Axiomatic Semantics
The guarded command language

Semantics

A programming language specification consists of a syntadic
description and a semantic description.

Syntactic description:symbols we @n usein alanguage

Semantic Description: what phrases in a programming language
mean.

Semantics may be given as

— Denatational

— Axiomatic

— Operational

Here we mncentrate on axiomatic descriptions: the meaning is
defined by alogical cdculus cdled program logic which provides a
tod for the derivation of programs and assertions of the form {Q} p

{R}

Example:

Real in 2 integers and output their product divided by their sum. You
are guaranteed that there ae 2 integer values in the input stream.

Precondition = { Input stream contains two integer values}
Postcondition = { Product / Sum is output}

{Q} p{R} statesthat a program p. orce started in a state satisfying
{Q} will lead to asituation charaderised by{ R}

{Q} may also be written as the weakest precondition of p tp achieve
postcondtion R i.e. wp(p, R)

Wp(S, R) represents the set of all states such that execution of S
beginning in any one of them is guaranteed to terminate in afinite
amourt of time satisfying R.

Examples:

—wp(i=i+l,i<=1)

— Siif x>=y thenz=x elsez =y, R: z = max(x,y)
calculate wp(S,R)

— Let Sbeasabove and R: z=y, cdculate wp(S,R)

— Sif x>=ythenz=xelsez=y,Riz=y-1
calculate wp(S,R)

— Let Sbeasabowe, R: z=y+1

Command Sis usually designed to establish the truth of a
pastcondtion R. We may nat be interested in wp(S,R). If we an find
a stronger precondition Q that represents a subset of the set
wp(S,R)and can show Q =>wp(S,R) then we ae mntent with Q as
the postcondition.

When we write {Q} p {R} we dencte Total Corredness
Q{p} R denctes partial correctness.

Some properties of wp

Law of excluded mirade: wp(S,F) = F

Distributivity of conjunction: wp(S,Q) Owp(S,R) = wp(S,Q [R)
Law of monotonicity: if Q => R then wp(S,Q) => wp(S,R)
Distributivity of disjunction: wp(S,Q) Dwp(S,R) =>wp(S,Q OR)

Nondeterministic:

— Exeaution of a mmand is nondeterministic if it need na always
be exadly the same each timeit is begunin the same state

—eg{x=4 x=14 || x:=x+1{?%}




Exercises

« Determine

—wp (i:=i +1,i >0)
—wp(i=i+2;j=j-2,i+j=0)
—wp@i=i+Lj=j-1,i*j=0)
—wp(z=z*j;i:=i-1,z*ji=¢)
= wp(@[i] =1, d[i] = &[j])

— wp(aa[i]] =1, a[i]=i)

Skip & Abort

* Skip
— Exeaution of the skip command does nothing.
— It isequivaent to the enpty command;
— It isthe identity transformer
— wp(skip, R) =R

* Abort
— wp(abort, R) = False

— Abort should never be exeauted asit may orly be executed in a
state satisfying False.

Sequential Composition

A way of composing larger programs from small er sesgments
If s1 and S2 are commands then s1;s2 is a new command
wp (s1;s2, R) = wp(sl, wp(s2, R))

Assgnment
X:=e
x isasimple variable, e isan expression and the types of x and e are
the same
wp(x := e, R) = domain(e) cand R
Domain(e) is a predicate that describes the set of al statesin which e
may be evaluated i.e. iswell defined.
Usually we write: wp(x := e, R) = R

Examples:

* wp(x:=5, x =5)

¢ wp(x:=5, x 1=5)

o wp(x:=x+1, x <10)

o wp(x:= x*x, x4 =10)

* wp(x:=alb, p(x))

« wp(x:=b[i], x=b[i]) for b, an array with indexes0 ..100

Multi ple Assgnment

Multiple asignment has the form
x1,x2,x3,...,xn:=¢€l,e2, €3, ...,en
where xi are distinct smple variables and ei are expressions.

Definition:
wp(x1, X2, X3, ..., xn:=€l, e2,€e3, ..., en,R)
=domain(el, €2, €3, ...,en) cand R o ¢ g3 . g 1 27 X0

Examples: XY =Y, X;
X,Y,Z = Y,ZX

wp(z,y:=z*x, y-1, y>=0 0 z*xY = ¢)

« Exeaution of an expression may change only the variables indicated

and evaluation of an expression may change no variables.

« This prohibits functions with side dfects and allows us to consider

expressions as conventional mathematica entities|.e. we can use
associativity, commutativity of addition etc.

« Example: Swapping two variables:
o wp(t:=x; x:=y; yi=t, x=X Oy =Y}




Theif statement

1fB; - S,
[l Bz i Sz
..[1B,» S,
fi
» EachB; - Sisaguarded command and each S may be any
command e.g. skip, about, sequential compasition etc.
« If any guard B;is not well defined in the state in which exeaution
begins, abortion may occur. Thisis because nothingis assumed by
the order of evaluation d the guards.

« At least one guard must be true to avoid abortion.
« If at least one guard B; istrue, then 1 guarded command B; - S;is
chosen and S is exeauted.

Wp (If, R)

Wp (If, R) =
domain(BB) 0BB O (B,0 wp(Sy, R)) O... O(B,0 wp(S, R))
where BB =B, 0B,0...0B,

wp(If, Ry=(0:1<=i<=n:B;) 0 (Oi:1<=i<=n:B;0 wp(S, R)

Example: A = (if x>=0 - z:=Xx
1 x<=0 - z:=-x)

wp(A, z = abs(x)) = True

Example:

{T} ={ (>=0) D(x <= 0)}
if x>=0
{x = abs(x)}
Z:=x;
{z=abs(x)}
[ x>=0
{-x=abs(x)}
zZ=-X;
{z=abs(x)}
fi
{ (x>=00x<=0) O(x>=00z=abs(x)) O(x <=0 Oz =abs(x)) }
={z=abs(x)}

Exercises:

« Complete and Simplify:

1.wp (S, 0 O b >0) where
S= ifa>b - a=ab
[Ib>a- b:=b-a
fi

2.wp( S, x<=y) where
S=  ifx>y 5 xyi=yX
[I x<=y - skip
fi

The Iterative Command

« DoB - SoD
— whereB - Sisaguarded command. Thisis equivalent to awhile
loop.
— Do (x>=0) —» x:=x-10D
= while (x>=0) { x :=x-1}

We @n generalizein the guarded command language to:
DoB1 - S1
I B2-S2

[ Bn- Sn
oD where n>=0, andBi - Si isaguarded command.
Note: Non Determinism is all owed.

« LeeBB=B10OB20O... OBn
* Hy(R)=-BBOR
— Represents the set of statesin which exeaution of DO terminatesin
Oiterations with R true, as the guards are initially false

« wp(DO,R) = [k: 0<=k: H,(R)
— Represents the set of statesin which exeaution of DO terminatesin
abounded number of iterations with R true.

Example: What does the following cd culate? How can we prove it?
i,s=1, b0];
Doi<>11 - i,s:=i+l, s+ b[i] OD
{R: s=Z k: 0<=k<11:b[k])}




« Invariant {P} : Predicate that is true throughou the program
* Guard Bi, BB:
— True on entry into the loop

— May betrueor false & the exit point of the loop => re-evaluate
guard

— The guard is always fal se after the loopterminates

— Postcondition {R}: The postcondition shoud imply the Invariant
andthe negation d theguardi.e. P0-BB =>R

— Precondition{Q}: Should imply the Invariant with initiali sations.

Loop Template

{Qr o {P}
Do BB
{P0OBB}
“Loop Body”
{P}
Od
{PO-BB} O {R}

Program Verificaion

« Given apremndtion, a postcondtion and some mde verify that the
code when exeauted in a state satisfying the given precondition
adhieves the given postcondtion.

{Q} : {Array b hasvalues}
i,s:=1,b[0]
Doi<>N
i,s:=i+1,s+b[i];
Od
{R}: {s=Z k: 0<=k<11:b[Kk])}

Loop Termination

To show that aloop terminates we introduce an integer function, t.
wheret isafunction o the program variablesi.e. an upper boundon
the number of iterations till to be performed.

t is caled the variant function and it is ameasure of the anount of
work yet to be mmpleted by the loop.

Each iteration of the loop deaeasest by at least one

Aslong as execution of the loop has not terminated then t is bourded
below by 0. Hence the loop must terminate.

In ou last example t: 11-i

Checklist for loops

Show that P is true before the exeaution o aloop kegins

e Show that P 0-BB O R i.e. when the loopterminates the desired
result istrue.

» Show that {P OBi} Si {P} 1<=i<=ni.e. execution of ead guarded
command terminates with P true so that P is an invariant of the loop.

e Show that POBB O (t >0) so that the bound functioni.e. “the
amourt of work yet to be done” is bounded from below as long as the
loop hes not terminated.

« Show that {P OBi} t1:=t;Si; {t<t1} for 1 <=i<=n so that each loop

iteration is guaranteed to decrease the bourd function. In general t can

only provide a upper bound onthe number of iterations to be
performed. Hence, it is call ed the bound function or the variant
function.




