Axiomatic Semantics
The guarded command language

Semantics
- A programming language specification consists of a syntactic description and a semantic description.
- Syntactic description: symbols we can use in a language
- Semantic Description: what phrases in a programming language mean.
- Semantics may be given as
 - Denotational
 - Axiomatic
 - Operational
- Here we concentrate on axiomatic descriptions: the meaning is defined by a logical calculus called program logic which provides a tool for the derivation of programs and assertions of the form \(\{ Q \} p \{ R \} \)

Example:
- Read in 2 integers and output their product divided by their sum. You are guaranteed that there are 2 integer values in the input stream.
- Precondition = \{ Input stream contains two integer values \}
- Postcondition = \{ Product / Sum is output \}
- \(\{ Q \} p \{ R \} \) states that a program \(p \) once started in a state satisfying \(\{ Q \} \) will lead to a situation characterised by \(\{ R \} \)
- \(\{ Q \} \) may also be written as the weakest precondition of \(p \) that achieve postcondition \(R \) i.e. \(wp(p, R) \)

\[wp(S, R) \] represents the set of all states such that execution of \(S \) beginning in any one of them is guaranteed to terminate in a finite amount of time satisfying \(R \).
- Examples:
 - \(wp(i = i + 1, i <= 1) \)
 - S: if \(x >= y \) then \(z = x \) else \(z = y \), R: \(z = max(x, y) \)
 calculate \(wp(S, R) \)
 - Let \(S \) be as above and \(R: z = y \), calculate \(wp(S, R) \)
 - S: if \(x >= y \) then \(z = x \) else \(z = y \), R: \(z = y - 1 \)
 calculate \(wp(S, R) \)
 - Let \(S \) be as above, \(R: z = y + 1 \)

Some properties of \(wp \)
- Law of excluded miracle: \(wp(S, F) = F \)
- Distributivity of conjunction: \(wp(S, Q) \land wp(S, R) = wp(S, Q \land R) \)
- Law of monotonicity: if \(Q \Rightarrow R \) then \(wp(S, Q) \Rightarrow wp(S, R) \)
- Distributivity of disjunction: \(wp(S, Q) \lor wp(S, R) \Rightarrow wp(S, Q \lor R) \)
- Non-deterministic:
 - Execution of a command is non-deterministic if it need not always be exactly the same each time it is begun in the same state
 - e.g. \(\{ x = 4 \} x := 14 \| x := x + 1 \) \? \)

- Command \(S \) is usually designed to establish the truth of a postcondition \(R \). We may not be interested in \(wp(S, R) \). If we can find a stronger precondition \(Q \) that represents a subset of the set \(wp(S, R) \) and can show \(Q \Rightarrow wp(S, R) \) then we are content with \(Q \) as the postcondition.
- When we write \(\{ Q \} p \{ R \} \) we denote Total Correctness
- \(Q \{ p \} R \) denotes partial correctness.
Exercises

- Determine
 - \(\text{wp}(i := i + 1, i > 0) \)
 - \(\text{wp}(i := i + 2, j := j - 2, i + j = 0) \)
 - \(\text{wp}(x := x^j; i := i - 1, x^* j = c) \)
 - \(\text{wp}(a[i] = 1, a[i] = a[i]) \)
 - \(\text{wp}(a[i] = i, a[i] = i) \)

Skip & Abort

- Skip
 - Execution of the skip command does nothing.
 - It is equivalent to the empty command;
 - It is the identity transformer
 - \(\text{wp}(\text{skip}, R) = R \)

- Abort
 - \(\text{wp}(\text{abort}, R) = \text{False} \)
 - Abort should never be executed as it may only be executed in a state satisfying \(\text{False} \).

Sequential Composition

- A way of composing larger programs from smaller segments
- If \(S_1 \) and \(S_2 \) are commands then \(S_1; S_2 \) is a new command
- \(\text{wp}(S_1; S_2, R) = \text{wp}(S_1, \text{wp}(S_2, R)) \)

Assignment

- \(x := e \)
- \(x \) is a simple variable, \(e \) is an expression and the types of \(x \) and \(e \) are the same
- \(\text{wp}(x := e, R) = \text{domain}(e) \text{ and } R_x^e \)
- Domain\((e) \) is a predicate that describes the set of all states in which \(e \) may be evaluated i.e. is well defined.
- Usually we write: \(\text{wp}(x := e, R) = R_x^e \)

Examples:

- \(\text{wp}(x := 5, x = 5) \)
- \(\text{wp}(x := 5, x != 5) \)
- \(\text{wp}(x := x+1, x < 10) \)
- \(\text{wp}(x := x^2, x^2 = 10) \)
- \(\text{wp}(x := a/b, p(x)) \)
- \(\text{wp}(x := b[i], x = b[i]) \) for \(b \), an array with indexes 0..100

Multiple Assignment

- Multiple assignment has the form
 - \(x_1, x_2, x_3, \ldots, x_n := e_1, e_2, e_3, \ldots, e_n \)
 - where \(x_i \) are distinct simple variables and \(e_i \) are expressions.

- Definition:
 - \(\text{wp}(x_1, x_2, \ldots, x_n := e_1, e_2, e_3, \ldots, e_n, R) \)
 - \(= \text{domain}(e_1, e_2, e_3, \ldots, e_n) \text{ and } R_{x_1, x_2, x_3, \ldots, x_n} \)
 - Examples:
 - \(x, y := y, x; \)
 - \(x, y, z := y, z, x; \)
 - \(\text{wp}(x, y := z, x, y < 0 \land x^* x'^* = c) \)

- Execution of an expression may change only the variables indicated and evaluation of an expression may change no variables.
- This prohibits functions with side effects and allows us to consider expressions as conventional mathematical entities i.e. we can use associativity, commutativity of addition etc.

- Example: Swapping two variables:
 - \(\text{wp}(x := x; y := y; x = X \land y = Y) \)
The if statement

If \(B_1 \rightarrow S_1 \)

[] \(B_2 \rightarrow S_2 \)

... [] \(B_n \rightarrow S_n \)

fi

- Each \(B_i \rightarrow S_i \) is a guarded command and each \(S_i \) may be any command e.g. skip, about, sequential composition etc.
- If any guard \(B_i \) is not well defined in the state in which execution begins, abortion may occur. This is because nothing is assumed by the order of evaluation of the guards.
- At least one guard must be true to avoid abortion.
- If at least one guard \(B_i \) is true, then 1 guarded command \(B_i \rightarrow S_i \) is chosen and \(S_i \) is executed.

\[
\text{W}p(\text{If}, R) = \text{domain}(BB) \land BB \land (B_1 \Rightarrow wp(S_1, R)) \land ... \land (B_n \Rightarrow wp(S_n, R))
\]

where \(BB = B_1 \lor B_2 \lor ... \lor B_n \)

\[
\text{wp}(\text{If}, R) = (\exists i : 1 \leq i \leq n : B_i) \land (\forall i : 1 \leq i \leq n : B_i \Rightarrow wp(S_i, R))
\]

Example: \(A \equiv (\text{if } x \geq 0 \rightarrow z := x) \) \[x \leq 0 \rightarrow z := -x \]

\(wp(A, z = \text{abs}(x)) = \text{True} \)

Exercises:

- Complete and Simplify:
 1. \(wp(S, a \geq 0 \land b > 0) \) where
 \(S = \) if \(a > b \rightarrow z := a - b \)
 [] \(b > a \rightarrow b := b - a \)
 fi

 2. \(wp(S, x \leq y) \) where
 \(S = \) if \(x > y \rightarrow x, y := y, x \)
 [] \(x < y \rightarrow \text{skip} \)
 fi

The Iterative Command

- Do \(B \rightarrow S \) od
 - where \(B \rightarrow S \) is a guarded command. This is equivalent to a while loop.
 - Do \(x>0 \rightarrow x := x - 1 \) od
 = while \(x>0 \) \{ \(x := x - 1 \) \}

We can generalize in the guarded command language to:

Do \(B_1 \rightarrow S_1 \) [] \(B_2 \rightarrow S_2 \)
...
[] \(B_n \rightarrow S_n \)
odo where \(n>0 \), and \(B_i \rightarrow S_i \) is a guarded command.

Note: Non Determinism is allowed.

- Let \(BB = B_1 \lor B_2 \lor ... \lor B_n \)
- \(H_i(R) = \neg BB \land R \)
 - Represents the set of states in which execution of DO terminates in 0 iterations with \(R \) true, as the guards are initially false
- \(wp(DO,R) = \exists k : 0 < k : H_k(R) \)
 - Represents the set of states in which execution of DO terminates in a bounded number of iterations with \(R \) true.

Example: What does the following calculate? How can we prove it?
\[
\text{Is} = 1, b[0] = 0;
\text{do}
\ i := 11 \rightarrow i := i + 1, s = b[i] \text{ od}
\text{for}
\ R : s = \sum k : 0 < k < 11 : b[k] \]

Exam: The state

If \(B_1 \rightarrow S_1 \)

[] \(B_2 \rightarrow S_2 \)

... [] \(B_n \rightarrow S_n \)

fi

Example:

\[T = \{ x \geq 0 \} \lor \{ x < 0 \} \]
if \(x > 0 \)
\{ \text{abs}(x) \}
\{ z = \text{abs}(x) \}
[] \(x > 0 \)
\{ \text{abs}(x) \}
\{ z = \text{abs}(x) \}
fi

\[\{ x \geq 0 \land x \leq 0 \land z = \text{abs}(x) \} \lor \{ x \leq 0 \land z = \text{abs}(x) \} \]
= \{ z = \text{abs}(x) \}
Invariant (P): Predicate that is true throughout the program

Guard Bi, BB:
- True on entry into the loop
- May be true or false at the exit point of the loop => re-evaluate guard
- The guard is always false after the loop terminates

Postcondition (R): The postcondition should imply the Invariant and the negation of the guard i.e. \(P \land \neg BB \Rightarrow R \)

Precondition (Q): Should imply the Invariant with initialisations.

Loop Template

\[\{ Q \} \Rightarrow \{ P \} \]

Do BB

\[\{ P \land BB \} \]

"Loop Body"

\[\{ P \} \]

Od

\[\{ P \land \neg BB \} \Rightarrow \{ R \} \]

Program Verification

- Given a precondition, a postcondition and some code verify that the code when executed in a state satisfying the given precondition achieves the given postcondition.

\[\{ Q \} : \{ \text{Array b has values} \} \]

\[i,s := 1,b[0] \]

Do \(i < N \)

\[i,s := i+1,s+b[i]; \]

Od

\[\{ R \} : \{ s = \sum k: 0 \leq k < 11 : b[k] \} \]

Loop Termination

- To show that a loop terminates we introduce an integer function, \(t \) where \(t \) is a function of the program variables i.e. an upper bound on the number of iterations still to be performed.
- \(t \) is called the **variant function** and it is a measure of the amount of work yet to be completed by the loop.
- Each iteration of the loop decreases \(t \) by at least one
- As long as execution of the loop has not terminated then \(t \) is bounded below by 0. Hence the loop must terminate.
- In our last example \(t: 11-i \)

Checklist for loops

- Show that \(P \) is true before the execution of a loop begins
- Show that \(P \land \neg BB \Rightarrow R \) i.e. when the loop terminates the desired result is true.
- Show that \(\{ P \land Bi \} \Rightarrow \{ P \} \) for \(1 \leq i < n \) i.e. execution of each guarded command terminates with \(P \) true so that \(P \) is an invariant of the loop.
- Show that \(P \land BB \Rightarrow (t > 0) \) so that the bound function i.e. “the amount of work yet to be done” is bounded from below as long as the loop has not terminated.
- Show that \(\{ P \land Bi \} \Rightarrow \{ t < n \} \) for \(1 \leq i < n \) so that each loop iteration is guaranteed to decrease the bound function. In general \(t \) can only provide an upper bound on the number of iterations to be performed. Hence, it is called the bound function or the variant function.