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Axiomatic Semantics
The guarded command language

Semantics
• A programming language specification consists of a syntactic

description and a semantic description.

• Syntactic descr iption:symbols we can use in a language

• Semantic Descr iption: what phrases in a programming language
mean.

• Semantics may be given as

– Denotational

– Axiomatic

– Operational

• Here we concentrate on axiomatic descriptions: the meaning is
defined by a logical calculus called program logic which provides a
tool for the derivation of programs and assertions of the form { Q} p
{ R}

Example:
• Read in 2 integers and output their product divided by their sum. You

are guaranteed that there are 2 integer values in the input stream.

• Precondition = { Input stream contains two integer values}

• Postcondition = { Product / Sum is output}

• { Q} p { R} states that a program p. once started in a state satisfying
{ Q} will l ead to a situation characterised by{ R}

• { Q} may also be written as the weakest precondition of p tp achieve
postcondition R  i.e. wp(p, R)

• Wp(S, R) represents the set of all states such that execution of S
beginning in any one of them is guaranteed to terminate in a finite
amount of time satisfying R.

• Examples:

– wp (i = i +1, i <= 1)

– S: if x>=y then z = x else z = y, R: z = max(x,y)

calculate wp(S,R)

– Let S be as above and R: z=y, calculate wp(S,R)

– S: if x>=y then z = x else z = y,R: z = y-1

calculate wp(S,R)

– Let S be as above, R: z= y+1

• Command S is usually designed to establish the truth of a
postcondition R. We may not be interested in wp(S,R). If we can find
a stronger precondition Q that represents a subset of the set
wp(S,R)and can show Q => wp(S,R) then we are content with Q as
the postcondition.

• When we write { Q} p { R} we denote Total Correctness

• Q { p} R denotes partial correctness.

Some properties of wp
• Law of excluded miracle: wp(S,F) = F

• Distributivity of conjunction: wp(S,Q) ∧wp(S,R) = wp(S,Q ∧R)

• Law of monotonicity: if Q => R then wp(S,Q) => wp(S,R)

• Distributivity of disjunction: wp(S,Q) ∨wp(S,R) => wp(S,Q ∨ R)

• Nondeterministic:

– Execution of a command is nondeterministic if it need not always
be exactly the same each time it is begun in the same state

– e.g. { x = 4} x := 14 || x := x+1 { ?}
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Exercises
• Determine

– wp (i:= i +1, i >0)

– wp(i = i +2; j = j -2, i + j = 0)

– wp(i = i +1;j = j -1, i * j = 0)

– wp(z = z* j; i :=i -1, z * j i = c)

– wp(a[i] = 1, a[i] = a[j])

– wp(a[a[i]] = i, a[i]=i)

Skip & Abort
• Skip

– Execution of the skip command does nothing.

– It is equivalent to the empty command;

– It is the identity transformer

– wp(skip, R) = R

• Abort

– wp(abort, R) = False

– Abort should never be executed as it may only be executed in a
state satisfying False.

Sequential Composition
• A way of composing larger programs from smaller segments

• If s1 and S2 are commands then s1;s2 is a new command

• wp (s1;s2, R) = wp(s1, wp(s2, R))

Assignment
• x := e

• x is a simple variable, e is an expression and the types of x and e are
the same

• wp(x := e, R) = domain(e) cand Re
x

• Domain(e) is a predicate that describes the set of all states in which e
may be evaluated i.e. is well defined.

• Usually we write: wp(x := e, R) = Re
x

Examples:
• wp(x:=5, x =5)

• wp(x:=5, x !=5)

• wp(x:=x+1, x <10)

• wp(x:= x*x, x4 =10)

• wp(x:=a/b, p(x))

• wp(x:=b[i], x=b[i]) for b, an array with indexes 0 ..100

Multiple Assignment
• Multiple assignment has the form

x1, x2, x3, …, xn := e1, e2, e3, …, en

where xi are distinct simple variables and ei are expressions.

• Definition:

wp(x1, x2, x3, …, xn := e1, e2, e3, …, en, R)

= domain(e1, e2, e3, …, en) cand R e1, e2, e3, …, en 
x1, x2, x3, …, xn

Examples: x,y := y, x;

x,y,z := y,z,x

wp(z,y:=z*x, y-1, y>=0 ∧ z*xy = c)

• Execution of an expression may change only the variables indicated
and evaluation of an expression may change no variables.

• This prohibits functions with side effects and allows us to consider
expressions as conventional mathematical entities I.e. we can use
associativity, commutativity of addition etc.

• Example: Swapping two variables:

• wp(t:=x; x:=y; y:=t, x = X ∧ y = Y}
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The if statement
I f B1 →→ S1

[] B2 →→ S2

… [] Bn →→ Sn

  fi

• Each Bi →Si is a guarded command and each Si  may be any
command e.g. skip, about, sequential composition etc.

• If any guard Bi is not well defined in the state in which execution
begins, abortion may occur.  This is because nothing is assumed by
the order of evaluation of the guards.

• At least one guard must be true to avoid abortion.

• If at least one guard Bi is true, then 1 guarded command Bi →Si is
chosen and Si is executed.

Wp (If, R)
Wp (If , R) =

domain(BB) ∧ BB ∧ (B1⇒ wp(S1, R)) ∧ … ∧ (Bn⇒ wp(Sn, R))

where BB = B1 ∨ B2 ∨ ... ∨ Bn

≡

wp(If, R) = (∃i : 1 <= i <= n : Bi )  ∧  (∀i : 1 <= i <= n : Bi ⇒ wp(Si, R))

Example: A ≡ (if  x >=0  →→  z := x

[] x <= 0  →→ z := -x )

    wp(A, z = abs(x)) = True

Example:
{ T} ≡ { (x>=0) ∨ (x <= 0)}

if x >= 0

{ x = abs(x)}

z:=x;

 { z = abs(x)}

[] x >= 0

{ - x = abs(x)}

z:= - x;

 { z = abs(x)}

fi

{ (x >=0 ∨ x <= 0) ∧ (x >=0 ∧ z = abs(x)) ∨ (x <=0 ∧ z = abs(x)) }

≡ { z = abs(x)}

Exercises:
• Complete and Simplify:

1. wp (S, a>0 ∧ b >0) where

S = if a > b →→ a:= a-b

[] b > a→→ b:= b-a
fi

2. wp( S, x <= y) where

S = if x > y →→ x,y :=y,x

[] x<=y →→ skip
fi

The Iterative Command
• Do B →→  S oD

– where B →→  S is a guarded command. This is equivalent to a while
loop.

– Do (x>=0) →→ x:= x-1 oD

≡  while (x>=0) { x := x-1}

We can generalize in the guarded command language to:

Do B1 →→ S1

[]   B2 →→ S2

…

[]   Bn →→ Sn

oD          where n>=0, and Bi →→ Si is a guarded command.

Note: Non Determinism is allowed.

• Let BB = B1 ∨ B2 ∨ … ∨ Bn

• H0(R) = ¬¬BB ∧∧ R
– Represents the set of states in which execution of DO terminates in

0 iterations with R true, as the guards are initially false

• wp(DO,R) = ∃∃k: 0<=k: Hk(R)
– Represents the set of states in which execution of DO terminates in

a bounded number of iterations with R true.

Example: What does the following calculate? How can we prove it?

i,s = 1, b[0];

Do i <> 11 → i,s := i+1, s + b[i] OD
 {R: s = ΣΣ k: 0<=k<11:b[k])}
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• Invar iant {P} : Predicate that is true throughout the program

• Guard Bi, BB:

– True on entry into the loop

– May be true or false at the exit point of the loop => re-evaluate
guard

– The guard is always false after the loop terminates

– Postcondition {R}: The postcondition should imply the Invariant
and the negation of the guard i.e. P ∧∧ ¬¬BB => R

– Precondition{Q}: Should imply the Invariant with initiali sations.

Loop Template

{Q} ⇒⇒ {P}
Do BB

{P ∧∧ BB}
“Loop Body”

{P}
Od

{P ∧∧ ¬¬BB}  ⇒⇒ {R}

Program Verification
• Given a precondition, a postcondition and some code verify that the

code when executed in a state satisfying the given precondition
achieves the given postcondition.

{ Q} : {Arr ay b has values}

i,s:= 1,b[0]

Do i <> N

i,s := i +1, s+b[i];

Od

{ R} : {s = ΣΣ k: 0<=k<11:b[k])} 

Loop Termination
• To show that a loop terminates we introduce an integer function, t.

where t is a function of the program variables i.e. an upper bound on
the number of iterations stil l to be performed.

• t is called the var iant function and it is a measure of the amount of
work yet to be completed by the loop.

• Each iteration of the loop decreases t by at least one

• As long as execution of the loop has not terminated then t is bounded
below by 0. Hence the loop must terminate.

• In our last example t: 11-i

Checklist for loops
• Show that P is true before the execution of a loop begins

• Show that P ∧∧ ¬¬BB ⇒⇒ R i.e. when the loop terminates the desired
result is true.

• Show that {P ∧∧ Bi} Si {P} 1<=i<=n i.e. execution of each guarded
command terminates with P true so that P is an invariant of the loop.

• Show that P ∧∧ BB ⇒⇒ (t >0) so that the bound function i.e. “ the
amount of work yet to be done”  is bounded from below as long as the
loop has not terminated.

• Show that {P ∧∧ Bi} t1 :=t;Si; {t<t1} for 1 <=i<=n so that each loop
iteration is guaranteed to decrease the bound function. In general t can
only provide an upper bound on the number of iterations to be
performed.  Hence, it is called the bound function or the variant
function.


