
Nesting Forward-Mode AD in a Functional Framework

Jeffrey Mark Siskind (qobi@purdue.edu)∗

School of Electrical and Computer Engineering, Purdue University, USA

Barak A. Pearlmutter (barak@cs.nuim.ie)†

Hamilton Institute, NUI Maynooth, Ireland

Abstract. We discuss the implications of the desire to augment a functional-
programming language with a derivative-taking operator using forward-mode au-
tomatic differentiation (AD). The primary technical difficulty in doing so lies in
ensuring correctness in the face of nested invocation of that operator, due to the need
to distinguish perturbations introduced by distinct invocations. We exhibit a series of
implementations of a referentially-transparent forward-mode AD derivative-taking
operator, each of which uses a different non-referentially-transparent mechanism
to distinguish perturbations. Even though the forward-mode AD derivative-taking
operator is itself referentially transparent, we hypothesize that one cannot correctly
formulate this operator as a function definition in current pure dialects of Haskell.

Keywords: Automatic differentiation, Applicative (functional) languages, Referen-
tial transparency

1. Introduction

The ability to nest function invocation is central to functional program-
ming. One would be discontent with a language or implementation that
would not allow one to use a nested invocation of Map to compute outer
products.

OuterProduct f x y
△
= Map (λx . Map (λy . f x y) y) x

In an analogous fashion, one would expect to be able to write

Min (λx . (f x) + Min (λy . g x y)) (1)

given a definition for Min that takes a suitable function R → R as
its argument and returns (an approximation to) a (local) minimum of
that function. Correct processing of either of the above requires correct
handling of nested function invocation. In particular, the outer call to

∗ Supported in part by NSF grant CCF-0438806. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

† Supported by Science Foundation Ireland grant 00/PI.1/C067 and the Higher
Education Authority of Ireland.

c© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

hosc2005-revision3.tex; 27/01/2007; 11:16; p.1

2 J. M. Siskind and B. A. Pearlmutter

Map or Min is passed an outer function that itself calls Map or Min on
an inner function that depends on the argument x of the outer function.

Suppose our implementation of Min uses gradient descent. It would
be desirable for Min, which takes f as a functional argument, to be
able to use the derivative of f without the caller’s knowledge. Thus, it
would be advantageous for a system to provide a higher-order function
D that maps functions to their derivatives. With such a facility, (1)
would take the form

. . .D (λx D (λy . g x y) . . .) . . .

This requires that nested invocation of D operate correctly.
Automatic Differentiation (AD), and in particular forward-mode AD

(Wengert, 1964), is one established method for computing derivatives
and can be used to implement D. The remainder of this paper discusses
issues surrounding such an implementation, and uses D to refer to the
notion of a derivative-taking operator implemented using forward-mode
AD. We hypothesize that it is not possible to formulate a D that prop-
erly nests as a function definition in current pure dialects of Haskell.
This is somewhat ironic, as while D can be implemented using one of
several alternate non-referentially-transparent mechanisms, D itself is

referentially transparent.1

The remainder of this paper elaborates on the above observations.
We begin with a brief overview of forward-mode AD in section 2. We
then show how to implement D as a procedure definition in Scheme, in
a way that can properly nest. To do this we first construct an API to the
necessary data structures, in section 3, and then use this machinery to
build a forward-mode AD engine and drive it using standard Scheme

procedure names via overloading, in section 4. This implementation
uses only one non-referentially-transparent side effect. We discuss, in
section 5, a number of alternate non-referentially-transparent mech-
anisms that suffice to implement D. It is noted in section 6 that,
in certain cases, static analysis or program transformation can allow
nested invocation of D without non-referentially-transparent mecha-
nisms. We give an example that utilizes nested invocation of D in

1 There are subtle differences between D and the classical derivative-taking oper-

ator in mathematics. For example, given the definition f x
△
= if x = c then c else x

the derivative of f at c is 1, yet D f c = 0. Like all mathematical notions, classical
differentiation is referentially transparent, since the derivative of a function is defined
on its extension rather than its intension. Furthermore, D is also referentially trans-
parent in the sense that if t1 and t2 are semantically equivalent, then D t1 and D t2
are also semantically equivalent. (Note that the presence of the = predicate in the
antecedent of the conditional in the definition of f does not license β-substitution,
because that predicate does not necessarily correspond to semantic equivalence.)

hosc2005-revision3.tex; 27/01/2007; 11:16; p.2

Nesting Forward-Mode AD 3

section 7. We conclude, in section 8, with a discussion of the history and
implications of the desire to incorporate differentiation into functional
programming.

2. Forward-Mode AD as Nonstandard Interpretation

Forward-mode AD computes the derivative of a function f at a point c

by evaluating f (c + ε) under a nonstandard interpretation that asso-
ciates a conceptually infinitesimal perturbation with each real number,
propagates these augmented values according to the rules of calculus
(Leibnitz, 1664; Newton, 1704), and extracts the perturbation of the
result. We use x + x′ε to denote a dual number (Clifford, 1873), i.e. x

with associated perturbation x′, by analogy with the standard notation
a + bi for complex numbers.2 To see how this works, let us manually
apply the mechanism to a simple expression.

d

dx
x2 + x + 1

∣

∣

∣

∣

x=3
= D (λx . x × x + x + 1) 3

= E ((λx . x × x + x + 1) (3 + ε))

= E ((3 + ε) × (3 + ε) + (3 + ε) + 1)

= E ((9 + 6ε) + (3 + ε) + 1)

= E (13 + 7ε)

= 7

where E (x + x′ε)
△
= x′ and D f c

△
= E (f (c + ε)). This is the essence

of forward-mode AD.3

2 Just as arithmetic on complex numbers a+bi can be defined by taking i2 = −1,
arithmetic on dual numbers x + x′ε can be defined by taking ε2 = 0 but ε 6= 0.
Implementations of complex arithmetic typically represent complex numbers a + bi
as Argand pairs 〈a, b〉, and similarly implementations of forward-mode AD typically
represent dual numbers x + x′ε as tangent-bundle pairs 〈x, x′〉. Furthermore, just as
implementations of complex arithmetic typically overload the arithmetic primitives
to manipulate complex numbers, implementations of forward-mode AD typically
overload the arithmetic primitives to manipulate dual numbers. One important dif-
ference between complex numbers and dual numbers is that while complex numbers
can only have real components, as used here components of members of a new
dual-number type can be either reals or members of an existing dual-number type.

3 For expository simplicity, we limit our discussion of forward-mode AD to a
special case, namely first derivatives of univariate functions R → R. However,
forward-mode immediately generalizes in two different ways. First, vector functions
can be handled with the same efficiency and mechanisms as scalar functions by
adopting a directional derivative operator, which finds the directional derivative
y′ : R

m of f : R
n → R

m at x : R
n in the direction x′ : R

n by calculating

hosc2005-revision3.tex; 27/01/2007; 11:16; p.3

4 J. M. Siskind and B. A. Pearlmutter

In order for this mechanism to correctly handle nesting, we must
distinguish between different perturbations introduced by different in-
vocations of D. One way to do this is to create a hierarchy of dual-
number types, distinguished by a distinct ε for each distinct invocation
of D. The components of a dual-number type created for a non-nested
invocation of D are reals, while the components of a dual-number type
created for a nested invocation of D are members of the dual-number
type of the immediately surrounding invocation of D.

The intuition behind the necessity and sufficiency of such an exten-
sion is illustrated by the following example.

d

dx

(

x

(

d

dy
xy

∣

∣

∣

∣

y=2

))∣

∣

∣

∣

∣

x=1

= D (λx . x × (D (λy . x × y) 2)) 1

= E εa ((λx . x × (D (λy . x × y) 2)) (1 + εa))

= E εa ((1 + εa) × (D (λy . (1 + εa) × y) 2))

= E εa ((1 + εa) × (E εb ((λy . (1 + εa) × y) (2 + εb))))

= E εa ((1 + εa) × (E εb ((1 + εa) × (2 + εb))))

= E εa ((1 + εa) × (E εb ((2 + 2εa) + (1 + εa)εb)))

= E εa ((1 + εa) × (1 + εa))

= E εa (1 + 2εa)

= 2

where εa and εb are introduced by the two distinct invocations of D.
The accessor E is defined as

E ε (x + x′ε)
△
= x′

and then D is defined as

D f c
△
= E ε (f (c + ε))

in which ε is unique to each live invocation of D. As can be seen
in the above example, failing to distinguish εa from εb would lead

(y1 + y′
1ε, . . . , ym + y′

m
ε) = f (x1 + x′

1ε, . . . , xn + x′
n
ε) using the same nonstandard

interpretation of f on dual numbers as in the scalar case. Second, a dual number
can be viewed as a power series that has been truncated at ε2. One can extend
the notion of dual numbers to allow higher-order terms, either by truncating at
a higher order or by representing the coefficients of an infinite power series as a
stream (Karczmarczuk, 1998a, 1998b, 1999, 2001; Nilsson, 2003; Pearlmutter and
Siskind, 2007), thus computing higher-order derivatives. Nested invocation of a first-
order derivative-taking operator can also compute higher-order derivatives. However,
nested invocation of a first-order derivative-taking operator can compute things that
a single invocation of a higher-order derivative-taking operator cannot.

hosc2005-revision3.tex; 27/01/2007; 11:16; p.4

Nesting Forward-Mode AD 5

to an incorrect result: (1 + εa) × (2 + εb) would be interpreted as
(1 + ε) × (2 + ε) = 2 + 3ε causing the above expression to evaluate
to 3 instead of 2. Furthermore, even if we would distinguish εa from εb

but erroneously take εa × εb = 0 in a fashion analogous to ε2
a = ε2

b = 0
we would also obtain an incorrect result: (1 + εa) × (2 + εb) would
reduce to 1 + 2εa + εb causing the above expression to evaluate to 1
instead of 2. Any implementation that did not posses a mechanism for
properly distinguishing perturbations for different invocations of D or
that failed to preserve nonzero cross perturbations could not support
nested invocation of D or nested invocation of functions like Min that
utilize D.

3. An API for Dual Numbers

As we have seen, nested invocations of D require distinct ε values. The
components of a dual-number type created for a non-nested invocation
of D are reals, while the components of a dual-number type created
for a nested invocation of D are members of the dual-number type of
the immediately surrounding invocation of D. If “multiplied out,” the
resulting dual numbers correspond to first-order multinomials where
the ε values play the role of variables. This can be seen as a table of real
numbers indexed by subsets of the live ε values. If the original nested
structure is retained, we have a tree representation of depth n when
there are n nested invocations of D, with each level splitting on the
presence of a particular ε value in the key, and the fringe holding the real
numbers. Such tree representations are tempting because perturbations
are often zero, and trees admit to a sparser representation where levels
corresponding to perturbations of zero are skipped.

We impose an ordering on the ε values such that if ε is generated
by an invocation of D nested inside the invocation of D that generated
ε′, then ε′ ≺ ε. Trees representing dual numbers can then obey the
invariant that in a dual number x+x′ε the x and x′ slots are either reals
or dual numbers over some ε′ where ε′ ≺ ε, which improves efficiency.
This is maintained in exhibited code, but made use of only in tree-based
implementations of the following API for manipulating dual numbers:

DualNumber? p returns true iff p is a dual number.

DualNumber ε x 0
△
= x

DualNumber ε x x′ △
= x + x′ε

Epsilon x + x′ε
△
= ε

Primal ε x
△
= x when x is a real.

Primal ε (x + x′ε)
△
= x

hosc2005-revision3.tex; 27/01/2007; 11:16; p.5

6 J. M. Siskind and B. A. Pearlmutter

(define <_e <)

(define dual-number?
(let ((pair? pair?))
(lambda (p) (and (pair? p) (eq? (car p) ’dual-number)))))

(define (dual-number e x x-prime)
(if (zero? x-prime) x (list ’dual-number e x x-prime)))

(define epsilon cadr)

(define (primal e p)
(if (or (not (dual-number? p)) (<_e (epsilon p) e)) p (caddr p)))

(define (perturbation e p)
(if (or (not (dual-number? p)) (<_e (epsilon p) e)) 0 (cadddr p)))

(define generate-epsilon (let ((e 0)) (lambda () (set! e (+ e 1)) e)))

Figure 1. A Scheme implementation of the proposed API for dual numbers.

Primal ε (x + x′ε′)
△
= x + x′ε′ when ε′ ≺ ε.

Perturbation ε x
△
= 0 when x is a real.

Perturbation ε (x + x′ε)
△
= x′

Perturbation ε (x + x′ε′)
△
= 0 when ε′ ≺ ε.

Generateε returns a fresh ε such that all other live ε′ ≺ ε.

Figure 1 contains an implementation of this API in Scheme.4 Note
that the pattern of usage,5 together with the above invariant, imply
that Primal ε (x+x′ε′) and Perturbation ε (x+x′ε′) will never be
called when ε ≺ ε′.

4. An Implementation of D that Supports Nesting

Computing derivatives with dual numbers requires extensions of the
arithmetic primitives. For instance

(x + x′ε) + (y + y′ε) = (x + y) + (x′ + y′)ε

Similarly, since ε2 = 0

(x + x′ε) × (y + y′ε) = (x × y) + (x × y′ + x′ × y)ε

4 All code examples from this paper are available from http://www.bcl.

hamilton.ie/∼qobi/nesting/.
5

Primal and Perturbation are only called in the definitions of
lift-real->real, lift-real*real->real, and primal* in figure 2 and in the
variant definitions of derivative on pages 7–10. In lift-real->real and
primal*, all calls pass the ε of the second argument as the first argument. In
lift-real*real->real, all calls pass the maximum ε of p1 and p2 as the second
argument. In derivative, the call passes the generated ε for that invocation as the
second argument.

hosc2005-revision3.tex; 27/01/2007; 11:16; p.6

Nesting Forward-Mode AD 7

Note that the x, x′, y, and y′ values in the above might themselves be
dual numbers with a different ε′ generated from an earlier invocation
of D than that which generated ε.

In the general case, a unary function f : α → α with derivative
f ′ : α → α is extended to operate on dual numbers whose components
are of type α as follows:

f (x + x′ε) = (f x) + ((f ′ x) × x′)ε

where × : α × α → α. Similarly, a binary function f : α × α → α

whose derivatives with respect to the first and second arguments are
f1 : α × α → α and f2 : α × α → α respectively is extended to operate
on dual numbers whose components are of type α as follows:

f (x + x′ε) (y + y′ε) = (f x y) + ((f1 x y) × x′ + (f2 x y) × y′)ε

where × : α × α → α and + : α × α → α. The Scheme code in
figure 2 implements the above mechanism in a fashion that will generate
variants of functions that accept arguments of any dual-number type in
the hierarchy and will automatically coerce elements of a lower type in
the hierarchy to a higher type, as necessary, and treat native Scheme

numbers as elements of the base type in the hierarchy. Figure 3 contains
code that uses the code in figure 2 to overload some numeric Scheme

primitives.
Given the code in figures 1, 2, and 3, a version of D that supports

nesting can be implemented as:
(define (derivative f)
(lambda (x)
(let ((e (generate-epsilon)))
(perturbation e (f (dual-number e x 1))))))

The above exposition demonstrates how to implement D as a refer-
entially transparent defined function that allows nested invocation, in
a purely functional style, through the use of a single non-referentially-
transparent mechanism: the side effect in Generateε.

5. Alternate Mechanisms for Generating Epsilons

One can implement a D that allows nested invocation using only a single
non-referentially-transparent mechanism to generate a new ε for each
invocation of D. The implementation in figure 1 represents ε values as
integers and generates new ones using a non-referentially-transparent
side-effect mechanism to increment a global counter.

Whenever a dual number with a non-zero perturbation of ε cannot
escape an invocation of D that generates ε, the number of live ε values

hosc2005-revision3.tex; 27/01/2007; 11:16; p.7

8 J. M. Siskind and B. A. Pearlmutter

(define (lift-real->real f df/dx)
(letrec ((self (lambda (p)

(if (dual-number? p)
(let ((e (epsilon p)))
(dual-number
e
(self (primal e p))
(* (df/dx (primal e p)) (perturbation e p))))

(f p)))))
self))

(define (lift-real*real->real f df/dx1 df/dx2)
(letrec ((self

(lambda (p1 p2)
(if (or (dual-number? p1)

(dual-number? p2))
(let ((e (if (or (not (dual-number? p1))

(and (dual-number? p2)
(<_e (epsilon p1) (epsilon p2))))

(epsilon p2)
(epsilon p1))))

(dual-number
e
(self (primal e p1) (primal e p2))
(+ (* (df/dx1 (primal e p1) (primal e p2))

(perturbation e p1))
(* (df/dx2 (primal e p1) (primal e p2))

(perturbation e p2)))))
(f p1 p2)))))

self))

(define (primal* p)
(if (dual-number? p) (primal* (primal (epsilon p) p)) p))

(define (lift-real^n->boolean f) (lambda ps (apply f (map primal* ps))))

Figure 2. A mechanism for extending Scheme procedures of type R → R,
R × R → R, and R

n → boolean to support dual numbers.

is bounded by the number of live invocations of D. This is guaranteed to
be the case when one refrains from using non-referentially-transparent
language features, like side effects, dynamic scoping, locatives, gener-
ative types, eq?, fluid-let, call/cc, dynamic-wind, throw, catch,
block, return-from, unwind-protect, etc., except to implement D.
In such cases, one can fold the generation of ε values into D as follows:

(define derivative
(let ((e 0))
(lambda (f)
(lambda (x)
(set! e (+ e 1))
(let ((result

(perturbation e (f (dual-number e x 1)))))
(set! e (- e 1))
result)))))

Alternatively, one can replace one non-referentially-transparent mech-
anism, side effects, with another non-referentially-transparent mecha-
nism, dynamic scoping via fluid-let, which mutates a variable for

hosc2005-revision3.tex; 27/01/2007; 11:16; p.8

Nesting Forward-Mode AD 9

(define pair?
(let ((pair? pair?))
(lambda (x) (and (pair? x) (not (dual-number? x))))))

(define + (lift-real*real->real + (lambda (x1 x2) 1) (lambda (x1 x2) 1)))

(define - (lift-real*real->real - (lambda (x1 x2) 1) (lambda (x1 x2) -1)))

(define *
(lift-real*real->real * (lambda (x1 x2) x2) (lambda (x1 x2) x1)))

(define /
(lift-real*real->real
/ (lambda (x1 x2) (/ 1 x2)) (lambda (x1 x2) (- 0 (/ x1 (* x2 x2))))))

(define sqrt (lift-real->real sqrt (lambda (x) (/ 1 (* 2 (sqrt x))))))

(define exp (lift-real->real exp (lambda (x) (exp x))))

(define log (lift-real->real log (lambda (x) (/ 1 x))))

(define sin (lift-real->real sin (lambda (x) (cos x))))

(define cos (lift-real->real cos (lambda (x) (- 0 (sin x)))))

(define atan (lift-real*real->real
atan
(lambda (x1 x2) (/ (- 0 x2) (+ (* x1 x1) (* x2 x2))))
(lambda (x1 x2) (/ x1 (+ (* x1 x1) (* x2 x2))))))

(define = (lift-real^n->boolean =))

(define < (lift-real^n->boolean <))

(define > (lift-real^n->boolean >))

(define <= (lift-real^n->boolean <=))

(define >= (lift-real^n->boolean >=))

(define zero? (lift-real^n->boolean zero?))

(define positive? (lift-real^n->boolean positive?))

(define negative? (lift-real^n->boolean negative?))

(define real? (lift-real^n->boolean real?))

Figure 3. Overloading some Scheme procedures that operate on reals with exten-
sions that support dual numbers. Note that the overloaded +, -, *, /, and atan

procedures are restricted to accept precisely two arguments.

a constrained dynamic extent. This can generate distinct ε values for
distinct dynamically nested invocations of D.

(define derivative
(let ((e 0))
(lambda (f)
(lambda (x)
(fluid-let ((e (+ e 1)))
(perturbation e (f (dual-number e x 1))))))))

When, additionally, the implementation uses a stack for activation
records and it can be guaranteed that activation records correspond-

hosc2005-revision3.tex; 27/01/2007; 11:16; p.9

10 J. M. Siskind and B. A. Pearlmutter

ing to nested function invocations will be allocated at increasing ad-
dresses, one can alternatively use another non-referentially-transparent
mechanism, locatives:

(define (derivative f)
(lambda (x)
(let ((e (variable-address->integer x)))
(perturbation e (f (dual-number e x 1))))))

In this variation, the alpha renaming that is performed by a typi-
cal programming-language implementation as part of beta reduction
distinguishes ε values generated by distinct invocations.

An alternative to representing dual numbers as explicit trees would
be to represent their fringe as a (potentially sparse) association list
indexed by path. For example, the nested dual-number tree

((2 + 2εa) + (1 + εa)εb)

can be multiplied out as

2 + 2εa + εb + εaεb

which would be represented as the association list

{{} 7→ 2, {εa} 7→ 2, {εb} 7→ 1, {εa, εb} 7→ 1}

This strategy eliminates the need for ε values to be ordered by invo-
cation depth, thus admitting an implementation where ε values are
unique but not ordered. An implementation of our API for dual num-
bers that uses such a representation is shown in figure 4. This imple-
ments D where ε values are represented as fresh pairs allocated by
cons, a referentially-transparent mechanism, in concert with eq?, a
non-referentially-transparent mechanism, and is reminiscent of a (non-
referentially-transparent) technique used in Haskell called observable
sharing (Claessen and Sands, 1999).

Yet another alternative strategy for representing dual numbers is
to represent the ε values implicitly as types instead of explicitly as
integers, using another non-referentially-transparent mechanism, gen-
erative structure types, such as those available in PLT Scheme (Flatt,
2005). An implementation of this strategy is given in figure 5.

As noted by Alex Shafarenko (personal communication), the need
to distinguish the different ε values introduced by different invocations
of D is similar, in some ways, to the need to distinguish different
lambda-bound variables with the same name during beta reduction
to avoid capturing free variables. The latter is accomplished via the
alpha renaming that is performed by a typical programming-language
implementation. However, as noted above, the ε values are not rep-
resented as programming-language variables, since dual numbers are

hosc2005-revision3.tex; 27/01/2007; 11:16; p.10

Nesting Forward-Mode AD 11

(define (<_e e1 e2) #t)

(define (some p l)
(and (not (null? l)) (or (p (car l)) (some p (cdr l)))))

(define (find-if p l)
(let loop ((l l))
(cond ((null? l) #f)

((p (car l)) (car l))
(else (loop (cdr l))))))

(define (remove-if p l)
(let loop ((l l) (c ’()))
(cond ((null? l) (reverse c))

((p (car l)) (loop (cdr l) c))
(else (loop (cdr l) (cons (car l) c))))))

(define (removeq x l)
(let loop ((l l) (c ’()))
(cond ((null? l) (reverse c))

((eq? x (car l)) (loop (cdr l) c))
(else (loop (cdr l) (cons (car l) c))))))

(define terms
(let ((pair? pair?))
(lambda (p)
(if (and (pair? p) (eq? (car p) ’dual-number))

(cadr p)
(list (cons ’() p))))))

(define (terms->dual-number terms)
(cond ((null? terms) 0)

((and (null? (cdr terms)) (null? (car (car terms))))
(cdr (car terms)))
(else (list ’dual-number terms))))

(define (dual-number? p)
(some (lambda (term) (not (null? (car term)))) (terms p)))

(define (dual-number e x x-prime)
(terms->dual-number
(append (terms x)

(map (lambda (term) (cons (cons e (car term)) (cdr term)))
(terms x-prime)))))

(define (epsilon p)
(car (car (find-if (lambda (term) (not (null? (car term)))) (terms p)))))

(define (primal e p)
(terms->dual-number
(remove-if (lambda (term) (memq e (car term))) (terms p))))

(define (perturbation e p)
(terms->dual-number
(map (lambda (term) (cons (removeq e (car term)) (cdr term)))

(remove-if (lambda (term) (not (memq e (car term)))) (terms p)))))

(define (generate-epsilon) (cons #f #f))

Figure 4. Implementation of an alternate representation for dual numbers as sparse
association lists of their fringe elements indexed by path.

represented as data structures, not terms. Thus the typical mechanism
of alpha-renaming does not suffice to implement a D that allows nested
invocation.

hosc2005-revision3.tex; 27/01/2007; 11:16; p.11

12 J. M. Siskind and B. A. Pearlmutter

(define (derivative f)
(lambda (x)
(let-struct bundle (primal tangent)
(define (dual-number x x-prime)
(if (zero? x-prime) x (make-bundle x x-prime)))

(define (primal p) (if (bundle? p) (bundle-primal p) p))

(define (perturbation p) (if (bundle? p) (bundle-tangent p) 0))

(define (raise-alpha->alpha f df/dx)
(let ((* *))
(lambda (p)
(dual-number
(f (primal p)) (* (df/dx (primal p)) (perturbation p))))))

(define (raise-alpha*alpha->alpha f df/dx1 df/dx2)
(let ((+ +) (* *))
(lambda (p1 p2)
(dual-number
(f (primal p1) (primal p2))
(+ (* (df/dx1 (primal p1) (primal p2)) (perturbation p1))

(* (df/dx2 (primal p1) (primal p2)) (perturbation p2)))))))

(define (raise-alpha^n->boolean f)
(lambda ps (apply f (map primal ps))))

(fluid-let ((+ (raise-alpha*alpha->alpha
+ (lambda (x1 x2) 1) (lambda (x1 x2) 1)))

(- (raise-alpha*alpha->alpha
- (lambda (x1 x2) 1) (lambda (x1 x2) -1)))

(* (raise-alpha*alpha->alpha
* (lambda (x1 x2) x2) (lambda (x1 x2) x1)))

(/ (let ((- -) (* *) (/ /))
(raise-alpha*alpha->alpha
/
(lambda (x1 x2) (/ 1 x2))
(lambda (x1 x2) (- 0 (/ x1 (* x2 x2)))))))

(sqrt (let ((* *) (/ /) (sqrt sqrt))
(raise-alpha->alpha
sqrt (lambda (x) (/ 1 (* 2 (sqrt x)))))))

(exp (raise-alpha->alpha exp exp))
(log (let ((/ /))

(raise-alpha->alpha log (lambda (x) (/ 1 x)))))
(sin (raise-alpha->alpha sin cos))
(cos (let ((- -) (sin sin))

(raise-alpha->alpha cos (lambda (x) (- 0 (sin x))))))
(atan (let ((+ +) (- -) (* *) (/ /))

(raise-alpha*alpha->alpha
atan
(lambda (x1 x2)
(/ (- 0 x2) (+ (* x1 x1) (* x2 x2))))

(lambda (x1 x2) (/ x1 (+ (* x1 x1) (* x2 x2)))))))
(= (raise-alpha^n->boolean =))
(< (raise-alpha^n->boolean <))
(> (raise-alpha^n->boolean >))
(<= (raise-alpha^n->boolean <=))
(>= (raise-alpha^n->boolean >=))
(zero? (raise-alpha^n->boolean zero?))
(positive? (raise-alpha^n->boolean positive?))
(negative? (raise-alpha^n->boolean negative?))
(real? (raise-alpha^n->boolean real?)))

(perturbation (f (dual-number x 1)))))))

Figure 5. Implementation of D in PLT Scheme using generative structure types.

hosc2005-revision3.tex; 27/01/2007; 11:16; p.12

Nesting Forward-Mode AD 13

Rewrite systems are often formulated in terms of rules that map
source-term patterns to target-term patterns. Such term patterns may
contain pattern variables that range over terms. If a pattern variable
in the target pattern appears in the source pattern, it is bound, during
rewrite, to the subterm matching the pattern variable in the source
term. If a pattern variable in the target pattern does not appear in
the source pattern, it is free. Some rewrite systems take free pattern
variables to denote the generation of a fresh variable in the term lan-
guage. This constitutes a form of alpha renaming. Unrestricted use of
such a facility would not be referentially transparent. However, one can
formulate a D that is referentially transparent and that allows nested
invocation as a rewrite rule in such a rewrite system

D f c ; E ε (f (c + ε))

where f , c, and ε are pattern variables.
A similar capability exists in Prolog. Variables in the right-hand

side of a clause that do not appear in the left-hand side generate
logic variables. These are implemented in a distinct fashion from those
that do appear in the left-hand side. Proper implementation requires
both kinds of variables to be alpha renamed during resolution. Pure
Prolog, including logic variables and their requisite alpha renaming,
is referentially transparent. However, implementing a D that uses logic
variables to distinguish ε values requires the use of a non-referentially-
transparent extra-logical primitive to prevent unification of such logic
variables.

6. Eliminating Run-Time Generation of ε Values

Implementing a D that allows nested invocation requires that each
nested invocation of D have a new ε value. This can be done dynami-
cally using a single non-referentially-transparent mechanism. However
static mechanisms can be used instead under special circumstances,
namely when static analysis can determine sufficient information about
the dynamic call graph involving D to allow static allocation of ε values.

The static analyses and transformations can be manually simulated
by a programmer. To do this, one must expose ε as a parameter to D

D ε f c
△
= E ε (f (c + ε))

and require the programmer to guarantee that each nested invocation
of D is supplied with a distinct ε and that these obey the ≺ invariant.
In the general case, this requires that each function, such as Min,

hosc2005-revision3.tex; 27/01/2007; 11:16; p.13

14 J. M. Siskind and B. A. Pearlmutter

that calls D, directly or indirectly, also expose ε as a parameter. This
would be a serious violation of modularity and separation of concerns:
in general, the caller of a higher-order function like Min should be
oblivious to whether or not that higher-order function uses D internally.
Such a discipline would also make expressions involving the D operator
extremely fragile.

7. Example

The ability to nest invocation of D is useful in numerical simulation of
physical systems, as is illustrated by the following example. Consider a
charged particle traveling non-relativistically in a plane with position

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

Path of Charged Particle

w(0)=0
w(1)=0.2308
w(2)=0.1944
w(3)=0.2098
w(4)=0.2020

Figure 6. Plot of the path of a charged particle at various points during Newton
optimization of the parameter w controlling an electric field to minimize the distance
between the particle’s x-intercept and the origin.

hosc2005-revision3.tex; 27/01/2007; 11:16; p.14

Nesting Forward-Mode AD 15

x(t), velocity ẋ(t), initial position x(0) = (0, 8), and initial velocity
ẋ(0) = (0.75, 0). It is accelerated by an electric field formed by a pair
of repulsive bodies,

p(x; w) = ‖x − (10, 10 − w)‖−1 + ‖x − (10, 0)‖−1

where w is a modifiable control parameter of the system. The particle
hits the x-axis at position x(tf). We use a textbook implementation
of Newton’s method to optimize w so as to minimize E(w) = x0(tf)2,
with the goal of finding a value for w that causes the particle’s path to
intersect the origin.

We use Naive Euler ODE integration

ẍ(t) = − ∇x p(x)|
x=x(t)

ẋ(t + ∆t) = ẋ(t) + ∆t ẍ(t)

x(t + ∆t) = x(t) + ∆t ẋ(t)

to compute the particle’s path, taking ∆t = 10−1. We use linear inter-
polation to find the point where the particle hits the x-axis.

When x1(t + ∆t) ≤ 0

let: ∆tf =
x1(t + ∆t) − x1(t)

ẋ1(t)

tf = t + ∆tf

x(tf) = x(t) + ∆tf ẋ(t)

Error: E(w) = x0(tf)2

We use D to calculate ∇x p(x) and also to calculate the first and second
derivatives of E with respect to w when minimizing E using Newton’s
method.

w(i+1) = w(i) −
E′(w(i))

E′′(w(i))

Note that computing E invokes D to compute ∇x p(x) and thus com-
puting E′ and E′′ involve nested invocation of D. We start the min-
imization process at w(0) = 0 and terminate the minimization when
|E′(w(i))| < 10−1. The paths taken by the particle at each iteration of
the minimization process are shown in figure 6. Code that implements
this example is given in figure 7.

8. Discussion

It is quite natural to consider augmenting a functional-programming
language with a derivative-taking operator like D. Indeed, derivative-
taking operators were used as a motivation for the lambda calculus.

hosc2005-revision3.tex; 27/01/2007; 11:16; p.15

16 J. M. Siskind and B. A. Pearlmutter

(define first car)

(define rest cdr)

(define (map-n f n)
(let loop ((i 0)) (if (= i n) ’() (cons (f i) (loop (+ i 1))))))

(define (reduce f l i)
(if (null? l) i (f (first l) (reduce f (rest l) i))))

(define (sqr x) (* x x))

(define (v+ u v) (map + u v))

(define (v- u v) (map - u v))

(define (k*v k v) (map (lambda (x) (* k x)) v))

(define (dot u v) (reduce + (map * u v) 0))

(define (distance u v) (let ((d (v- v u))) (sqrt (dot d d))))

(define (replace-ith x i xi)
(if (zero? i)

(cons xi (rest x))
(cons (first x) (replace-ith (rest x) (- i 1) xi))))

(define (gradient f)
(lambda (x)
(map-n
(lambda (i)
((derivative (lambda (xi) (f (replace-ith x i xi)))) (list-ref x i)))

(length x))))

(define x-initial ’(0 8))
(define xdot-initial ’(0.75 0))
(define w0 0)
(define error-tolerance 1e-1)
(define delta-t 1e-1)

(define (naive-euler w)
(let ((charges (list (list 10 (- 10 w)) (list 10 0))))
(define (p x)
(reduce + (map (lambda (c) (/ 1 (distance x c))) charges) 0))
(let loop ((x x-initial) (xdot xdot-initial))
(let* ((xddot (k*v -1 ((gradient p) x)))

(x-new (v+ x (k*v delta-t xdot))))
(if (positive? (list-ref x-new 1))

(loop x-new (v+ xdot (k*v delta-t xddot)))
(let* ((delta-t-f (/ (- (list-ref x-new 1) (list-ref x 1))

(list-ref xdot 1)))
(x-t-f (v+ x (k*v delta-t-f xdot))))

(sqr (list-ref x-t-f 0))))))))

(define (argmin-using-textbook-newtons-method f x)
(let loop ((x x) (i 0))
(let ((df-dx ((derivative f) x)))
(if (< (abs df-dx) error-tolerance)

x
(loop (- x (/ df-dx ((derivative (derivative f)) x))) (+ i 1))))))

(define (particle) (argmin-using-textbook-newtons-method naive-euler w0))

Figure 7. An abbreviated version of the code that implements the charged particle
path-optimization example from section 7. The unabbreviated code that produced
figure 6 is available at http://www.bcl.hamilton.ie/∼qobi/nesting/.

hosc2005-revision3.tex; 27/01/2007; 11:16; p.16

Nesting Forward-Mode AD 17

It is, of course, not excluded that the range of arguments or range
of values of a function should consist wholly or partly of functions.
The derivative, as this notion appears in the elementary differential
calculus, is a familiar mathematical example of a function for which
both ranges consist of functions. (Church, 1941, ¶4)

We have taken this example to heart and explored issues that arise
when implementing D, a derivative-taking operator that uses forward-
mode AD. Interestingly, we found no way to implement D in a pure
lambda calculus, and a simple example6 seems to show that D cannot
be formulated in Church’s original untyped lambda calculus. We were,
however, able to implement D, which is itself pure, using any one of a
variety of impure mechanisms.

Techniques roughly similar to those in figure 4 were used to im-
plement a nestable version of D in the undocumented internals of
scmutils, a software package accompanying a textbook on classical
mechanics (Sussman et al., 2001). On the other hand, previous im-
plementations of forward-mode AD in pure Haskell (Karczmarczuk,
1998a, 1998b, 1999, 2001; Nilsson, 2003) do not include mechanisms
that would support implementation of a nestable D. Indeed, we hypoth-
esize that a nestable D cannot be formulated as a function definition
in current pure dialects of Haskell.

While all known techniques for implementing a nestable D use non-
referentially-transparent mechanisms, D itself is referentially transpar-
ent. This motivates inclusion of D, or similar functionality, as a primi-
tive feature of pure functional-programming languages whose intended
uses include numeric computing.

References

Church, A.: 1941, The Calculi of Lambda Conversion. Princeton, NJ: Princeton
University Press.

Claessen, K. and D. Sands: 1999, ‘Observable Sharing for Functional Circuit De-
scription’. In: Proc. of Asian Computer Science Conference (ASIAN). Springer
Verlag.

Clifford, W. K.: 1873, ‘Preliminary Sketch of Bi-quaternions’. Proceedings of the
London Mathematical Society 4, 381–395.

6 Consider D (λx . x× (D (λy . x) c)) c versus D (λx . x× (D (λy . y) c)) c. In
the untyped lambda calculus, the boxed x and y must have the same value, since
the only operation D can perform on the function it receives as its first argument is
to call it with some argument. That being so, the inner calls to D in the two cases
evaluate to the same value. But for the results to be correct (0 for the expression
on the left, 1 for that on the right), the inner calls must evaluate to correct values,
with the inner call on the left evaluating to 0 and that on the right evaluating to 1.

hosc2005-revision3.tex; 27/01/2007; 11:16; p.17

18 J. M. Siskind and B. A. Pearlmutter

Flatt, M.: 2005, ‘PLT MzScheme: Language Manual’. Technical Report PLT-TR05-
1-v300, PLT Scheme Inc.

Karczmarczuk, J.: 1998a, ‘Functional Differentiation of Computer Programs’. In:
Proceedings of the III ACM SIGPLAN International Conference on Functional
Programming. Baltimore, MD, pp. 195–203.

Karczmarczuk, J.: 1998b, ‘Lazy Differential Algebra and its Applications’. In: Work-
shop, III International Summer School on Advanced Functional Programming.
Braga, Portugal.

Karczmarczuk, J.: 1999, ‘Functional Coding of Differential Forms’. In: Scottish
Workshop on FP.

Karczmarczuk, J.: 2001, ‘Functional Differentiation of Computer Programs’. Journal
of Higher-Order and Symbolic Computation 14, 35–57.

Leibnitz, G. W.: 1664, ‘A new method for maxima and minima as well as tangents,
which is impeded neither by fractional nor irrational quantities, and a remarkable
type of calculus for this’. Acta Eruditorum.

Newton, I.: 1704, ‘De quadratura curvarum’. In Optiks, 1704 edition. Appendix.
Nilsson, H.: 2003, ‘Functional Automatic Differentiation with Dirac Impulses’.

In: Proceedings of the Eighth ACM SIGPLAN International Conference on
Functional Programming. Uppsala, Sweden, pp. 153–64, ACM Press.

Pearlmutter, B. A. and J. M. Siskind: 2007, ‘Lazy Multivariate Higher-Order
Forward-Mode AD’. In: Proceedings of the 2007 Symposium on Principles of
Programming Languages. Nice, France, pp. 155–60.

Sussman, G. J., J. Wisdom, and M. E. Mayer: 2001, Structure and Interpretation of
Classical Mechanics. Cambridge, MA: MIT Press.

Wengert, R. E.: 1964, ‘A simple automatic derivative evaluation program’. Comm.
of the ACM 7(8), 463–4.

hosc2005-revision3.tex; 27/01/2007; 11:16; p.18

