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1.1 Introduction

In blind source separation an N-channel sensor signal z(t) arises from
M unknown scalar source signals s;(¢), linearly mixed together by an
unknown N X M matrix A, and possibly corrupted by additive noise

§(t)
x(t) = As(t) + &(¢) (1.1)

We wish to estimate the mixing matrix A and the M-dimensional source
signal s(t). Many natural signals can be sparsely represented in a proper
signal dictionary

K
si(t) =Y Cix or(t) (1.2)
k=1

The scalar functions ¢ (t) are called atoms or elements of the dictio-
nary. These elements do not have to be linearly independent, and in-
stead may form an overcomplete dictionary. Important examples are
wavelet-related dictionaries (wavelet packets, stationary wavelets, etc.,
see for example Chen et al., 1996; Mallat, 1998 and references therein),
or learned dictionaries (Lewicki and Sejnowski, 1998; Lewicki and Ol-
shausen, 1999; Olshausen and Field, 1997; Olshausen and Field, 1996).
Sparsity means that only a small number of the coefficients Cy, differ
significantly from zero.

We suggest a two stage separation process. First, a priori selection
of a possibly overcomplete signal dictionary in which the sources are
assumed to be sparsely representable. Second, unmixing the sources by
exploiting their sparse representability.

In the discrete time case t = 1,2,... ,T we use matrix notation. X is
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an N x T matrix, with the i-th component z;(¢) of the sensor signal in
row 4, S is an M x T matrix with the signal s;(t) in row j, and ® is a
K x T matrix with basis function ¢ (¢) in row k. Equations (1.1) and
(1.2) then take the following simple form

X = AS+¢
S = Cd

Combining them, we get the following when the noise is small
X~ AC?

Our goal therefore can be formulated as follows:

Given sensor signal matriz X and dictionary ®, find a mizing matriz A and
matriz of coefficients C such that X ~ AC® and C is as sparse as possible.

We should mention other problems of sparse representation studied in
the literature. The basic problem is to represent sparsely scalar signal
in given dictionary (see for example Chen et al., 1996 and references
therein). Another problem is to adapt the dictionary to the given class
of signalst (Lewicki and Sejnowski, 1998; Lewicki and Olshausen, 1999;
Olshausen and Field, 1997). This problem is shown to be equivalent to
the problem of blind source separation, when the sources are sparse in
time (Lee et al., 1998; Lewicki and Sejnowski, 1998). Our problem is
different, but we will use and generalize some techniques presented in
these works.

Overview of the chapter

We start this chapter with some motivating examples, which demon-
strate how sparsity helps to separate sources (Section 1.2). Then in
Section 1.3 we present a clustering approach, which is one of the most
efficient ways to estimate the mixing matrix when the sources are sparse.

Overcomplete dictionary. Section 1.4 gives the problem formulation
in probabilistic framework in the most general case of an overcomplete
dictionary, when there can be more sources than mixtures, and presents
the mazimum a posteriori approach to its solution.

In Section 1.5 we derive another objective function, which provides
more robust computations when there are an equal number of sources

t Our dictionary ® may be obtained in this way.
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and mixtures. Section 1.6 presents sequential source extraction using
quadratic programming with non-convex quadratic constraints.

Non-overcomplete dictionary. When the dictionary is non-overcom-
plete, computationally much faster solutions are possible. In Section 1.7
we demonstrate high-quality separation of synthetically mixed musical
sounds with a square mixing matrix.

Even when the number of sources is larger than the number of mix-
tures, we can estimate the mixing matrix beforehand by clustering, and
then reconstruct the sources by a shortest path decomposition, as it is
shown in Section 1.8. Here we present examples of separation of up to
six sound sources from two mixtures.

Exploiting multiscale representations In many cases, especially in
wavelet-related decompositions, there are distinct groups of coefficients,
in which sources have different sparsity properties. Section 1.9 shows,
how selection of the best groups of coefficients significantly improves the
separation quality.

1.2 Separation of Sparse Signals

In this section we present two examples which demonstrate how sparsity
of source signals in the time domain helps to separate them. Many real-
world signals have sparse representations in a proper signal dictionary,
but not in the time domain. The intuition here carries over to that
situation, as shown in Section 1.4.1.

Example: 2 sources and 2 mixtures. Two synthetic sources are
shown in Figure 1.1(a,b). The first source has two non-zero samples,
and the second has three. The mixtures, shown in Figure 1.1(c,d) are
less sparse: they have five non-zero samples each. One can use this
observation to recover the sources. For example, we can express one of
the sources as

5i(t) = z1(t) + pw2(t)

and chose g such as to minimize the number of non-zero samples ||;||o,
i.e. the lg norm of s;.

This objective function yields perfect separation. As shown in Fig-
ure 1.2(a), when g is not optimal the second source interferes, and the
total number of non-zero samples remains five. Only when the first
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Fig. 1.1. Sources (a and b) are sparse. Mixtures (c and d) are less sparse.
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Fig. 1.2. (a) Imperfect separation. Since the second source is not completely
removed, the total number of non-zero samples remains five. (b) Perfect sepa-
ration. When the source is recovered perfectly, the number of non-zero samples
drops to two and the objective function achieves its minimum.

source is recovered perfectly, as in Figure 1.2(b), does the number of
non-zero samples drop to two, and the objective function achieve its
minimum.

Note that the function [|§;]|o is discontinuous and may be difficult to
optimize. It is also very sensitive to noise: even a tiny bit of noise would
make all the samples non-zero. Fortunately in many cases the /; norm
[|5:]]1 is a good substitute for this objective function. In this example,
it too yields perfect separation.

Example: 3 sources and 2 mixtures. The signals are presented in
Figure 1.3. These sources have about 10% non-zero samples. The non-
zero samples have random positions, and are zero-mean unit-variance
Gaussian distributed in amplitude. Figure 1.3 shows a scatter plot of
the mixtures. The directions of the columns of mixing matrix are clearly
visible. Indeed, if only one source, say si(t), was present, the sensor
signals would look like

I (t) = allsl(t)

xg(t) = 02151(t)
and the points at the scatter plot of z» versus xz; would belong to the
straight line placed along the vector [aiiasi]”. The same thing hap-
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Fig. 1.3. Left: top three panels — sparse sources (sparsity is 10%), bottom
two panels — mixtures. Right: scatter plot of two mixtures z; versus xs.
Three distinguished directions, which correspond to the columns of the mixing
matrix A, are visible.

pens when all the sources are present but the samples are sparse: at
each particular index where a sample of one source is large, there is
a high probability that the corresponding samples of other sources are
small, and the point in the scatter plot still lies close to the mentioned
straight line. This explains the appearance of dominant orientations at
the scatter plot.

1.3 Clustering of Data Concentration Directions

The phenomena of data concentration along the directions of the columns
of mixing matrix can be used in clustering approaches to source sepa-
ration (Pajunen et al., 1996; Bofill and Zibulevsky, 2000b). This works
efficiently even if the number of sources is greater than the number
of sensors. In order to determine orientations of data concentration, we
project the data points onto the surface of a unit spheret by normalizing
corresponding vectors, and then apply a standard clustering algorithm.
Our clustering procedure can be summarized as follows:

(i) In order to project data points onto the surface of a unit sphere,
normalize the sensor data vectors at every particular time index
ki xie = X /|| %[5

Before normalization, it is reasonable to remove data points with a

very small norm, since these very likely are noisy.

t One can also use weights, depending on the distance of a data point from the
origin, because more distant points are more reliable.
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(ii) Move data points to a half-sphere, e.g. by forcing the sign of the
first coordinate z}, to be positive: IF z} < 0 THEN Xx = —X;

Without this operation each ’line’ of data concentration would yield
two clusters on opposite sides of the sphere.

(iii) Determine cluster centers using some clustering algorithm. Their
coordinates will form the columns of the estimated mixing ma-
trix A.

In computational examples below in this chapter we use C-means clus-
tering Bezdek, 1981 as implemented in the Matlab Fuzzy Logic Tool-
box function FCM. We built also a modification of C-means algorithm,
which allows its input points to be weighted. The optimal choice of the
weights, as a function of the distance of a data point from the origin
still requires further investigation. In Section 1.8 we use also potential-
function based clustering Bofill and Zibulevsky, 2000b.

1.4 Probabilistic Framework

In order to derive a maximum a posteriori solution, we consider the blind
source separation problem in a probabilistic framework (Belouchrani and
Cardoso, 1995; Pearlmutter and Parra, 1996). Suppose that the coef-
ficients Cy in a source decomposition (1.4) are independent random
variables with a probability density function (pdf) of an exponential

type
pi(Cik) o exp —Bih(Cix) (1.5)

This kind of distribution is widely used for modeling sparsity (Lewicki
and Sejnowski, 1998; Olshausen and Field, 1997). A reasonable choice
of h(c) may be

he) = |e'/7 y>1 (L6)

or a smooth approximation thereof. Here we will use a family of convex
smooth approximations to the absolute value

hi(c) = |c| —log(1 + |cf)
ha(c) Ahy(c/N)

with A a proximity parameter: hy(c) — |c| as A — 0T,
We also suppose a priori that the mixing matrix A is uniformly dis-
tributed over the range of interest, and that the noise £(t) in (1.3) is a
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spatially and temporally uncorrelated Gaussian process} with zero mean

and variance o2.

1.4.1 Maximum a posteriort approach

We wish to maximize the posterior probability

max P(4,C|X) o max P(X|4,0) P(4) P(C) (1.9)

where P(X|A, C) is the conditional probability of observing X given A
and C. Taking into account (1.3), (1.4), and the white Gaussian noise,
we have

(X — (AC®);)?
202

P(X|A,C) x H exp —

it

(1.10)

By the independence of the coefficients Cj; and (1.5), the prior pdf of
Cis
P(C) o [ [ exp(—B8;h(Cji)) (1.11)
Jok

If the prior pdf P(A) is uniform, it can be droppedf from (1.9). In this
way we are left with the problem

max P(X|4,C) P(0). (1.12)

By substituting (1.10) and (1.11) into (1.12), taking the logarithm, and
inverting the sign, we obtain the following optimization problem

.1 9
in 5,240 = X1+ 3 55n(Cn) (1.13)
Js

where [|A||r = /3, ; A} is the Frobenius matrix norm.

One can consider this objective as a generalization of Olshausen and
Field, 1996; Olshausen and Field, 1997 by incorporating the matrix @, or
as a generalization of Chen et al., 1996 by including the matrix A. One
problem with such a formulation is that it can lead to the degenerate
solution C' = 0 and A = oco. We can overcome this difficulty in various
t The assumption that the noise is white is for simplicity of exposition, and can be

easily removed.
t Otherwise, if P(A) is some other known function, we should use (1.9) directly.
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ways. The first approach is to force each row A; of the mixing matrix
A to be bounded in norm,

|4 <1 i=1,...,N. (1.14)
The second way is to restrict the norm of the rows C; from below
IIC;]l > 1 j=1,...,M. (1.15)

A third way is to reestimate the parameters 3; based on the current
values of Cj. For example, this can be done using sample variance as
follows: for a given function h(-) in the distribution (1.5), express the
variance of Cji, as a function f5(8). An estimate of § can be obtained
by applying the corresponding inverse function to the sample variance,

B = Z (1.16)

In particular, when h(c) = |¢|, var(c) = 2372
5 2

S — (1.17)
\/Kfl >k Cygk
Substituting k(-) and 3 into (1.13), we obtain
23 1Cjx]
rfI‘un —||AC<I> X||% +Z (1.18)

VET X O

This objective function is invariant to a rescaling of the rows of C' com-
bined with a corresponding inverse rescaling of the columns of A.

1.4.2 Experiment: more sources than mixtures

This experiment demonstrates that sources which have very sparse rep-
resentations can be separated almost perfectly, even when they are cor-
related and the number of samples is small.

We used the standard wavelet packet dictionary with the basic wavelet
symmlet-8. When the signal length is 64 samples, this dictionary consists
of 448 atoms i.e. it is overcomplete by a factor of seven. Examples of
atoms and their images in the time-frequency phase plane (Coifman and
Wickerhauser, 1992; Mallat, 1998) are shown in Figure 1.4. We used the
ATOMIZER (Chen et al., 1995) and WAVELAB (Buckheit et al., 1995)
MATLAB packages for fast multiplication by ® and ®7.

We created three very sparse sources (Figure 1.5(a)), each composed
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Fig. 1.4. Examples of atoms: time-frequency phase plane (left) and time plot
(right.)
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Fig. 1.5. (a) Sources, (b) mixtures, and (c) reconstructed sources, in both
time-frequency phase plane (left) and time domain (right).

of only two or three atoms. The first two sources have significant cross-
correlation, equal to 0.34, which makes separation difficult for conven-
tional methods. Two synthetic sensor signals (Figure 1.5(b)) were ob-
tained as linear mixtures of the sources. In order to measure the accuracy
of separation, we normalized the original sources with ||S;||> = 1, and
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the estimated sources with ||Sj|ls = 1. The error was computed as

15; = Sjll2
1155112

We tested two methods with this data. The first method used the
objective function (1.13) and the constraints (1.15), while the second
method used the objective function (1.18). We used PBM (Ben-Tal and
Zibulevsky, 1997) for the constrained optimization. The unconstrained

Error = -100% (1.19)

optimization was done using the method of conjugate gradients, with
the TOMLAB package (Holmstrom and Bjorkman, 1999). The same
tool was used by PBM for its internal unconstrained optimization.

We used hy(-) defined by (1.7) and (1.8) with A = 0.01 and 02 = 0.0001
in the objective function. The resulting errors of the recovered sources
were 0.09% and 0.02% by the first and the second methods, respectively.
The estimated sources are shown in Figure 1.5(c). They are visually in-
distinguishable from the original sources in Figure 1.5(a).

It is important to recognize the computational difficulties of this ap-
proach. First, the objective functions seem to have multiple local min-
ima. For this reason, reliable convergence was achieved only when the
search started randomly within 10%-20% distance to the actual solution
(in order to get such an initial guess one can use a clustering algorithm,
as in Pajunen et al., 1996 or Bofill and Zibulevsky, 2000b.)

Second, the method of conjugate gradients requires a few thousand
iterations to converge, which takes about 5 min on a 300 MHz AMD
K6-1T even for this very small problem. (On the other hand, preliminary
experiments with a truncated Newton method have been encouraging,
and we anticipate that this will reduce the computational burden by
an order of magnitude or more. Also Paul Tseng’s block coordinate
descent method (unpublished manuscript) may be appropriate.) Below
we present a few other approaches which help to stabilize and accelerate
the optimization.

1.5 Equal number of sources and sensors: more robust
formulations

The main difficulty in a maximization problem like (1.13) is the bilinear
term AC'®, which destroys the convexity of the objective function and
makes convergence unstable when optimization starts far from the solu-
tion. In this section we consider more robust formulations for the case
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when the number of sensors is equal to the number of sources, N = M,
and the mixing matrix is invertible, W = A~L.

When the noise is small and the matrix A is far from singular, WX
gives a reasonable estimate of the source signals S. Taking into account
(1.4), we obtain a least squares term |[C® — W X]||%, so the separation
objective may be written

.1
min §||C¢—WX||%+NZkﬂjh(Cjk) (1.20)
Js
We also need to add a constraint which enforces the non-singularity
of W. For example, we can restrict its minimal singular value rp;, (W)
from below,

rmin(W) >1 (1'21)

It can be shown that in the noiseless case, o & 0, the problem (1.20)—
(1.21) is equivalent to the maximum a posteriori formulation (1.13)
with the constraint ||A||2 < 1. Another possibility for ensuring the non-
singularity of W is to subtract K log|det W] from the objective

. 1
min —K log | det W[+ S[|C® - WX|% + uzk:,ajh(cjk) (1.22)
Js
which (Bell and Sejnowski, 1995; Pearlmutter and Parra, 1996) can be
viewed as a maximum likelihood term.
When the noise is zero and ® is the identity matrix, we can substitute
C = WX and obtain the BS Infomax objective (Bell and Sejnowski,
1995)

min —K log| det | +zk:ﬁjh((WX)jk) (1.23)
25

Experiment: equal numbers of sources and sensors. We created
two sparse sources (Figure 1.6, top) with strong cross-correlation of 0.52.
Separation by minimization of the objective function (1.22) gave an er-
ror of 0.23%. Robust convergence was achieved when we started from
random uniformly distributed points in C' and W.

For comparison we tested the JADE (Cardoso, 1999a), FastICA (Hyvérinen,
1999) and BS Infomax (Bell and Sejnowski, 1995; Amari et al., 1996)
algorithms on the same signals. All three codes were obtained from
public web sites (Cardoso, 1999b; Hyvirinen, 1998; Makeig, 1999) and
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(a) Sources

=L il

(c) Separated sources

I - ]
S e

Fig. 1.6. (a) Sources, (b) mixtures, and (c) reconstructed sources, in both
time-frequency phase plane (left) and time domain (right).

were used with default setting of all parameters. The resulting rela-
tive errors (Figure 1.7) confirm the significant superiority of the sparse
decomposition approach.

This still takes a few thousands conjugate gradient steps to converge
(about 5 min on a 300 MHz AMD K6). For comparison, the tuned
public implementations of JADE, FastICA and BS Infomax take only a
few seconds. Below we consider some options for acceleration.

1.6 Sequential Extraction of Sources via Quadratic
Programming

Let us consider finding the sparsest signal that can be obtained by a
linear combination of the sensor signals s = w” X. By sparsity we mean
the ability of the signal to be approximated by a linear combination of a
small number of dictionary elements ¢y, as s ~ ¢! ®. This leads to the
objective

1
min o[|e"® — w" X3 +uzk:h(0k), (1.24)
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Cardoso’s Fast BS Equation
JADE ICA Infomax
Fig. 1.7. Percent relative error of separation of the artificial sparse sources
recovered by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Equa-
tion 1.22.

where the term ), h(cy) may be considered a penalty for non-sparsity.
In order to avoid the trivial solution of w = 0 and ¢ = 0 we need to add
a constraint that separates w from zero. It could be, for example,

Jwll3 > 1, (1.25)

A similar constraint can be used as a tool to extract all the sources
sequentially: the new separation vector w’ should have a component of

unit norm in the subspace orthogonal to the previously extracted vectors

w, ... wiTt

(I =P~ D3> 1, (1.26)
where P/~! is an orthogonal projector onto Span{w?,... ,wi=1}.
When h(ex) = |ex| we can use the standard substitution

t—¢c, ¢t>0, ¢ >0

o () e b 2)

that transforms (1.24) and (1.26) into the quadratic program

c = ¢C

1 A
min ~[|eT® — w' X |2 4 pe''e
w,eé 2
subject to: lwll2>1, ¢>0

where e is a vector of ones.

1.7 Fast Solution in Non-overcomplete Dictionaries

In important applications (Tang et al., 1999; Tang et al., 2000), the sen-
sor signals may have hundreds of channels and hundreds of thousands of
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samples. This may make separation computationally difficult. Here we
present an approach which compromises between statistical and compu-
tational efficiency. In our experience this approach provides high quality
of separation in reasonable time.

Suppose that the dictionary is “complete,” i.e. it forms a basis in
the space of discrete signals. This means that the matrix ® is square
and non-singular. As examples of such a dictionary one can think of
the Fourier basis, Gabor basis, various wavelet-related bases, etc.. We
can also obtain an “optimal” dictionary by learning from given family
of signals (Lewicki and Sejnowski, 1998; Lewicki and Olshausen, 1999;
Olshausen and Field, 1997; Olshausen and Field, 1996).

Let us denote the dual basis

v=0! (1.27)
and suppose that coefficients of decomposition of the sources
=59 (1.28)

are sparse and independent. This assumption is reasonable for properly
chosen dictionaries, although of course we would lose the advantages of
overcompleteness.

Let Y be the decomposition of the sensor signals

Y =XU¥ (1.29)

Multiplying both sides of (1.3) by ¥ from the right and taking into
account (1.28) and (1.29), we obtain

Y =AC + ¢, (1.30)

where ( = £V is the decomposition of the noise. Here we consider an
“easy” situation, where ( is white, which assumes that ¥ is orthogonal.
We can see that all the objective functions from the sections 1.4.1-1.6
remain valid if we substitute the identity matrix for ® and replace the
sensor signal X by its decomposition V. For example, the maximum a
posteriori objectives (1.13) and (1.18) are transformed into

min —||AC Y[E+ > 8ih(C (1.31)
7.k
and
2%, |C
min —||AC Y||F+ZM (1.32)

VETEL O
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Fig. 1.8. Separation of musical recordings taken from commercial digital audio
CDs (five second fragments).

The objective (1.22) becomes

: 1 2
min —K log | det W+ SIIC = WY[l5 + uz};,@jh(cjk) (1.33)
7,
In this case we can further assume that the noise is zero, substitute

C = WY, and obtain the BS Infomax objective (Bell and Sejnowski,
1995)

min —K log|det W[+ Y B;h((WY);i) (1.34)

1% o
Also other known methods (for example, Lee et al., 1998; Lewicki and
Sejnowski, 1998), which normally assume sparsity of source signals, may
be directly applied to the decomposition Y of the sensor signals. This
may be more efficient than the traditional approach, and the reason is
obvious: typically, a properly chosen decomposition gives significantly
higher sparsity for the transformed coefficients than for the raw signals.
Furthermore, independence of the coefficients is a more realistic assump-
tion than independence of the raw signal samples.

Experiment: musical sounds. In our experiments we artificially mixed
seven b-second fragments of musical sound recordings taken from com-
mercial digital audio CDs. Each of them included 40k samples after
down-sampling by a factor of 5. (Figure 1.8).
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The easiest way to perform sparse decomposition of such sources is to
compute a spectrogram, the coeflicients of a Short Time Fourier Trans-
form (STFT). (We used the function SPECGRAM from the MATLAB
signal processing toolbox with a time window of 1024 samples.) The
sparsity of the spectrogram coefficients (the histogram in Figure 1.9,
right) is much higher then the sparsity of the original signal (Figure 1.9,
left)

In this case Y (1.29) is a real matrix, with separate entries for the
real and imaginary components of each spectrogram coefficient of the
sensor signals X. We used the objective function (1.34) with 8; = 1
and hy(-) defined by (1.7) and (1.8) with the parameter A\ = 107%.
Unconstrained minimization was performed by a BFGS Quasi-Newton
algorithm (MATLAB function FMINU.)

This algorithm separated the sources with a relative error of 0.67%
for the least well separated source (error computed according to (1.19).)
We also applied the BS Infomax algorithm (Bell and Sejnowski, 1995)
implemented in Makeig, 1999 to the spectrogram coefficients Y of the
sensor signals. Separation errors were slightly larger, at 0.9%, but the
computing time was improved (from 30 min for BFGS to 5 min for BS
Infomax).

For comparison we tested the JADE (Cardoso, 1999a; Cardoso, 1999b),
FastICA (Hyvérinen, 1999; Hyvérinen, 1998) and BS Infomax algo-
rithms on the raw sensor signals. Resulting relative errors (Figure 1.10)
confirm the significant (by a factor of more than 10) superiority of the
sparse decomposition approach.

The method described in this section, which combines a spectrogram
transform with the BS Infomax algorithm, is included in the ICA/EEG
toolbox (Makeig, 1999).

1.8 Estimating the Mixing Matrix and the Sources Separately

As opposed to the case of a square mixing matrix, where finding W
amounts to solving the problem C = WY, in the case of more sources
than mixtures, we are faced with two interrelated problems: estimating
the mixing matrix A and estimating the sources C. Trying to solve both
of them at the same time as in equation (1.31) is a difficult multivariate
optimization problem.

Another approach consists in estimating the mixing matrix A before-
hand. We can do this by clustering (as in Section 1.3), using sparsity
of sensor coefficients Y. In experiments of this section we use sparsity
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Fig. 1.9. Histogram of sound source values (left) and spectrogram coefficients
(right), shown with linear y-scale (top), square root y-scale (center) and log-
arithmic y-scale (bottom).
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Cardoso’'s Fast BS Spect-  Spect-
JADE ICA Infomax Infomax BFGS

Fig. 1.10. Percent relative error of separation of seven musical sources recov-
ered by (1) JADE, (2) Fast ICA, (3) Bell-Sejnowski Infomax, (4) Infomax,
applied to the spectrogram coefficients, (5) BFGS minimization of the objec-
tive (1.34) with the spectrogram coeflicients.

of Short Time Fourier Transform (STFT). The benefits of such an ap-
proach are clear in Figure 1.11. Six flute signals playing different notes
(see the Siz Flutes example in Section 1.8.2) were synthetically mixed
into two mixtures along equally spaced directions. Figure 1.11a presents
a scatter plot of the resulting data (zf against z! for every t), showing
a single big cloud. As it can be seen, the different sources are indis-
tinguishable. Then each mixture was FFT-transformed and the scatter
plot of the data in the frequency domain is shown in Figure 1.11b (i.e.,
z¥ against ¥ for every w). The difference is extraordinary. Now almost
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Fig. 1.11. Scatter plot Xs. vs X;. of six flute notes mixed into two mixtures
along equally spaced directions in the time (left) and frequency (right) do-
mains.

all the data points are neatly clustered along the six directions of the
columns of the mixing matrix, thus providing very good separability.

If we assume that the matrix A is found, the problem (1.31) can be
decomposed into to K independent small problems for each data point
ck (here we use h(-) =|-|)

.1
Hginﬁ||Ack—yk||2+Z|cf|, fork=1,..., K. (1.35)
j

Or, in the absence of noise

. k : kE _ ok _
Hginz |cj| subject to Ac” =y, fork=1,... K, (1.36)
j

which can be formulated as a linear programming problem Chen et al.,
1996.

1.8.1 A Shortest Path Decomposition of the Sources

We use a simple geometrical approach to the optimization problem
(1.36). When the columns a’ are normalized, the optimal representa-
tion of the data point y* = 3~ alcl that minimizes 3 |c¥], will include
at most N of the al’s, corresponding to the vertices of the minimal
simplex enclosing the direction of vector y* (this leads to the problem
of triangulation on sphere.) The non-zero components of the optimal
decomposition correspond then to the shortest path from the origin to
the data point, when only the directions of the mixing matrix may be
included into the path.

In particular, for the two-sensor case, the shortest path is obtained
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Six Flutes (FFT) 50.5 52.5 494 434 49.1 518
Six Flutes (time domain) -1.9 -20 -22 -24 -23 -24
Four Voices (STFT) 21.7 194 157 16.6

Five Songs (STFT) 156 155 150 15.1 15.2

Six Flute Melodies (STFT) 20.4 194 14.2 16.1 24.7 29.1

Table 1.1. S/N reconstruction indices (dB) for the different
experiments (see text).

by choosing the columns a® and a® whose directions tan=!(a$/a?) and
tan~!(a$/a¢) are the closest from below and from above, respectively,
to the direction of the data point 8 = tan=!(y% /y¥).

Let W, = [a’a®]~! be the reduced N x N inverse matrix, and let c¥ be
the reduced decomposition along directions a® and a®. The components
of the sources are then obtained as

C

= Wryka

ci = 0, for j#b,a. (1.37)

Aol Il

In practice, W, need only be computed once for all data points between
any two pairs of mixing directions.

1.8.2 Experiments with Estimating the Mixing Matriz and
the Sources Separately

The approach was first tested using the Siz Flutes data set: the sound
of a flute playing steady isolated notes was recorded at high-quality in
an acoustically isolated booth without reverberation, and sampled at
44.1Khz with 16 bits resolution. Six 743 ms excerpts (32768 samples)
were selected for the sources, corresponding to the notes a4, d5, 5, g5, c6
and d#6. These six sources were mixed into two mixtures along equally
spaced directions. Each of the mixture signals was then processed with
a 32768 sample FFT (i.e., the whole length of the excerpts) and the real
and imaginary parts of the positive spectra were used as input to the
separation system. We used potential function based clustering Bofill
and Zibulevsky, 2000b. Results are shown in the first row of Table 1.1.

For the sake of comparison, the next experiment was conducted on the
same data set using the mixtures in the time domain instead of in the
frequency domain. The centers of obtained clusters were no longer in
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the directions of the mixing matrix, so the resulting estimate was mean-
ingless. The separation was then attempted using the original mixing
matrix, but the algorithm totally failed to separate the sources, as shown
in Table 1.1, the second row.

The flute notes in the Siz Flutes data set above were very steady,
which allowed for a very large FFT window size. The remaining three
experiments presented here were performed on much more dynamic sig-
nals, and preprocessing was required based on STFT. As before, the
sources were first normalized to the same energy level and mixed in
the time domain. STFT of the resulting mixtures was produced with
a Hanning window of length L, and a “hop” distance d was used be-
tween the starting point of successive frames (yielding an L — d overlap).
For each mixture, the input to the separation system was then a single
long vector containing the concatenation of the coefficients of real and
imaginary parts of the positive spectra among all the frames in that
mixture. After the separation the estimated signals were resynthesized
by reconstructing the frames, regrouping the real and imaginary parts,
taking inverse FFT and inverse windowing. The overlap was removed by
keeping only the central part of the frame (thus avoiding the distortion
at the edges that often appears after frequency domain manipulation)
and the reconstructed signal was obtained by simple concatenation of
the resulting pieces.

The experiments were conducted on the following sets of signals: A
Four Voices data set with four 2.9 sec sentences pronounced by four
different people (three females and a male), recorded at 22,050 Hz and
8 bits with a low quality microphone on a home personal computer.
STFT was done with L = 2048 and d = 614 samples. A Five Songs
data set with five 5 sec long full-ensemble music pieces (two classical and
three pop/folk music) extracted from standard CDs (44,100 Hz/16 bits),
downsampled to 11,025 Hz monophonic and processed with L = 4096
and d = 1228 samples. Finally, a Siz Flute Melodies data set including
six 5.7 sec long flute melodies (the two voices of a canon, the two voices
of a duet and two unrelated melodies) with a high-quality registration
at 44,100 Hz/16 bits, down-sampled to 22,050 Hz and processed with
L = 8192 and d = 3276 samples.

In all three cases the mixing matrix was formed with equally spaced
directions. Results of the separation are shown in Table 1.1. Although
good enough in themselves, the reconstruction indices of the dynamic
signals were significantly poorer than those of the Siz Flutes, in part
due to the intrinsic difficulties of the short-term analysis and resynthe-
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a) Mixtures

A A U et
Ol o el

b) Sources and Recovered Signals

Fig. 1.12. FourVoices experiment. (a) Mixtures, (b) sources and recovered
signals, pairwise. Taken from Bofill and Zibulevsky, 2000a.

sis. Reconstruction indices were on the same range for the three exam-
ples, regardless of the number of voices, with somehow worse results in
the case of the FiveSongs, probably due to the higher complexity of the
sounds. The plot of the recovered signals was in all cases very similar
to the plot of the original sources, as illustrated in Figure 1.12 for the
Four Voices case. From a subjective listening point of view, the separa-
tion of the FourVoices example was remarkable for the high intelligibility
of the recovered sentences, in spite of some background noise and cross-
talk. Sound examples for the above experiments are available on-line at
http://www.ac.upc.es/homes/pau/.

1.9 Source Separation Using Sparsity of Multiscale
Representation

In many cases, especially in wavelet-related decompositions, there are
distinct groups of coefficients, in which sources have different sparsity
properties. The idea is to select those groups of features (coefficients)
which are best suited for separation, with respect to the following cri-
teria: (1) sparsity of coefficients (2) separability of sources’ features.
After the best groups are selected, one uses only these in the separa-
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tion process, which can be accomplished by standard ICA algorithms
or by clustering. We present experiments with simulated signals, mu-
sical sounds and images which demonstrate improvement of separation
quality.

1.9.1 Example: sparsity of random blocks in the Haar basis

Typical block functions are shown in Figure 1.13. They are piecewise
constant, with random amplitude and duration of each constant piece.
Let us take a close look at the Haar wavelet coefficients at different
resolutions. Wavelet basis functions at the finest resolution are obtained
by translation of the Haar mother wavelet:

-1 ift=0
p(t) = 1 ift=1
0 otherwise .

Taking a scalar product of a function s(t) with the wavelet y;(t — 1),
we produce a finite differentiation of the function s(t) at the point ¢ =
7. This means that the number of non-zero coefficients at the finest
resolution for a block function will correspond roughly to the number of
jumps it has. Proceeding to the next, coarser resolution level

-1 ift=-1,-2
pi—1(t) = 1 ift=0,1
0 otherwise

the number of non-zero coefficients still corresponds to the number of
jumps, but the total number of coefficients at this level is halved , and
so is the sparsity. If we proceed further in this direction, we will achieve
levels of resolution, where typical width of a wavelet ¢;(t) is compara-
ble to the typical distance between jumps in the function s(¢). In this
case, most of the coefficients are expected to be nonzero, and, therefore,
sparsity will fade-out.

To demonstrate how this influences accuracy of a blind source sepa-
ration, we randomly generated two block-signal sources (Fig 1.13, left),
and mixed them by the matrix

A 08321 06247
~ \ —0.5547 0.7809

The resulting mixtures, z1(t) and z»(t) are shown in Figure 1.13, center.
Figure 1.14, first column, shows the scatter plot of x1(t) versus za(t),
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Sources Sensors (mixtures) Recovered sources

T L B e e o)

Fig. 1.13. Time plots of block signals

Raw All wavelet Hi resolution
signals coefficients wavelet coefficients

BS-Infomax 13.9% 4.2% 0.69%
C-means clustering 13.3% 2.4% 0.41%

Fig. 1.14. Separation of block signals: scatter plots of sensor signals and mean-
squared separation errors (%)

where there are no visible distinct features. In contrast, the scatter
plot of the wavelet coefficients at the highest resolution (Figure 1.14,
third column) shows two distinct orientations, which correspond to the
columns of the mixing matrix.

Results of separation of the block sources are presented in Figure 1.14.
The largest error (13%) was obtained on the raw data, and the small-
est (below 0.7%) — on the wavelet coefficients at the highest resolution,
which have the best sparsity. Use of all wavelet coefficients leads to
intermediate sparsity and performance.

1.9.2 Adaptive selection of sparse subsets of coefficients in
wavelet packets tree

Multiresolution analysis

Our choice of a particular wavelet basis and of the sparsest subset of co-
efficients was obvious in the above example: it was based on knowledge
of the structure of piecewise constant signals. For sources having oscil-
latory components (like sounds or images with textures), other systems
of basis functions, for example, wavelet packets Coifman et al., 1992,
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Fig. 1.15. Wavelet packets tree

or multiwavelets Weitzer et al., 1997, might be more appropriate. The
wavelet packets library consists of the triple-indexed family of functions:

Oink(t) = 220, (27t — k), j,k € Z,n € N. (1.38)

As in the case of the wavelet transform, j, k are the scale and shift
parameters, respectively, and n is the frequency parameter, related to
the number of oscillations of a particular generating function y,(t). The
set of functions ¢, (t) forms a (j, n) wavelet packet. This set of functions
can be split into two parts at a coarser scale: @;_1 2, (t) and @;j_1 2n41 (t).
It follows that these two form an orthonormal basis of the subspace which
spans {@;n(t)}. Thus, we arrive at a family of wavelet packet functions
on a binary tree (Figure 1.15). The nodes of this tree are numbered by
two indices: the depth of the level j = 0,1, .., J, and the number of nodes
n=0,1,2,3,...,27-1 at the specified level. Using wavelet packets allows
one to analyze given signals not only with a scale-oriented decomposition
but also on frequency sub-bands. Naturally, the library contains the
wavelet basis.

The decomposition coefficients cjnr = (s, @ nk) also split into (j,n)
sets corresponding to the nodes of the tree, and there is a fast way to
compute them using banks of conjugate mirror filters, as is implemented
in the fast wavelet transform.

Choice of the best nodes in the tree

When signals have a complex nature, it is difficult to decide in advance
which nodes contain the sparsest sets of coefficients. That is why we use
the following simple adaptive approach.

First, for every node of the tree, we apply a clustering algorithm
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(see Section 1.3), and compute a measure of clusters’ distortion. In our
experiments we used a standard global distortion: the mean squared dis-
tance of data points to the centers of their own (closest) clusters. (Here
again, the weights of the data points can be incorporated). Second, we
choose a few best nodes with the minimal distortion, combine their co-
efficients into one data set, and apply a separation algorithm (clustering
or Infomax) to these data.

More sophisticated techniques dealing with adaptive choice of best
nodes, as well as their number can be found in Kisilev et al., .

1.9.3 Ezxperiments with adaptive selection of sparse subsets
of coefficients

We evaluated the quality of the proposed wavelet-packet based separa-
tion method on several types of signals. The first type is the random
blocks signal (see above). The second type of signal is a frequency mod-
ulated (FM) sinusoidal signal. In the first case, the carrier is modulated
by a sinusoidal function. In the second case, it is modulated by choosing
a random frequency and a corresponding random duration; we call this
type of signal Block-FM (BFM). The third type of signal is a musical
recording of flute sounds. Finally, we apply our algorithm to portrait
images.

In order to compare the accuracy of our method to other methods,
we form the following features sets: (1) the set of signals, (2) short
time Fourier transform (STFT) coefficients, (3) Wavelet transform coef-
ficients, and (4) Wavelet packets coefficients at the “best” nodes. In the
last case, mixtures of sources were decomposed with the Matlab wavelet
packet toolbozx using various families of mother wavelets with different
numbers of vanishing moments (smoothness parameter). A typical ex-
ample of scatter plots of the wavelet packet coefficients at different nodes
of the wavelet packet tree is shown in Figure 1.16. The upper left scatter
plot, labeled “C”, corresponds to the set of coefficients at all nodes. The
reminder are the scatter plots of sets of coefficients indexed in a wavelet
packet tree above. Generally speaking, the more distinct the directions
appearing on these plots, the more precise the estimation of the mixing
matrix, and, therefore, the better the separation.

We applied the fuzzy C-means clustering algorithm with some modi-
fications (see Kisilev et al., for details) to each feature set. Table 1.13
summarizes results of our experiments. We compared the quality of
separation of random block and BFM signals by performing 100 Monte-
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Fig. 1.16. Scatter plots of the WP coefficients of the FM mixtures

Signal raw data STFT WT, db8 WT, haar WP, db8 WP, haar

Blocks 31.89 16.31 4.18 1.94 2.70 0.43
BFM sine 49.81 8.17 8.16 15.30 4.48 6.65
FM sine 50.57 5.66 10.16 24.71 4.13 5.33
Flutes 12.18 5.36 5.96 9.23 3.93 8.05

Images raw data DCT WT, sym8 WT, haar WP, sym8 WP, haar
Portraits 22.11 19.11 10.79 10.57 6.04 8.29

Table 1.2. Experimental results: normalized mean square separation
error (%) for signals and images using raw data and decomposition
coefficients in different domains. In the case of wavelet packets (WP)
we used the best selected nodes.

Carlo simulations and calculating the normalized mean-squared errors
(NMSE) for the above features sets. In the case of deterministic signals,
we calculated a normalized squared error (SE). In the case of image sep-
aration, we used the 2D Discrete Cosine Transform (DCT) instead of
the STFT, and the Symmlet-8 mother wavelet when using 2D wavelet
transform and wavelet packets.

From Table 1.13 it is clear that the adaptive best nodes method out-
performs all other feature sets for each type of signal. Also, as mentioned
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above, the clustering approach provides a better separation than Info-
Max. It is clear that using the Haar wavelet function for the wavelet
packets representation of the random block signals provides better sep-
aration than using some smooth wavelet, e.g. Db8. The reason is that
these signals have a sparser representation with the Haar wavelet. In
contrast, the Flute’s signals are better represented with smooth wavelets,
and, therefore, these provide yield separation. This is another advantage
of using sets of features at multiple nodes along with various families of
‘mother’ functions: one can choose best nodes from a number decompo-
sition trees simultaneously.
More results and comparisons can be found in Kisilev et al., .

1.10 Conclusions

We showed that the use of sparse decomposition in a proper signal dic-
tionary provides high-quality blind source separation. The maximum a
posteriori framework gives the most general approach, which includes
the situation of overcomplete dictionary and more sources than sensors.
Computationally more robust solutions can be found in the case of an
equal number of sources and sensors. We can also extract the sources
sequentially using quadratic programming with non-convex quadratic
constraints.

Much faster solutions may be obtained by using non-overcomplete
dictionaries. Even when the number of sources is larger than the number
of mixtures, we can estimate the mixing matrix beforehand by clustering,
and then reconstruct the sources by a shortest path decomposition.

In many cases, especially in wavelet-related decompositions, selection
of few best groups of coefficients with the highest sparsity brings addi-
tional improvement of the separation quality.

Our experiments with artificial signals and digitally mixed musical
sounds demonstrate a high quality of source separation, compared to
other known techniques.
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