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ABSTRACT ditory objects with time-varying spectra [9], and autoroati
. . . . ) transcription of music [10].

Discovering a parsimonious representation that refleas th In this paper we combine the previous extension of con-
_structlfjre_of alud|o 'S & reqwrehmgnt of n;]any machine learny, e NMF [9] with a sparseness constraint [11] and apply
INg and signal processing me_t 0as. S_UC a repregentamon CRto the analysis of audio. The paper is structured as falow
be .con.structed by Non-.negatwe Matrix Factorisation (NMF) In Section 2 we present NMF and discuss its performance
which is almethod for finding parts-based representanons ?Ising experiments on synthetic data. We then present con-
non-negfsmve data. We present an extension f[o NMF thgt Folutive NMF in Section 3 and discuss its advantages over
convolutive and forces a sparseness constraint. CombineQ . entional NMF. In Section 4 we add an additional sparse-

with spectral magnitude analysis of audio, this method disg,eq constraint to the convolutive NMF objective and presen
covers auditory objects and their associated sparse thativa an experiment on music.

patterns.

2. NON-NEGATIVE MATRIX FACTORISATION
1. INTRODUCTION
NMF is a linear non-negative approximate factorisation and
A preliminary step in many data analysis tasks is to find as formulated as follows. Given a non-negative x N ma-
suitable representation of the data. Typically, methods exrix V e R=%M*N the goal is to approximat¥ as a prod-
ploit the latent structure in the data. For example, ICA [1]uct of two non-negative matricé® € R=%M*E andH <
reduces the redundancy of the data by projecting the datg>0.RxN

onto its independent components, which can be discovered VaW-H (1)
by maximising a statistical measure such as independehce [2
or non-Gaussianity [3]. where R < M, such that the reconstruction error is min-

Given a non-negative matr, Non-negative Matrix Fac- imised. Two NMF algorithms were introduced by Lee and
torisation (NMF) approximately decompos¥sinto a prod-  Seung [4, 12], each implementing a different cost functign b
uct of two non-negative matricé® andH [4, 5]. NMF isa  Which the quality of the approximation can be measured. The
parts-based approach that does not make a statistical pssurfi'St cost function presented is the Euclidean distance dxstw
tion. Instead, it assumes that for the domain at hand, negati V @ahdWH, the second is a generalised version of Kullback-
numbers would be physically meaningless. The lack of stal-€ibler divergence. We will use the latter
tistical assumptions makes it difficult to prove that NMFIwil
give correct decompositions, although it has been shown ge- D(V|W,H) = HV ® log
ometrically that NMF provides a correct decomposition for

some classes of |mage's [6]. ) where® denotes an element-wise (also known as Hadamard
For data that contains negative components, for examplgr Schur) product and division is also element-wise. NMF

audio, a non-negative representation must be found. In thi@an now be written as an optimisation problem

case a spectrogram representation may be used. Spectsogram '

have been used in audio analysis for many years [7] and com- min D(V|[W, H) W.H >0
W7H ) b) -

bined with NMF have been applied to variety of problems

such as monaural speech separation [8], identification -of aul‘he above objective is convex W andH individually but
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W.H—V+W~HH @)




can be interpreted as diagonally rescaled gradient degtjent Spectrogram of Signal
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unity and divisions are element-wise. As the algorithm:iter Column 1 of W Column 2 of W

ates the factors converge to a local optimum of Eq. 2.

The parameteR, which defines the number of columns in
W and rows inH, defines the rank of the approximation. If
R < M thenW is under-determined and NMF reveals low-
rank features of the data. The columnsWifwill contain the Amplitude Amplitude
basis for the data while the rows BF will contain activation Fore o
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o N £ o o]

Frequency (kHz)
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of R is usually based on prior knowledge and is necessary fc
good approximation.
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2.1. NMF applied on audio spectra

To illustrate the application of NMF on audio data considerFig. 1. Spectrogram of a signal composed of band-limited
the example shown in Figure 1. The signal under considerdioise bursts, and its factors obtained by NMF.

tion is composed of two band-limited noise bursts with mag-

nitude spectra constant over time. The first burst is centre Spectragram of Signal

around 2 kHz and occurs four times, while the second burs£ | A A A
is centred around 6 kHz and occurs three times. The signal £ «f ]
spectrogram is &/ x N matrix V with magnitude informa- g 2¢"\_~ AN~ AN
tion for M frequency bins afV time intervals. NMF is ap- = o s . L . 5 5 ”
plied toV with R = 2 and the resultant factors shown. In this Column L ome (seconds)
example both the frequency spectra of the bursts (columns « <8 o8
‘W) and their activations in time (rows &f) have been identi- s e
fied. This decomposition has successfully revealed the-stru g 4% g “%
ture of theV by correctly describing its constituent elements 2?2 §2>
in both the frequency and time domains. ° Ampiude ° Ampiude

Now consider the example presented in Figure 2. Here Rows of H
the signal under consideration is composed of two auditor - ,
objects that have differing frequency sweeps over time. Th g
first object is centred around 2 kHz and the second object i§ : Il
centred around 6 kHz, each occurring four times. NMFisap L L . L " > .,
plied to the data with the same parameters as above and t Time (seconds)

factors are shown. It is evident from the columnswif that

the identified spectra contain frequency components tleat aFig. 2. Spectrogram of a signal composed of auditory objects
centred around both 2kHz and 6kHz. Thus, NMF fails towith time-varying spectra, and its factors obtained by NMF.
identify the spectra of each object and instead discovers ob

jects that are a combination of both. The reason for thisas th been used to extend ICA [13] and NMF [9]. For conventional
the spectra of the auditory objects evolve over time and tha}{lMF, each object is described by its spectrum and corre-

NMF is not expressive enough to reveal this temporal S'[rucéponding activation in time, while for convolutive NMF each

:Ere. Theref ore, In ort(jer tch [\rﬁ\xﬁal a g?”ECt d?CO?%Of't'O%bject has a sequence of successive spectra and correspond-
€ EXpressive properties o heed o be extended to Cori}ig activation pattern across time. The generative model of

sider the evolution of each object’s spectrum. Eq. 1 is extended to the convolutive case

T-1
t—
3. CONVOLUTIVE NMF V ~ Zwt' H
Typically, the temporal relationship between multiple ebs =0
vations over nearby intervals of time are discovered using whereV ¢ RZ%M*N js the input to be decomposew; <
convolutive generative model. Such a model has previousiR=%Y*E andH ¢ R=%ExN are its two factors, and’ is



the length of each spectrum sequence. e column of Spectrogram of Signal

8 T T T T T
W, describes the spectrum of théh objectt time steps after
¢ p un ) p Sop A A A A
the object has begun. Tlie denotes a column shift operator g * ]
that moves its argumeintplaces to the right, as each column EZ/\/_ N N
is shifted off to the right the leftmost columns are zero dille % 2 4 8 e tsocond 10 12 14
4—1 X Ime (seconds, .
Conversely, thé-) operator shifts columns off to the left, with P
zero filling on the right. o o
Using the previously presented framework for NMF, the g ‘2‘ ‘ g ‘2‘
new cost function for the convolutive generative model is £, £,
om0 wme
V Rows of H
D(V||A) = HV@logA—V+AH 4) ‘ ‘
52r ]
5
whereA is the approximation t& and is defined as 8 1f 1
0 2 4 6 8 10 12 1

T—1 i Time (seconds)
A=) W, H

=0 Fig. 3. Spectrogram of a signal composed of auditory objects
with time-varying spectra, and its factors obtained by cenv
This new cost function can be viewed as a sef’'afonven-  lutive NMF.
tional NMF operations that are summed to produce the final

result. Consequently, as opposed to updating two matrices 4 coNVOLUTIVE NMF WITH ADDITIONAL

(W andH) as in conventional NMF[" + 1 matrices require CONSTRAINTS
an update, including aW, andH. The resultant convolutive
NMF update equations are For some tasks it my be advantageous to perform NMF with

additional constraints placed on eitf¥f or H. One increas-

WwT v v T ingly popular and powerful constraint is that the rowskf
H-Hg — [X], W, =W,o A ' (5) have a parsimonious activation pattern for each basis con-

w1 1. tﬁT tained in the columns oW. This is the so calle@&parse-
ness Constrainfl4, 15]. A signal is said to be sparse when

At each iteratiorH and allW, are updated, wherH is up- it is zero or nearly zero more than might be expected from
dated to the average result of its updates forValj [9]. It its variance. Such a signal has a probability density faomncti

can easily be seen that fér= 1 this reduces to conventional OF distribution of values with a sharper peak at zero and fat-
NMF (Eq. 3). ter tails than a Gaussian. A standard sparse distributitireis

Laplacian distributionf(c) « exp —|c|). The advantage of

a sparse signal representation is that the probability ofdw
3.1. Convolutive NMF applied on audio spectra more activation patterns being active simultaneously\s lo

Thus, sparse representations lend themselves to goodsepar
We have shown that conventional NMF reveals a correct dedility [16]. Although convolutive NMF produces activation
composition for auditory objects with constant spectra bupatterns that tend to be sparse, the addition of the spasene
fails for objects that exhibit time-varying spectra. Nowus  constraint orH provides a means of trading off the sparseness
consider convolutive NMF applied to this example. The perof the representation against accurate reconstruction.
formance of the algorithm now depends on two parameters The most widely used method for multi-objective optimi-
R andT, whereT must be larger than the time each objectsation is the weighted sum method. This method creates an
exists. Convolutive NMF is applied to the data with= 2  aggregate objective function by multiplying each constitu
andT = 2 seconds, and the resultant factors presented ifost function by a weighting factor and summing the weighted
Figure 3. It is evident from spectra sequences obtaingid ( costs. Combining our reconstruction cost function (Eq. 4)
column of Wy, fort = 0,1,--- ,7 — 1) that the time-varying  With a sparseness constraintHresults in the following ob-
spectra of each object has been revealed and that the rowsjg¢tive function
H identify the start of each object. This decomposition has
successzlly revealed the strucjture\bfoy correctlypdescrib- G(V[A) = D(V]A) + X Z Hi; ®)
ing the spectral evolution of each object and its position in Y
time. The left term of the objective function corresponds to NMF,



while the right term is an additional constraint Bhthat en- Spectrogram of Signal

forces sparsity by minimising th&;-norm of its columns g: S |

[17]. The parametek controls the trade off between sparse- 3 ,~ ~ = =, o~ = '

ness and accurate reconstruction. I S e b
This objective creates a new problem: the right term is ¢ , ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

. . . . . 0 2 4 6 8 10 12 14 16 18 20 22
strictly increasing function of the absolute value of itgwar Time (seconds)

ment, so it is possible that the objective can be decreased | P
scaling upW and scaling dowH (W — oW andH — Es EX: Ex
(1/a)H, with o > 1). This situation does not alter the left RN v
term in the objective function, but will cause the right term g2 g2 g2
to decrease, resulting in the elementWfgrowing without % 1 2 % 1 2 % 1 2

. Time Time Time
bound andH tending toward zero. Consequently, the solu- Rows of H
tion arrived at by the optimisation algorithm is not influedc ~ _ 5| ‘ ‘ il
by the right term of the objective function and the resultani ¢ | |
H matrix is not sparse. Therefore another constraint needs '
be introduced in order to make the cost function well-defined '[__. I ‘ I ‘ ‘ ‘ I ‘ | ]
This is achieved by fixing the norm of thieth object of W Rt
(overallt = [0,1,---,T — 1]) to unity which constrains the
scale of the elements W andH. Fig. 4. Spectrogram of a signal composed of an over-

complete basis, and its factors obtained by convolutive NMF
4.1. New Updaterules

Spectrogram of Signal

The classic NMF update rules [4] implement gradient descer _ s | ‘ : ;

and our new updates will also follow this approach. First wes o . . . .
consider the update fdi, where the gradient descent update g A e pia e e _AN
is g2r ]
H=H+ngvuG(V|A) % 2 4 & s Al‘O 2 14 16 18 20 2
Taking the gradient of Eq. 6 with respectEbgives g ot :mecfbsjeei?"zds) g e
—t is e Ze
A% Al Zal | T
TuG(V|A) = WT - {A] W 14A01 gl Y ;’;2—-‘“'*-—5;2:}-'{:
. . . . : 00 1 ZLL O0 1 2LL 00 1 2
Diagonally rescaling the variables [4, 11] and setting &aeih- Time Time Time
ing rate to Rows ofH
H 27 | | |
TH = ——=——————— g
M= WI 1A 1 2o | |
gives the new update rule féf 8, I ]
—t 0 2 4 6 8 10 12 14 16 18 20 22
Time (seconds)
wT. ¥
H=H® Tt—[A] 7) . .
W/ 1+A-1 Fig. 5. Spectrogram of a signal composed of an over-
Similarly, we define the update faV complete basis, and its factors obtained by sparse conwlut
NMF.
W =W +nwvwG(V|[A)
where the gradient of Eq. 6 with respectWd is As long asnw is sufficiently small the update should reduce
T T Eqg. 6. Subsequent to this update any negative valueé are
VwG(VI]A) = A H -1-H set to zero (non-negativity constraint) and each object con

N ) . ) tained inW is rescaled to unit norm.
The additional unit norm constraint oW complicates the

update rule and impedes the discovery of a suitable form for _ _ _
nw that would result in a multiplicative update [11], thus re-4.2. Sparse Convolutive NMF applied on audio spectra

sulting in the following update . . : :
¢ gup An interesting property of the sparseness constraint isitha

enables the discovery of an over-complete biasis basis that
contains more basis functions than are necessary to span the

v =T T
W=W+inw|o-H —1-H (8)
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Fig. 6. Music waveform and its associated spectrogram along tittactors obtained by sparse convolutive NMF (rows 3 & 4)
and conventional convolutive NMF (rows 5 & 6).

projection space. signal (Figure 5). Here, all three objects and their assedia
To illustrate the performance of convolutive NMF on dataa}ctivation patterns are identified. Therefore, this decasitp

generated from an over-complete basis consider the exampgi@n has successfully revealed the over-complete baséstose

presented in Figure 4. The signal under consideration is congenerate the signal.
posed of three auditory objects each occurring twice, where
the first object is an exponentially decreasing then inereas

ing frequency sweep centred around 4 kHz, the second objeéta Sparse Convolutive NMF applied on music

is the reverse of the first, and the third object is a combinaTg see the performance of sparse convolutive NMF in a real-
tion of the first two. Convolutive NMF is applied to the data yworld context, we apply it to a simple music example. The
with R = 3 andT" = 2 seconds, and the resultant factorsgata consists of synthesised rudimentary guitar soundsrevh
presented. Itis evident from the results that only the fwst t  each string produces only its fundamental frequency. The
auditory objects are identified. This is because the thifeaib  arrangement is simple, composed of three sections: the six
can be expressed in term of the first two and the signal can iptes of a G chord are played individually in descending or-
described by using just the first two objects. Thus, convoluger; all six notes of the chord are played simultaneouslgi; an
tive NMF achieves its optimum with just the first two linearly each note is played in reverse order. Each note is played for
independent objects without the need for an over-completgne second, and the frequencies of the notes are 98.00 Hz (G),
representation. 123.47 Hz (B), 146.83 Hz (D), 196.00 Hz (G), 246.94 Hz (B)
When the sparseness constraint is introduced to the ol&nd 392.00 Hz (G).
jective the existence of an over-complete representatpsh Both sparse convolutive NMF and convolutive NMF are
minimise the objective and allows for a sparser descriptfon applied to the music and the resultant factors are presémted
the signal. Sparse convolutive NMF is applied to the samé&igure 6. Itis evident from the spectrogram that the music ca



be represented by an over-complete representation dogsist [9] P. Smaragdis. Non-negative matrix factor deconvolu-

of each individual note and the chord. Convolutive NMF is
applied withR = 7, T = 1 second and the resultant factors
are presented in rows 5 & 6. As can be seen from the acti-

vation pattern, the algorithm has failed to represent tluecth

as an individual auditory object and instead represents it a
a combination of notes. Sparse convolutive NMF is applied10]

with the same parameters above and witkelected on an

ad hocbasis. The resultant factors are presented in rows 3 &
4. Here, it is evident that an over-complete representasion
discovered and that the chord is represented as an individua

auditory object.

5. CONCLUSIONS

In this paper we have presented a sparse convolutive version
of NMF that effectively discovers a sparse parts based rep[l
resentation for non-negative data. This method extends the
convolutive NMF objective by including a sparseness con-
straint on the activation patterns, enabling the discowdry [14]
over-complete representations. We have shown how the ex-

tion; extraction of multiple sound sources from mono-
phonic inputs. InFifth International Conference on
Independent Component AnalysiSNCS 3195, pages
494-499, Granada, Spain, Sep. 22—-24 2004. Springer-
Verlag.
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tra. InProceedings of the 5th International Conference
on Music Information Retrieval (ISMIR 20Q4pages
318-325, 2004.

P. O. Hoyer. Non-negative sparse codinglH&EE Work-
shop on Neural Networks for Signal Processifg02.

D. D. Leeand H. S. Seung. Learning the parts of objects
with nonnegative matric factorizatiohlature 401:788—
791, 1999.

3] R. H. Lambert.Multichannel Blind Deconvolution: FIR

Matrix Algebra and Separation of Multipath Mixtures
PhD thesis, Univ. of Southern California, 1996.

B. A. Olshausen and D. J. Field. Sparse coding of sen-
sory inputs Curr Opin Neurobio) 14(4):481-487, 2004.

pressive properties of NMF can be improved by reformula{15] D.J. Field. What is the goal of sensory codinyeural

tion of the problem in a convolutive framework and how the

Computation6:559-601, 1994.
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