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Abstract. It is tempting to incorporate differentiation operators into

functional-programming languages. Making them first-class citizens, how-

ever, is an enterprise fraught with danger. We discuss a potential prob-

lem with forward-mode AD common to many AD systems, including all

attempts to integrate a forward-mode AD operator into Haskell. In

particular, we show how these implementations fail to preserve referen-

tial transparency, and can compute grossly incorrect results when the

differentiation operator is applied to a function that itself uses that op-

erator. The underlying cause of this problem is perturbation confusion, a

failure to distinguish between distinct perturbations introduced by dis-

tinct invocations of the differentiation operator. We then discuss how

perturbation confusion can be avoided.

1 Introduction

Referential transparency is the battle cry of the non-strict functional program-
ming community. A subtle issue with referential transparency can arise when
a derivative-taking operator is combined with functional programming. As an
illustration of the issue consider the following expression, whose value should
obviously be 1.
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This would be expressed in a functional-programming language as

D (λx . x × (D (λy . x + y) 1)) 1 (2)

where × indicates multiplication and D is a derivative-taking operator.

D f c =
d

dx
f(x)
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Automatic Differentiation (AD) is an established enterprise for calculat-
ing derivatives of functions expressed as computer programs (Griewank 2000).



Forward-mode AD (Wengert 1964) implements D by evaluating f (c + ε) under
an abstract interpretation that associates a conceptually infinitesimal perturba-
tion with each real number, propagates them according to the rules of calculus
(Leibnitz 1664; Newton 1704), and extracts the perturbation of the result.

To see how this works, let us manually apply the mechanism to a simple
expression. We use x + x′ε to denote x with associated perturbation x′, by
analogy with the standard a + bi for complex numbers.

d

dx
x2 + x + 1
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= D (λx . x × x + x + 1) 3

= E ((λx . x × x + x + 1) (3 + ε))

= E ((3 + ε) × (3 + ε) + (3 + ε) + 1)

= E ((9 + 6ε) + (3 + ε) + 1)

= E (13 + 7ε)

= 7

where E (x + x′ε)
4
= x′ and D f c

4
= E (f (c + ε)). This is the essence of

forward-mode AD.

2 Perturbation Confusion

We can now evaluate (2) using this machinery.

D (λx . x × (D (λy . x + y) 1)) 1

= E ((λx . x × (D (λy . x + y) 1)) (1 + ε)) (4)

= E ((1 + ε) × (D (λy . (1 + ε) + y) 1)) (5)

= E ((1 + ε) × (E ((λy . (1 + ε) + y) (1 + ε)))) (6)

= E ((1 + ε) × (E ((1 + ε) + (1 + ε)))) (7)

= E ((1 + ε) × (E (2 + 2ε))) (8)

= E ((1 + ε) × 2) (9)

= E (2 + 2ε) (10)

= 2 (11)

6= 1

The technique described by Karczmarczuk (1998, 2001) and adopted by Nilsson
(2003) exhibits this problem; see Appendix A. The underlying issue is perturba-

tion confusion, a failure (at step 8) to distinguish between distinct perturbations
introduced by distinct invocations of D.

3 Tagging Avoids Perturbation Confusion

One way to remedy perturbation confusion is to define

D f c
4
= Et (f (c + εt)) (12)



where t is a tag unique to each invocation of D, and define

Et (x + x′εt)
4
= x′ (13)

to extract only the correspondingly tagged perturbation, ignoring any others;
see Appendix C. We can evaluate (2) using these tags.

D (λx . x × (D (λy . x + y) 1)) 1

= Ea ((λx . x × (D (λy . x + y) 1)) (1 + εa)) (14)

= Ea ((1 + εa) × (D (λy . (1 + εa) + y) 1)) (15)

= Ea ((1 + εa) × (Eb ((λy . (1 + εa) + y) (1 + εb)))) (16)

= Ea ((1 + εa) × (Eb ((1 + εa) + (1 + εb)))) (17)

= Ea ((1 + εa) × (Eb (2 + εa + εb))) (18)

= Ea ((1 + εa) × 1) (19)

= Ea (1 + εa) (20)

= 1 (21)

Note how the erroneous addition of distinct perturbations (step 8) is circum-
vented at the corresponding point here (step 18).

4 Referential Transparency

Perturbation confusion can violate referential transparency. Consider

c x
4
= D (λy . x + y) 1

which should have a constant value of 1 regardless of its numeric argument x.
Therefore λx . x× (c x) and λx . x× 1 should both denote the identity function
for numbers. However, as seen above and in Appendix A,

D (λx . x × (c x)) 1

and
D (λx . x × 1) 1

yield different results when distinct perturbations are not distinguished.

5 Related Work

Forward-mode AD was implemented in Scheme as part of the scmutils package
included in the instructional materials associated with a textbook on classical
mechanics (Sussman et al. 2001). Scmutils is neither documented nor pub-
lished, but examination of its uncommented source code reveals an explicit tag-
ging mechanism to distinguish distinct perturbations, and scmutils correctly
evaluates (2).



Explicit tagging of the sort described above is impossible to implement in
a purely functional language. Such explicit tagging, however, is not necessary
to remedy perturbation confusion. A broad class of implemented forward-mode
AD systems operate by performing a static abstract interpretation of the original
program, to pair perturbations with real values, via a source-to-source transfor-
mation, overloading, or some combination of the two. Source-to-source transfor-
mation can be performed inter alia by a preprocessor, as in ADIFOR (Bischof
et al. 1996), ADIC (Bischof et al. 1997), and ADiMat (Bischof et al. 2003), or by
an ad-hoc reflective mechanism in an underlying interpreter, as in GRADIENT

(Monagan and Neuenschwander 1993).

6 Static Avoidance of Perturbation Confusion

Static abstract interpretation using a source-to-source transformation can rem-
edy perturbation confusion in a functional framework. The general idea is to
wrap n calls to lift around each numeric variable reference made inside the
function passed to the d operator, where n is the number of calls to d that inter-
vene between that variable’s definition and its reference. Doing this transforms

constant_one x = d (\y -> x + y) 1

d (\x -> x * (constant_one x)) 1

into

constant_one x = d (\y -> (lift x) + y) 1

d (\x -> x * (constant_one x)) 1

which yields the correct result; see Appendix D. This cannot be done automati-
cally in Haskell, but requires a preprocessor. In general, determining the value
of each such n requires sophisticated non-local analysis, unless the program is
written in an extremely restrictive style to make each such n apparent. Further
complications arise when attempting to lift aggregate data objects that contain
numeric values and when different control-flow paths to a variable reference can
lead to different values of n.

An implementation of AD in a functional framework which incorporates both
forward-mode and reverse-mode and supports arbitrary nested application of AD
operators has been developed by the authors. Instead of tagging, source-to-source
transformations are used to avoid perturbation confusion. The system performs
these transformations using a simple reflective API. (2) can be coded directly
and transparently in this system as

(define (derivative f x) (tangent ((j* f) (bundle x 1))))

(derivative (lambda (x) (* x (derivative (lambda (y) (+ x y)) 1))) 1)

which yields the correct result. A detailed discussion of the foundations of this
system will be the subject of a forthcoming publication, but the implementation
is currently available at http://www-bcl.cs.nuim.ie/~qobi/stalingrad/.
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Appendices

Unabbreviated versions of the below code are available at http://www-bcl.cs.
nuim.ie/~qobi/stalingrad/software/hosc2005/.

A Incorrect Implementation in Haskell

One would naturally want to write

constant_one x = d (\y -> x + y) 1

d (\x -> x * (constant_one x)) 1

However, the above yields a type violation at the expression

x * (constant_one x)

This is because Haskell only automatically coerces constants, not the results of
other kinds of expressions. Such automatic coercion can be manually simulated
by inserting an appropriate coercion operator at the point of type violation.

constant_one x = d (\y -> x + y) 1

d (\x -> x * (lift (constant_one x)) ) 1

Note however that while this is now type correct, it yields an incorrect result.
A system that automatically introduced such coercions would also necessarily
suffer from such perturbation confusion.

data Num a => Bundle a = Bundle a a

instance Num a => Show (Bundle a) where
showsPrec p (Bundle x x’) = showsPrec p [x,x’]

instance Num a => Eq (Bundle a) where
(Bundle x x’) == (Bundle y y’) = (x == y)

lift z = Bundle z 0

instance Num a => Num (Bundle a) where
(Bundle x x’) + (Bundle y y’) = Bundle (x + y) (x’ + y’)
(Bundle x x’) * (Bundle y y’) = Bundle (x * y) (x * y’ + x’ * y)
fromInteger z = lift (fromInteger z)

instance Fractional a => Fractional (Bundle a) where
fromRational z = lift (fromRational z)

d f x = let (Bundle y y’) = f (Bundle x 1) in y’

constant_one x = d (\y -> x + y) 1

should_be_one_a = d (\x -> x * (lift (constant_one x))) 1
should_be_one_b = d (\x -> x * (lift 1 )) 1

violation_of_referential_transparency = should_be_one_a /= should_be_one_b



B Similar Incorrect Implementation in Scheme

The same method can be implemented in Scheme, where it exhibits the same
problem.

(define primal cadr)

(define tangent caddr)

(define (bundle primal tangent) (list ’bundle primal tangent))

(define bundle?
(let ((pair? pair?)) (lambda (x) (and (pair? x) (eq? (car x) ’bundle)))))

(set! pair? (lambda (x) (and (pair? x) (not (bundle? x)))))

(define (lift-real x) (bundle x 0))

(define (lift-real->real f df/dx)
(letrec ((self (lambda (x)

(if (bundle? x)
(bundle (self (primal x))

(* (df/dx (primal x)) (tangent x)))
(f x)))))

self))

(define (lift-real*real->real f df/dx1 df/dx2)
(letrec ((self

(lambda (x1 x2)
(if (bundle? x1)

(if (bundle? x2)
(bundle
(self (primal x1) (primal x2))
(+ (* (df/dx1 (primal x1) (primal x2))

(tangent x1))
(* (df/dx2 (primal x1) (primal x2))

(tangent x2))))
(self x1 (lift-real x2)))

(if (bundle? x2)
(self (lift-real x1) x2)
(f x1 x2))))))

self))

(define (lift-real->boolean f)
(letrec ((self (lambda (x) (if (bundle? x) (self (primal x)) (f x)))))
self))

(define (lift-real*real->boolean f)
(letrec ((self (lambda (x1 x2)

(if (bundle? x1)
(if (bundle? x2)

(self (primal x1) (primal x2))
(self (primal x1) x2))

(if (bundle? x2) (self x1 (primal x2)) (f x1 x2))))))
self))

;;; Overloads not needed for this example are omitted.
(set! + (lift-real*real->real + (lambda (x1 x2) 1) (lambda (x1 x2) 1)))
(set! * (lift-real*real->real * (lambda (x1 x2) x2) (lambda (x1 x2) x1)))

(define (derivative f)
(lambda (x) (let ((y (f (bundle x 1)))) (if (bundle? y) (tangent y) 0))))

(define should-be-one
((derivative (lambda (x) (* x ((derivative (lambda (y) (+ x y))) 1)))) 1))



C Corrected Implementation in Scheme

Definitions of primal, tangent, bundle?, pair?, lift-real->boolean, and
lift-real*real->boolean, the overloads, and should-be-one are unchanged
from Appendix B. Boxes indicate additions and modifications.

(define tag cadddr)

(define (bundle tag primal tangent) (list ’bundle primal tangent tag ))

(define make-tag (let ((tag 0)) (lambda () (set! tag (+ tag 1)) tag)))

(define (lift-real tag x) (bundle tag x 0))

(define (in? t x) (and (bundle? x) (or (= (tag x) t) (in? t (primal x)))))

(define (lift-real->real f df/dx)
(letrec ((self (lambda (x)

(if (bundle? x)

(bundle (tag x)

(self (primal x))
(* (df/dx (primal x)) (tangent x)))

(f x)))))
self))

(define (lift-real*real->real f df/dx1 df/dx2)
(letrec ((self

(lambda (x1 x2)
(if (bundle? x1)

(if (bundle? x2)

(if (= (tag x1) (tag x2))

(bundle

(tag x1)

(self (primal x1) (primal x2))
(+ (* (df/dx1 (primal x1) (primal x2))

(tangent x1))
(* (df/dx2 (primal x1) (primal x2))

(tangent x2))))

(if (in? (tag x1) x2)
(self (lift-real (tag x2) x1) x2)
(self x1 (lift-real (tag x1) x2))))

(self x1 (lift-real (tag x1) x2)))

(if (bundle? x2)

(self (lift-real (tag x2) x1) x2)

(f x1 x2))))))
self))

(define (e-t t x)
(if (bundle? x) (if (= (tag x) t) (tangent x) (e-t t (primal x))) 0))

(define (derivative f)

(lambda (x) (let ((t (make-tag))) (e-t t (f (bundle t x 1)))) ))



D Corrected Implementation in Haskell

It is possible to correct the problem by manually inserting a coercion operation
(lift). A method for determining where these are needed is discussed in Sec-
tion 6. This method only applies to code written so as to maintain a number of
very restrictive static properties.

data Num a => Bundle a = Bundle a a

instance Num a => Show (Bundle a) where
showsPrec p (Bundle x x’) = showsPrec p [x,x’]

instance Num a => Eq (Bundle a) where
(Bundle x x’) == (Bundle y y’) = (x == y)

lift z = Bundle z 0

instance Num a => Num (Bundle a) where
(Bundle x x’) + (Bundle y y’) = Bundle (x + y) (x’ + y’)
(Bundle x x’) * (Bundle y y’) = Bundle (x * y) (x * y’ + x’ * y)
fromInteger z = lift (fromInteger z)

instance Fractional a => Fractional (Bundle a) where
fromRational z = lift (fromRational z)

d f x = let (Bundle y y’) = f (Bundle x 1) in y’

constant_one x = d (\y -> (lift x) + y) 1

should_be_one_a = d (\x -> x * (constant_one x)) 1
should_be_one_b = d (\x -> x * 1 ) 1

violation_of_referential_transparency = should_be_one_a /= should_be_one_b


