun
tion '

k

(t) in row k. Equations (1.1) and

(1.2) then take the following simple form

X = AS + � (1.3)

S = C� (1.4)

Combining them, we get the following when the noise is small

X � AC�

Our goal therefore 
an be formulated as follows:

Given sensor signal matrix X and di
tionary �, �nd a mixing matrix A and

matrix of 
oeÆ
ients C su
h that X � AC� and C is as sparse as possible.

We should mention other problems of sparse representation studied in

the literature. The basi
 problem is to represent sparsely s
alar signal

in given di
tionary (see for example Chen et al., 1996 and referen
es

therein). Another problem is to adapt the di
tionary to the given 
lass

of signalsy (Lewi
ki and Sejnowski, 1998; Lewi
ki and Olshausen, 1999;

Olshausen and Field, 1997). This problem is shown to be equivalent to

the problem of blind sour
e separation, when the sour
es are sparse in

time (Lee et al., 1998; Lewi
ki and Sejnowski, 1998). Our problem is

di�erent, but we will use and generalize some te
hniques presented in

these works.

Overview of the 
hapter

We start this 
hapter with some motivating examples, whi
h demon-

strate how sparsity helps to separate sour
es (Se
tion 1.2). Then in

Se
tion 1.3 we present a 
lustering approa
h, whi
h is one of the most

eÆ
ient ways to estimate the mixing matrix when the sour
es are sparse.

Over
omplete di
tionary. Se
tion 1.4 gives the problem formulation

in probabilisti
 framework in the most general 
ase of an over
omplete

di
tionary, when there 
an be more sour
es than mixtures, and presents

the maximum a posteriori approa
h to its solution.

In Se
tion 1.5 we derive another obje
tive fun
tion, whi
h provides

more robust 
omputations when there are an equal number of sour
es

y Our di
tionary � may be obtained in this way.
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and mixtures. Se
tion 1.6 presents sequential sour
e extra
tion using

quadrati
 programming with non-
onvex quadrati
 
onstraints.

Non-over
omplete di
tionary. When the di
tionary is non-over
om-

plete, 
omputationally mu
h faster solutions are possible. In Se
tion 1.7

we demonstrate high-quality separation of syntheti
ally mixed musi
al

sounds with a square mixing matrix.

Even when the number of sour
es is larger than the number of mix-

tures, we 
an estimate the mixing matrix beforehand by 
lustering, and

then re
onstru
t the sour
es by a shortest path de
omposition, as it is

shown in Se
tion 1.8. Here we present examples of separation of up to

six sound sour
es from two mixtures.

Exploiting multis
ale representations In many 
ases, espe
ially in

wavelet-related de
ompositions, there are distin
t groups of 
oeÆ
ients,

in whi
h sour
es have di�erent sparsity properties. Se
tion 1.9 shows,

how sele
tion of the best groups of 
oeÆ
ients signi�
antly improves the

separation quality.

1.2 Separation of Sparse Signals

In this se
tion we present two examples whi
h demonstrate how sparsity

of sour
e signals in the time domain helps to separate them. Many real-

world signals have sparse representations in a proper signal di
tionary,

but not in the time domain. The intuition here 
arries over to that

situation, as shown in Se
tion 1.4.1.

Example: 2 sour
es and 2 mixtures. Two syntheti
 sour
es are

shown in Figure 1.1(a,b). The �rst sour
e has two non-zero samples,

and the se
ond has three. The mixtures, shown in Figure 1.1(
,d) are

less sparse: they have �ve non-zero samples ea
h. One 
an use this

observation to re
over the sour
es. For example, we 
an express one of

the sour
es as

~s

i

(t) = x

1

(t) + �x

2

(t)

and 
hose � su
h as to minimize the number of non-zero samples k~s

i

k

0

,

i.e. the l

0

norm of s

i

.

This obje
tive fun
tion yields perfe
t separation. As shown in Fig-

ure 1.2(a), when � is not optimal the se
ond sour
e interferes, and the

total number of non-zero samples remains �ve. Only when the �rst
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Fig. 1.1. Sour
es (a and b) are sparse. Mixtures (
 and d) are less sparse.
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Fig. 1.2. (a) Imperfe
t separation. Sin
e the se
ond sour
e is not 
ompletely

removed, the total number of non-zero samples remains �ve. (b) Perfe
t sepa-

ration. When the sour
e is re
overed perfe
tly, the number of non-zero samples

drops to two and the obje
tive fun
tion a
hieves its minimum.

sour
e is re
overed perfe
tly, as in Figure 1.2(b), does the number of

non-zero samples drop to two, and the obje
tive fun
tion a
hieve its

minimum.

Note that the fun
tion k~s

i

k

0

is dis
ontinuous and may be diÆ
ult to

optimize. It is also very sensitive to noise: even a tiny bit of noise would

make all the samples non-zero. Fortunately in many 
ases the l

1

norm

k~s

i

k

1

is a good substitute for this obje
tive fun
tion. In this example,

it too yields perfe
t separation.

Example: 3 sour
es and 2 mixtures. The signals are presented in

Figure 1.3. These sour
es have about 10% non-zero samples. The non-

zero samples have random positions, and are zero-mean unit-varian
e

Gaussian distributed in amplitude. Figure 1.3 shows a s
atter plot of

the mixtures. The dire
tions of the 
olumns of mixing matrix are 
learly

visible. Indeed, if only one sour
e, say s

1

(t), was present, the sensor

signals would look like

x

1

(t) = a

11

s

1

(t)

x

2

(t) = a

21

s

1

(t)

and the points at the s
atter plot of x

2

versus x

1

would belong to the

straight line pla
ed along the ve
tor [a

11

a

21

℄

T

. The same thing hap-
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Fig. 1.3. Left: top three panels { sparse sour
es (sparsity is 10%), bottom

two panels { mixtures. Right: s
atter plot of two mixtures x

1

versus x

2

.

Three distinguished dire
tions, whi
h 
orrespond to the 
olumns of the mixing

matrix A, are visible.

pens when all the sour
es are present but the samples are sparse: at

ea
h parti
ular index where a sample of one sour
e is large, there is

a high probability that the 
orresponding samples of other sour
es are

small, and the point in the s
atter plot still lies 
lose to the mentioned

straight line. This explains the appearan
e of dominant orientations at

the s
atter plot.

1.3 Clustering of Data Con
entration Dire
tions

The phenomena of data 
on
entration along the dire
tions of the 
olumns

of mixing matrix 
an be used in 
lustering approa
hes to sour
e sepa-

ration (Pajunen et al., 1996; Bo�ll and Zibulevsky, 2000b). This works

eÆ
iently even if the number of sour
es is greater than the number

of sensors. In order to determine orientations of data 
on
entration, we

proje
t the data points onto the surfa
e of a unit spherey by normalizing


orresponding ve
tors, and then apply a standard 
lustering algorithm.

Our 
lustering pro
edure 
an be summarized as follows:

(i) In order to proje
t data points onto the surfa
e of a unit sphere,

normalize the sensor data ve
tors at every parti
ular time index

k: x

k

= x

k

=kx

k

k;

Before normalization, it is reasonable to remove data points with a

very small norm, sin
e these very likely are noisy.

y One 
an also use weights, depending on the distan
e of a data point from the

origin, be
ause more distant points are more reliable.
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(ii) Move data points to a half-sphere, e.g. by for
ing the sign of the

�rst 
oordinate x

1

k

to be positive: if x

1

k

< 0 then x

k

= �x

k

;

Without this operation ea
h 'line' of data 
on
entration would yield

two 
lusters on opposite sides of the sphere.

(iii) Determine 
luster 
enters using some 
lustering algorithm. Their


oordinates will form the 
olumns of the estimated mixing ma-

trix

~

A.

In 
omputational examples below in this 
hapter we use C-means 
lus-

tering Bezdek, 1981 as implemented in the Matlab Fuzzy Logi
 Tool-

box fun
tion FCM. We built also a modi�
ation of C-means algorithm,

whi
h allows its input points to be weighted. The optimal 
hoi
e of the

weights, as a fun
tion of the distan
e of a data point from the origin

still requires further investigation. In Se
tion 1.8 we use also potential-

fun
tion based 
lustering Bo�ll and Zibulevsky, 2000b.

1.4 Probabilisti
 Framework

In order to derive a maximum a posteriori solution, we 
onsider the blind

sour
e separation problem in a probabilisti
 framework (Belou
hrani and

Cardoso, 1995; Pearlmutter and Parra, 1996). Suppose that the 
oef-

�
ients C

ik

in a sour
e de
omposition (1.4) are independent random

variables with a probability density fun
tion (pdf) of an exponential

type

p

i

(C

ik

) / exp��

i

h(C

ik

) (1.5)

This kind of distribution is widely used for modeling sparsity (Lewi
ki

and Sejnowski, 1998; Olshausen and Field, 1997). A reasonable 
hoi
e

of h(
) may be

h(
) = j
j

1=



 � 1 (1.6)

or a smooth approximation thereof. Here we will use a family of 
onvex

smooth approximations to the absolute value

h

1

(
) = j
j � log(1 + j
j) (1.7)

h

�

(
) = �h

1

(
=�) (1.8)

with � a proximity parameter: h

�

(
)! j
j as �! 0

+

.

We also suppose a priori that the mixing matrix A is uniformly dis-

tributed over the range of interest, and that the noise �(t) in (1.3) is a
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spatially and temporally un
orrelated Gaussian pro
essy with zero mean

and varian
e �

2

.

1.4.1 Maximum a posteriori approa
h

We wish to maximize the posterior probability

max

A;C

P (A;CjX) / max

A;C

P (X jA;C)P (A)P (C) (1.9)

where P (X jA;C) is the 
onditional probability of observing X given A

and C. Taking into a

ount (1.3), (1.4), and the white Gaussian noise,

we have

P (X jA;C) /

Y

i;t

exp�

(X

it

� (AC�)

it

)

2

2�

2

(1.10)

By the independen
e of the 
oeÆ
ients C

jk

and (1.5), the prior pdf of

C is

P (C) /

Y

j;k

exp(��

j

h(C

jk

)) (1.11)

If the prior pdf P (A) is uniform, it 
an be droppedy from (1.9). In this

way we are left with the problem

max

A;C

P (X jA;C)P (C): (1.12)

By substituting (1.10) and (1.11) into (1.12), taking the logarithm, and

inverting the sign, we obtain the following optimization problem

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j;k

�

j

h(C

jk

) (1.13)

where kAk

F

=

q

P

i;j

A

2

ij

is the Frobenius matrix norm.

One 
an 
onsider this obje
tive as a generalization of Olshausen and

Field, 1996; Olshausen and Field, 1997 by in
orporating the matrix �, or

as a generalization of Chen et al., 1996 by in
luding the matrix A. One

problem with su
h a formulation is that it 
an lead to the degenerate

solution C = 0 and A = 1. We 
an over
ome this diÆ
ulty in various

y The assumption that the noise is white is for simpli
ity of exposition, and 
an be

easily removed.

y Otherwise, if P (A) is some other known fun
tion, we should use (1.9) dire
tly.



8 Zibulevsky, Pearlmutter, Bo�ll, Kisilev

ways. The �rst approa
h is to for
e ea
h row A

i

of the mixing matrix

A to be bounded in norm,

kA

i

k � 1 i = 1; : : : ; N: (1.14)

The se
ond way is to restri
t the norm of the rows C

j

from below

kC

j

k � 1 j = 1; : : : ;M: (1.15)

A third way is to reestimate the parameters �

j

based on the 
urrent

values of C

j

. For example, this 
an be done using sample varian
e as

follows: for a given fun
tion h(�) in the distribution (1.5), express the

varian
e of C

jk

as a fun
tion f

h

(�). An estimate of � 
an be obtained

by applying the 
orresponding inverse fun
tion to the sample varian
e,

^

�

j

= f

�1

h

(K

�1

X

k

C

2

jk

) (1.16)

In parti
ular, when h(
) = j
j, var(
) = 2�

�2

and

^

�

j

=

2

q

K

�1

P

k

C

2

jk

(1.17)

Substituting h(�) and

^

� into (1.13), we obtain

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(1.18)

This obje
tive fun
tion is invariant to a res
aling of the rows of C 
om-

bined with a 
orresponding inverse res
aling of the 
olumns of A.

1.4.2 Experiment: more sour
es than mixtures

This experiment demonstrates that sour
es whi
h have very sparse rep-

resentations 
an be separated almost perfe
tly, even when they are 
or-

related and the number of samples is small.

We used the standard wavelet pa
ket di
tionary with the basi
 wavelet

symmlet-8. When the signal length is 64 samples, this di
tionary 
onsists

of 448 atoms i.e. it is over
omplete by a fa
tor of seven. Examples of

atoms and their images in the time-frequen
y phase plane (Coifman and

Wi
kerhauser, 1992; Mallat, 1998) are shown in Figure 1.4. We used the

ATOMIZER (Chen et al., 1995) and WAVELAB (Bu
kheit et al., 1995)

MATLAB pa
kages for fast multipli
ation by � and �

T

.

We 
reated three very sparse sour
es (Figure 1.5(a)), ea
h 
omposed
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Fig. 1.4. Examples of atoms: time-frequen
y phase plane (left) and time plot

(right.)

(a) Sour
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(b) Mixtures
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(
) Separated sour
es

10 20 30 40 50 60

−0.5

0

0.5

10 20 30 40 50 60

−0.5

0

0.5

10 20 30 40 50 60

−0.5

0

0.5

Fig. 1.5. (a) Sour
es, (b) mixtures, and (
) re
onstru
ted sour
es, in both

time-frequen
y phase plane (left) and time domain (right).

of only two or three atoms. The �rst two sour
es have signi�
ant 
ross-


orrelation, equal to 0.34, whi
h makes separation diÆ
ult for 
onven-

tional methods. Two syntheti
 sensor signals (Figure 1.5(b)) were ob-

tained as linear mixtures of the sour
es. In order to measure the a

ura
y

of separation, we normalized the original sour
es with kS

j

k

2

= 1, and
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the estimated sour
es with k

~

S

j

k

2

= 1. The error was 
omputed as

Error =

k

~

S

j

� S

j

k

2

kS

j

k

2

� 100% (1.19)

We tested two methods with this data. The �rst method used the

obje
tive fun
tion (1.13) and the 
onstraints (1.15), while the se
ond

method used the obje
tive fun
tion (1.18). We used PBM (Ben-Tal and

Zibulevsky, 1997) for the 
onstrained optimization. The un
onstrained

optimization was done using the method of 
onjugate gradients, with

the TOMLAB pa
kage (Holmstrom and Bjorkman, 1999). The same

tool was used by PBM for its internal un
onstrained optimization.

We used h

�

(�) de�ned by (1.7) and (1.8) with � = 0:01 and �

2

= 0:0001

in the obje
tive fun
tion. The resulting errors of the re
overed sour
es

were 0.09% and 0.02% by the �rst and the se
ond methods, respe
tively.

The estimated sour
es are shown in Figure 1.5(
). They are visually in-

distinguishable from the original sour
es in Figure 1.5(a).

It is important to re
ognize the 
omputational diÆ
ulties of this ap-

proa
h. First, the obje
tive fun
tions seem to have multiple lo
al min-

ima. For this reason, reliable 
onvergen
e was a
hieved only when the

sear
h started randomly within 10%{20% distan
e to the a
tual solution

(in order to get su
h an initial guess one 
an use a 
lustering algorithm,

as in Pajunen et al., 1996 or Bo�ll and Zibulevsky, 2000b.)

Se
ond, the method of 
onjugate gradients requires a few thousand

iterations to 
onverge, whi
h takes about 5 min on a 300 MHz AMD

K6-II even for this very small problem. (On the other hand, preliminary

experiments with a trun
ated Newton method have been en
ouraging,

and we anti
ipate that this will redu
e the 
omputational burden by

an order of magnitude or more. Also Paul Tseng's blo
k 
oordinate

des
ent method (unpublished manus
ript) may be appropriate.) Below

we present a few other approa
hes whi
h help to stabilize and a

elerate

the optimization.

1.5 Equal number of sour
es and sensors: more robust

formulations

The main diÆ
ulty in a maximization problem like (1.13) is the bilinear

term AC�, whi
h destroys the 
onvexity of the obje
tive fun
tion and

makes 
onvergen
e unstable when optimization starts far from the solu-

tion. In this se
tion we 
onsider more robust formulations for the 
ase
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when the number of sensors is equal to the number of sour
es, N =M ,

and the mixing matrix is invertible, W = A

�1

.

When the noise is small and the matrix A is far from singular, WX

gives a reasonable estimate of the sour
e signals S. Taking into a

ount

(1.4), we obtain a least squares term kC� �WXk

2

F

, so the separation

obje
tive may be written

min

W;C

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (1.20)

We also need to add a 
onstraint whi
h enfor
es the non-singularity

of W . For example, we 
an restri
t its minimal singular value r

min

(W )

from below,

r

min

(W ) � 1 (1.21)

It 
an be shown that in the noiseless 
ase, � � 0, the problem (1.20){

(1.21) is equivalent to the maximum a posteriori formulation (1.13)

with the 
onstraint kAk

2

� 1: Another possibility for ensuring the non-

singularity of W is to subtra
t K log j detW j from the obje
tive

min

W;C

�K log j detW j+

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (1.22)

whi
h (Bell and Sejnowski, 1995; Pearlmutter and Parra, 1996) 
an be

viewed as a maximum likelihood term.

When the noise is zero and � is the identity matrix, we 
an substitute

C = WX and obtain the BS Infomax obje
tive (Bell and Sejnowski,

1995)

min

W

�K log j detW j+

X

j;k

�

j

h((WX)

jk

) (1.23)

Experiment: equal numbers of sour
es and sensors. We 
reated

two sparse sour
es (Figure 1.6, top) with strong 
ross-
orrelation of 0.52.

Separation by minimization of the obje
tive fun
tion (1.22) gave an er-

ror of 0.23%. Robust 
onvergen
e was a
hieved when we started from

random uniformly distributed points in C and W .

For 
omparison we tested the JADE (Cardoso, 1999a), FastICA (Hyv�arinen,

1999) and BS Infomax (Bell and Sejnowski, 1995; Amari et al., 1996)

algorithms on the same signals. All three 
odes were obtained from

publi
 web sites (Cardoso, 1999b; Hyv�arinen, 1998; Makeig, 1999) and



12 Zibulevsky, Pearlmutter, Bo�ll, Kisilev
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(
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es
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Fig. 1.6. (a) Sour
es, (b) mixtures, and (
) re
onstru
ted sour
es, in both

time-frequen
y phase plane (left) and time domain (right).

were used with default setting of all parameters. The resulting rela-

tive errors (Figure 1.7) 
on�rm the signi�
ant superiority of the sparse

de
omposition approa
h.

This still takes a few thousands 
onjugate gradient steps to 
onverge

(about 5 min on a 300 MHz AMD K6). For 
omparison, the tuned

publi
 implementations of JADE, FastICA and BS Infomax take only a

few se
onds. Below we 
onsider some options for a

eleration.

1.6 Sequential Extra
tion of Sour
es via Quadrati


Programming

Let us 
onsider �nding the sparsest signal that 
an be obtained by a

linear 
ombination of the sensor signals s = w

T

X . By sparsity we mean

the ability of the signal to be approximated by a linear 
ombination of a

small number of di
tionary elements '

k

, as s � 


T

�. This leads to the

obje
tive

min

w;


1

2

k


T

�� w

T

Xk

2

2

+ �

X

k

h(


k

); (1.24)
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    BS
Infomax

Fast
ICA

Equation
      22

(29%)

(57%)

(27%)

(0.2%)

Cardoso’s
   JADE

Fig. 1.7. Per
ent relative error of separation of the arti�
ial sparse sour
es

re
overed by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Equa-

tion 1.22.

where the term

P

k

h(


k

) may be 
onsidered a penalty for non-sparsity.

In order to avoid the trivial solution of w = 0 and 
 = 0 we need to add

a 
onstraint that separates w from zero. It 
ould be, for example,

kwk

2

2

� 1 ; (1.25)

A similar 
onstraint 
an be used as a tool to extra
t all the sour
es

sequentially: the new separation ve
tor w

j

should have a 
omponent of

unit norm in the subspa
e orthogonal to the previously extra
ted ve
tors

w

1

; : : : ; w

j�1

k(I � P

j�1

)w

j

k

2

2

� 1 ; (1.26)

where P

j�1

is an orthogonal proje
tor onto Spanfw

1

; : : : ; w

j�1

g.

When h(


k

) = j


k

j we 
an use the standard substitution


 = 


+

� 


�

; 


+

� 0 ; 


�

� 0


̂ =

�




+




�

�

and

^

� =

�

�

��

�

that transforms (1.24) and (1.26) into the quadrati
 program

min

w;
̂

1

2

k
̂

T

^

�� w

T

Xk

2

2

+ �e

T


̂

subje
t to: kwk

2

2

� 1 ; 
̂ � 0

where e is a ve
tor of ones.

1.7 Fast Solution in Non-over
omplete Di
tionaries

In important appli
ations (Tang et al., 1999; Tang et al., 2000), the sen-

sor signals may have hundreds of 
hannels and hundreds of thousands of
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samples. This may make separation 
omputationally diÆ
ult. Here we

present an approa
h whi
h 
ompromises between statisti
al and 
ompu-

tational eÆ
ien
y. In our experien
e this approa
h provides high quality

of separation in reasonable time.

Suppose that the di
tionary is \
omplete," i.e. it forms a basis in

the spa
e of dis
rete signals. This means that the matrix � is square

and non-singular. As examples of su
h a di
tionary one 
an think of

the Fourier basis, Gabor basis, various wavelet-related bases, et
.. We


an also obtain an \optimal" di
tionary by learning from given family

of signals (Lewi
ki and Sejnowski, 1998; Lewi
ki and Olshausen, 1999;

Olshausen and Field, 1997; Olshausen and Field, 1996).

Let us denote the dual basis

	 = �

�1

(1.27)

and suppose that 
oeÆ
ients of de
omposition of the sour
es

C = S	 (1.28)

are sparse and independent. This assumption is reasonable for properly


hosen di
tionaries, although of 
ourse we would lose the advantages of

over
ompleteness.

Let Y be the de
omposition of the sensor signals

Y = X	 (1.29)

Multiplying both sides of (1.3) by 	 from the right and taking into

a

ount (1.28) and (1.29), we obtain

Y = AC + � ; (1.30)

where � = �	 is the de
omposition of the noise. Here we 
onsider an

\easy" situation, where � is white, whi
h assumes that 	 is orthogonal.

We 
an see that all the obje
tive fun
tions from the se
tions 1.4.1{1.6

remain valid if we substitute the identity matrix for � and repla
e the

sensor signal X by its de
omposition Y . For example, the maximum a

posteriori obje
tives (1.13) and (1.18) are transformed into

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j;k

�

j

h(C

jk

) (1.31)

and

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(1.32)
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Sour
es Mixtures Separated

Fig. 1.8. Separation of musi
al re
ordings taken from 
ommer
ial digital audio

CDs (�ve se
ond fragments).

The obje
tive (1.22) be
omes

min

W;C

�K log j detW j+

1

2

kC �WY k

2

F

+ �

X

j;k

�

j

h(C

jk

) (1.33)

In this 
ase we 
an further assume that the noise is zero, substitute

C = WY , and obtain the BS Infomax obje
tive (Bell and Sejnowski,

1995)

min

W

�K log j detW j+

X

j;k

�

j

h((WY )

jk

) (1.34)

Also other known methods (for example, Lee et al., 1998; Lewi
ki and

Sejnowski, 1998), whi
h normally assume sparsity of sour
e signals, may

be dire
tly applied to the de
omposition Y of the sensor signals. This

may be more eÆ
ient than the traditional approa
h, and the reason is

obvious: typi
ally, a properly 
hosen de
omposition gives signi�
antly

higher sparsity for the transformed 
oeÆ
ients than for the raw signals.

Furthermore, independen
e of the 
oeÆ
ients is a more realisti
 assump-

tion than independen
e of the raw signal samples.

Experiment: musi
al sounds. In our experiments we arti�
ially mixed

seven 5-se
ond fragments of musi
al sound re
ordings taken from 
om-

mer
ial digital audio CDs. Ea
h of them in
luded 40k samples after

down-sampling by a fa
tor of 5. (Figure 1.8).
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The easiest way to perform sparse de
omposition of su
h sour
es is to


ompute a spe
trogram, the 
oeÆ
ients of a Short Time Fourier Trans-

form (STFT). (We used the fun
tion SPECGRAM from the MATLAB

signal pro
essing toolbox with a time window of 1024 samples.) The

sparsity of the spe
trogram 
oeÆ
ients (the histogram in Figure 1.9,

right) is mu
h higher then the sparsity of the original signal (Figure 1.9,

left)

In this 
ase Y (1.29) is a real matrix, with separate entries for the

real and imaginary 
omponents of ea
h spe
trogram 
oeÆ
ient of the

sensor signals X . We used the obje
tive fun
tion (1.34) with �

j

= 1

and h

�

(�) de�ned by (1.7) and (1.8) with the parameter � = 10

�4

.

Un
onstrained minimization was performed by a BFGS Quasi-Newton

algorithm (MATLAB fun
tion FMINU.)

This algorithm separated the sour
es with a relative error of 0.67%

for the least well separated sour
e (error 
omputed a

ording to (1.19).)

We also applied the BS Infomax algorithm (Bell and Sejnowski, 1995)

implemented in Makeig, 1999 to the spe
trogram 
oeÆ
ients Y of the

sensor signals. Separation errors were slightly larger, at 0.9%, but the


omputing time was improved (from 30 min for BFGS to 5 min for BS

Infomax).

For 
omparison we tested the JADE (Cardoso, 1999a; Cardoso, 1999b),

FastICA (Hyv�arinen, 1999; Hyv�arinen, 1998) and BS Infomax algo-

rithms on the raw sensor signals. Resulting relative errors (Figure 1.10)


on�rm the signi�
ant (by a fa
tor of more than 10) superiority of the

sparse de
omposition approa
h.

The method des
ribed in this se
tion, whi
h 
ombines a spe
trogram

transform with the BS Infomax algorithm, is in
luded in the ICA/EEG

toolbox (Makeig, 1999).

1.8 Estimating the Mixing Matrix and the Sour
es Separately

As opposed to the 
ase of a square mixing matrix, where �nding W

amounts to solving the problem C =WY, in the 
ase of more sour
es

than mixtures, we are fa
ed with two interrelated problems: estimating

the mixing matrixA and estimating the sour
esC. Trying to solve both

of them at the same time as in equation (1.31) is a diÆ
ult multivariate

optimization problem.

Another approa
h 
onsists in estimating the mixing matrix A before-

hand. We 
an do this by 
lustering (as in Se
tion 1.3), using sparsity

of sensor 
oeÆ
ients Y. In experiments of this se
tion we use sparsity
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Fig. 1.9. Histogram of sound sour
e values (left) and spe
trogram 
oeÆ
ients

(right), shown with linear y-s
ale (top), square root y-s
ale (
enter) and log-

arithmi
 y-s
ale (bottom).

Cardoso’s
   JADE

Fast
ICA

   BS
Infomax

Spect−
Infomax

Spect−
BFGS

(8.8%) (8.6%)

(7.1%)

(0.9%) (0.67%)

Fig. 1.10. Per
ent relative error of separation of seven musi
al sour
es re
ov-

ered by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Infomax,

applied to the spe
trogram 
oeÆ
ients, (5) BFGS minimization of the obje
-

tive (1.34) with the spe
trogram 
oeÆ
ients.

of Short Time Fourier Transform (STFT). The bene�ts of su
h an ap-

proa
h are 
lear in Figure 1.11. Six 
ute signals playing di�erent notes

(see the Six Flutes example in Se
tion 1.8.2) were syntheti
ally mixed

into two mixtures along equally spa
ed dire
tions. Figure 1.11a presents

a s
atter plot of the resulting data (x

t

2

against x

t

1

for every t), showing

a single big 
loud. As it 
an be seen, the di�erent sour
es are indis-

tinguishable. Then ea
h mixture was FFT-transformed and the s
atter

plot of the data in the frequen
y domain is shown in Figure 1.11b (i.e.,

x

w

2

against x

w

1

for every w). The di�eren
e is extraordinary. Now almost
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Fig. 1.11. S
atter plot X

2�

vs X

1�

of six 
ute notes mixed into two mixtures

along equally spa
ed dire
tions in the time (left) and frequen
y (right) do-

mains.

all the data points are neatly 
lustered along the six dire
tions of the


olumns of the mixing matrix, thus providing very good separability.

If we assume that the matrix A is found, the problem (1.31) 
an be

de
omposed into to K independent small problems for ea
h data point




k

(here we use h(�) = j � j)

min




k

1

2�

2

jjA


k

� y

k

jj

2

+

X

j

j


k

j

j; for k = 1; : : : ;K: (1.35)

Or, in the absen
e of noise

min




k

X

j

j


k

j

j subje
t to A


k

= y

k

; for k = 1; : : : ;K; (1.36)

whi
h 
an be formulated as a linear programming problem Chen et al.,

1996.

1.8.1 A Shortest Path De
omposition of the Sour
es

We use a simple geometri
al approa
h to the optimization problem

(1.36). When the 
olumns a

j

are normalized, the optimal representa-

tion of the data point y

k

=

P

j

a

j




k

j

that minimizes

P

j

j


k

j

j, will in
lude

at most N of the a

j

's, 
orresponding to the verti
es of the minimal

simplex en
losing the dire
tion of ve
tor y

k

(this leads to the problem

of triangulation on sphere.) The non-zero 
omponents of the optimal

de
omposition 
orrespond then to the shortest path from the origin to

the data point, when only the dire
tions of the mixing matrix may be

in
luded into the path.

In parti
ular, for the two-sensor 
ase, the shortest path is obtained
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Six Flutes (FFT) 50.5 52.5 49.4 43.4 49.1 51.8

Six Flutes (time domain) -1.9 -2.0 -2.2 -2.4 -2.3 -2.4

Four Voi
es (STFT) 21.7 19.4 15.7 16.6

Five Songs (STFT) 15.6 15.5 15.0 15.1 15.2

Six Flute Melodies (STFT) 20.4 19.4 14.2 16.1 24.7 29.1

Table 1.1. S/N re
onstru
tion indi
es (dB) for the di�erent

experiments (see text).

by 
hoosing the 
olumns a

b

and a

a

whose dire
tions tan

�1

(a

b

2

=a

b

1

) and

tan

�1

(a

a

2

=a

a

1

) are the 
losest from below and from above, respe
tively,

to the dire
tion of the data point �

k

= tan

�1

(y

k

2

=y

k

1

).

LetW

r

= [a

b

a

a

℄

�1

be the redu
ed N�N inverse matrix, and let 


k

r

be

the redu
ed de
omposition along dire
tions a

b

and a

a

. The 
omponents

of the sour
es are then obtained as




k

r

= W

r

y

k

;




k

j

= 0; for j 6= b; a: (1.37)

In pra
ti
e,W

r

need only be 
omputed on
e for all data points between

any two pairs of mixing dire
tions.

1.8.2 Experiments with Estimating the Mixing Matrix and

the Sour
es Separately

The approa
h was �rst tested using the Six Flutes data set: the sound

of a 
ute playing steady isolated notes was re
orded at high-quality in

an a
ousti
ally isolated booth without reverberation, and sampled at

44.1Khz with 16 bits resolution. Six 743 ms ex
erpts (32768 samples)

were sele
ted for the sour
es, 
orresponding to the notes a4, d5, f5, g5, 
6

and d#6. These six sour
es were mixed into two mixtures along equally

spa
ed dire
tions. Ea
h of the mixture signals was then pro
essed with

a 32768 sample FFT (i.e., the whole length of the ex
erpts) and the real

and imaginary parts of the positive spe
tra were used as input to the

separation system. We used potential fun
tion based 
lustering Bo�ll

and Zibulevsky, 2000b. Results are shown in the �rst row of Table 1.1.

For the sake of 
omparison, the next experiment was 
ondu
ted on the

same data set using the mixtures in the time domain instead of in the

frequen
y domain. The 
enters of obtained 
lusters were no longer in
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the dire
tions of the mixing matrix, so the resulting estimate was mean-

ingless. The separation was then attempted using the original mixing

matrix, but the algorithm totally failed to separate the sour
es, as shown

in Table 1.1, the se
ond row.

The 
ute notes in the Six Flutes data set above were very steady,

whi
h allowed for a very large FFT window size. The remaining three

experiments presented here were performed on mu
h more dynami
 sig-

nals, and prepro
essing was required based on STFT. As before, the

sour
es were �rst normalized to the same energy level and mixed in

the time domain. STFT of the resulting mixtures was produ
ed with

a Hanning window of length L, and a \hop" distan
e d was used be-

tween the starting point of su

essive frames (yielding an L�d overlap).

For ea
h mixture, the input to the separation system was then a single

long ve
tor 
ontaining the 
on
atenation of the 
oeÆ
ients of real and

imaginary parts of the positive spe
tra among all the frames in that

mixture. After the separation the estimated signals were resynthesized

by re
onstru
ting the frames, regrouping the real and imaginary parts,

taking inverse FFT and inverse windowing. The overlap was removed by

keeping only the 
entral part of the frame (thus avoiding the distortion

at the edges that often appears after frequen
y domain manipulation)

and the re
onstru
ted signal was obtained by simple 
on
atenation of

the resulting pie
es.

The experiments were 
ondu
ted on the following sets of signals: A

Four Voi
es data set with four 2.9 se
 senten
es pronoun
ed by four

di�erent people (three females and a male), re
orded at 22,050 Hz and

8 bits with a low quality mi
rophone on a home personal 
omputer.

STFT was done with L = 2048 and d = 614 samples. A Five Songs

data set with �ve 5 se
 long full-ensemble musi
 pie
es (two 
lassi
al and

three pop/folk musi
) extra
ted from standard CDs (44,100 Hz/16 bits),

downsampled to 11,025 Hz monophoni
 and pro
essed with L = 4096

and d = 1228 samples. Finally, a Six Flute Melodies data set in
luding

six 5.7 se
 long 
ute melodies (the two voi
es of a 
anon, the two voi
es

of a duet and two unrelated melodies) with a high-quality registration

at 44,100 Hz/16 bits, down-sampled to 22,050 Hz and pro
essed with

L = 8192 and d = 3276 samples.

In all three 
ases the mixing matrix was formed with equally spa
ed

dire
tions. Results of the separation are shown in Table 1.1. Although

good enough in themselves, the re
onstru
tion indi
es of the dynami


signals were signi�
antly poorer than those of the Six Flutes, in part

due to the intrinsi
 diÆ
ulties of the short-term analysis and resynthe-
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a) Mixtures

b) Sources and Recovered Signals

Fig. 1.12. FourVoi
es experiment. (a) Mixtures, (b) sour
es and re
overed

signals, pairwise. Taken from Bo�ll and Zibulevsky, 2000a.

sis. Re
onstru
tion indi
es were on the same range for the three exam-

ples, regardless of the number of voi
es, with somehow worse results in

the 
ase of the FiveSongs, probably due to the higher 
omplexity of the

sounds. The plot of the re
overed signals was in all 
ases very similar

to the plot of the original sour
es, as illustrated in Figure 1.12 for the

Four Voi
es 
ase. From a subje
tive listening point of view, the separa-

tion of the FourVoi
es example was remarkable for the high intelligibility

of the re
overed senten
es, in spite of some ba
kground noise and 
ross-

talk. Sound examples for the above experiments are available on-line at

http://www.a
.up
.es/homes/pau/.

1.9 Sour
e Separation Using Sparsity of Multis
ale

Representation

In many 
ases, espe
ially in wavelet-related de
ompositions, there are

distin
t groups of 
oeÆ
ients, in whi
h sour
es have di�erent sparsity

properties. The idea is to sele
t those groups of features (
oeÆ
ients)

whi
h are best suited for separation, with respe
t to the following 
ri-

teria: (1) sparsity of 
oeÆ
ients (2) separability of sour
es' features.

After the best groups are sele
ted, one uses only these in the separa-
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tion pro
ess, whi
h 
an be a

omplished by standard ICA algorithms

or by 
lustering. We present experiments with simulated signals, mu-

si
al sounds and images whi
h demonstrate improvement of separation

quality.

1.9.1 Example: sparsity of random blo
ks in the Haar basis

Typi
al blo
k fun
tions are shown in Figure 1.13. They are pie
ewise


onstant, with random amplitude and duration of ea
h 
onstant pie
e.

Let us take a 
lose look at the Haar wavelet 
oeÆ
ients at di�erent

resolutions. Wavelet basis fun
tions at the �nest resolution are obtained

by translation of the Haar mother wavelet:

'

j

(t) =

8

<

:

�1 if t = 0

1 if t = 1

0 otherwise :

Taking a s
alar produ
t of a fun
tion s(t) with the wavelet '

j

(t � �),

we produ
e a �nite di�erentiation of the fun
tion s(t) at the point t =

� . This means that the number of non-zero 
oeÆ
ients at the �nest

resolution for a blo
k fun
tion will 
orrespond roughly to the number of

jumps it has. Pro
eeding to the next, 
oarser resolution level

'

j�1

(t) =

8

<

:

�1 if t = �1;�2

1 if t = 0; 1

0 otherwise

the number of non-zero 
oeÆ
ients still 
orresponds to the number of

jumps, but the total number of 
oeÆ
ients at this level is halved , and

so is the sparsity. If we pro
eed further in this dire
tion, we will a
hieve

levels of resolution, where typi
al width of a wavelet '

j

(t) is 
ompara-

ble to the typi
al distan
e between jumps in the fun
tion s(t). In this


ase, most of the 
oeÆ
ients are expe
ted to be nonzero, and, therefore,

sparsity will fade-out.

To demonstrate how this in
uen
es a

ura
y of a blind sour
e sepa-

ration, we randomly generated two blo
k-signal sour
es (Fig 1.13, left),

and mixed them by the matrix

A =

�

0:8321 0:6247

�0:5547 0:7809

�

The resulting mixtures, x

1

(t) and x

2

(t) are shown in Figure 1.13, 
enter.

Figure 1.14, �rst 
olumn, shows the s
atter plot of x

1

(t) versus x

2

(t),



Sour
e Separation by Sparse De
omposition 23
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Fig. 1.13. Time plots of blo
k signals
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Fig. 1.14. Separation of blo
k signals: s
atter plots of sensor signals and mean-

squared separation errors (%)

where there are no visible distin
t features. In 
ontrast, the s
atter

plot of the wavelet 
oeÆ
ients at the highest resolution (Figure 1.14,

third 
olumn) shows two distin
t orientations, whi
h 
orrespond to the


olumns of the mixing matrix.

Results of separation of the blo
k sour
es are presented in Figure 1.14.

The largest error (13%) was obtained on the raw data, and the small-

est (below 0.7%) { on the wavelet 
oeÆ
ients at the highest resolution,

whi
h have the best sparsity. Use of all wavelet 
oeÆ
ients leads to

intermediate sparsity and performan
e.

1.9.2 Adaptive sele
tion of sparse subsets of 
oeÆ
ients in

wavelet pa
kets tree

Multiresolution analysis

Our 
hoi
e of a parti
ular wavelet basis and of the sparsest subset of 
o-

eÆ
ients was obvious in the above example: it was based on knowledge

of the stru
ture of pie
ewise 
onstant signals. For sour
es having os
il-

latory 
omponents (like sounds or images with textures), other systems

of basis fun
tions, for example, wavelet pa
kets Coifman et al., 1992,
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Fig. 1.15. Wavelet pa
kets tree

or multiwavelets Weitzer et al., 1997, might be more appropriate. The

wavelet pa
kets library 
onsists of the triple-indexed family of fun
tions:

'

jnk

(t) = 2

j=2

'

n

(2

j

t� k); j; k 2 Z; n 2 N: (1.38)

As in the 
ase of the wavelet transform, j; k are the s
ale and shift

parameters, respe
tively, and n is the frequen
y parameter, related to

the number of os
illations of a parti
ular generating fun
tion '

n

(t). The

set of fun
tions '

jn

(t) forms a (j; n) wavelet pa
ket. This set of fun
tions


an be split into two parts at a 
oarser s
ale: '

j�1;2n

(t) and '

j�1;2n+1

(t).

It follows that these two form an orthonormal basis of the subspa
e whi
h

spans f'

jn

(t)g. Thus, we arrive at a family of wavelet pa
ket fun
tions

on a binary tree (Figure 1.15). The nodes of this tree are numbered by

two indi
es: the depth of the level j = 0; 1; ::; J , and the number of nodes

n = 0; 1; 2; 3; :::; 2

j

{1 at the spe
i�ed level. Using wavelet pa
kets allows

one to analyze given signals not only with a s
ale-oriented de
omposition

but also on frequen
y sub-bands. Naturally, the library 
ontains the

wavelet basis.

The de
omposition 
oeÆ
ients 


jnk

= hs; '

jnk

i also split into (j; n)

sets 
orresponding to the nodes of the tree, and there is a fast way to


ompute them using banks of 
onjugate mirror �lters, as is implemented

in the fast wavelet transform.

Choi
e of the best nodes in the tree

When signals have a 
omplex nature, it is diÆ
ult to de
ide in advan
e

whi
h nodes 
ontain the sparsest sets of 
oeÆ
ients. That is why we use

the following simple adaptive approa
h.

First, for every node of the tree, we apply a 
lustering algorithm
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(see Se
tion 1.3), and 
ompute a measure of 
lusters' distortion. In our

experiments we used a standard global distortion: the mean squared dis-

tan
e of data points to the 
enters of their own (
losest) 
lusters. (Here

again, the weights of the data points 
an be in
orporated). Se
ond, we


hoose a few best nodes with the minimal distortion, 
ombine their 
o-

eÆ
ients into one data set, and apply a separation algorithm (
lustering

or Infomax) to these data.

More sophisti
ated te
hniques dealing with adaptive 
hoi
e of best

nodes, as well as their number 
an be found in Kisilev et al., .

1.9.3 Experiments with adaptive sele
tion of sparse subsets

of 
oeÆ
ients

We evaluated the quality of the proposed wavelet-pa
ket based separa-

tion method on several types of signals. The �rst type is the random

blo
ks signal (see above). The se
ond type of signal is a frequen
y mod-

ulated (FM) sinusoidal signal. In the �rst 
ase, the 
arrier is modulated

by a sinusoidal fun
tion. In the se
ond 
ase, it is modulated by 
hoosing

a random frequen
y and a 
orresponding random duration; we 
all this

type of signal Blo
k-FM (BFM). The third type of signal is a musi
al

re
ording of 
ute sounds. Finally, we apply our algorithm to portrait

images.

In order to 
ompare the a

ura
y of our method to other methods,

we form the following features sets: (1) the set of signals, (2) short

time Fourier transform (STFT) 
oeÆ
ients, (3) Wavelet transform 
oef-

�
ients, and (4) Wavelet pa
kets 
oeÆ
ients at the \best" nodes. In the

last 
ase, mixtures of sour
es were de
omposed with the Matlab wavelet

pa
ket toolbox using various families of mother wavelets with di�erent

numbers of vanishing moments (smoothness parameter). A typi
al ex-

ample of s
atter plots of the wavelet pa
ket 
oeÆ
ients at di�erent nodes

of the wavelet pa
ket tree is shown in Figure 1.16. The upper left s
atter

plot, labeled \C", 
orresponds to the set of 
oeÆ
ients at all nodes. The

reminder are the s
atter plots of sets of 
oeÆ
ients indexed in a wavelet

pa
ket tree above. Generally speaking, the more distin
t the dire
tions

appearing on these plots, the more pre
ise the estimation of the mixing

matrix, and, therefore, the better the separation.

We applied the fuzzy C-means 
lustering algorithm with some modi-

�
ations (see Kisilev et al., for details) to ea
h feature set. Table 1.13

summarizes results of our experiments. We 
ompared the quality of

separation of random blo
k and BFM signals by performing 100 Monte-
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Fig. 1.16. S
atter plots of the WP 
oeÆ
ients of the FM mixtures

Signal raw data STFT WT, db8 WT, haar WP, db8 WP, haar

Blo
ks 31.89 16.31 4.18 1.94 2.70 0.43

BFM sine 49.81 8.17 8.16 15.30 4.48 6.65

FM sine 50.57 5.66 10.16 24.71 4.13 5.33

Flutes 12.18 5.36 5.96 9.23 3.93 8.05

Images raw data DCT WT, sym8 WT, haar WP, sym8 WP, haar

Portraits 22.11 19.11 10.79 10.57 6.04 8.29

Table 1.2. Experimental results: normalized mean square separation

error (%) for signals and images using raw data and de
omposition


oeÆ
ients in di�erent domains. In the 
ase of wavelet pa
kets (WP)

we used the best sele
ted nodes.

Carlo simulations and 
al
ulating the normalized mean-squared errors

(NMSE) for the above features sets. In the 
ase of deterministi
 signals,

we 
al
ulated a normalized squared error (SE). In the 
ase of image sep-

aration, we used the 2D Dis
rete Cosine Transform (DCT) instead of

the STFT, and the Symmlet-8 mother wavelet when using 2D wavelet

transform and wavelet pa
kets.

From Table 1.13 it is 
lear that the adaptive best nodes method out-

performs all other feature sets for ea
h type of signal. Also, as mentioned
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above, the 
lustering approa
h provides a better separation than Info-

Max. It is 
lear that using the Haar wavelet fun
tion for the wavelet

pa
kets representation of the random blo
k signals provides better sep-

aration than using some smooth wavelet, e.g. Db8. The reason is that

these signals have a sparser representation with the Haar wavelet. In


ontrast, the Flute's signals are better represented with smooth wavelets,

and, therefore, these provide yield separation. This is another advantage

of using sets of features at multiple nodes along with various families of

'mother' fun
tions: one 
an 
hoose best nodes from a number de
ompo-

sition trees simultaneously.

More results and 
omparisons 
an be found in Kisilev et al., .

1.10 Con
lusions

We showed that the use of sparse de
omposition in a proper signal di
-

tionary provides high-quality blind sour
e separation. The maximum a

posteriori framework gives the most general approa
h, whi
h in
ludes

the situation of over
omplete di
tionary and more sour
es than sensors.

Computationally more robust solutions 
an be found in the 
ase of an

equal number of sour
es and sensors. We 
an also extra
t the sour
es

sequentially using quadrati
 programming with non-
onvex quadrati



onstraints.

Mu
h faster solutions may be obtained by using non-over
omplete

di
tionaries. Even when the number of sour
es is larger than the number

of mixtures, we 
an estimate the mixing matrix beforehand by 
lustering,

and then re
onstru
t the sour
es by a shortest path de
omposition.

In many 
ases, espe
ially in wavelet-related de
ompositions, sele
tion

of few best groups of 
oeÆ
ients with the highest sparsity brings addi-

tional improvement of the separation quality.

Our experiments with arti�
ial signals and digitally mixed musi
al

sounds demonstrate a high quality of sour
e separation, 
ompared to

other known te
hniques.
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