Assignment 5: Tail Recursion

CS351—Fall 2008

Due 23:59 Sun 23-Nov-2008. Email one text file containing all your solutions to:
bar ak+cs351- hws@s. nui m i e. (This file should be loadable into Scheme, meaning essay

question answers should be in comments.)

1. Mechanically (as in the example done in class) translate the following imperative program
with assignment into tail-recursive Scheme code. Show the stages of the transformation.

procedure gcd(x, YY)
while (x '=vy) {

if (x >y) {
val tenp;
temp = Xx;
X = Y;
y = tenp;
}
y = nmodul o(y, Xx);
}
return x;
end

procedure gcd(x, YY)

t0: (x vy)
while (x '=vy) {
t1l: (x y)
if (x>y){
t2: (xy)
val tenp;
temp = x;
t3: (x y tenp)
X =Y;
t4: (x y tenp)
y = tenp;
}
t5: (xy)
y = nmodul o(y, X);
}
t6: (x)
return Xx;
end

Then we can convert,

(define gcd
(lanmbda (x y)

;o t0r (xy)
- while (x '=vy) {
(define tO

Solution: First add labels, annotated with live variables:

(lambda (x y)
(if (not (=x1Yy))
(t1l x vy)
(t6 x))))

s tln (xy)

; if (x >y) {
(define t1
(lambda (x y)
(if (>xy)

(t2 x vy)
(t5 xy))))

by t2n (xy)
- val tenp;
- tenp = X;
(define t2
(lambda (x y)
(t3 xy x)))

7, 130 (x y tenp)

. X =y;

(define t3

(lanbda (x y tenp)
(t4 x x tenp)))

;; t4r (x y tenp)
; y = tenp;
. }
(define t4
(lanbda (x y tenp)
(t5 x tenp)))

5 15l (X y)

; y = nodul o(y, X);
(] }

(define t5

(lanmbda (x y)
(t0 x (nodulo y x))))

7o 16 (X)
return x;
(define t6
(lanbda (x)
X))

(t0 x y)))

2. Consider this definition:

(define fibb
(lambda (n)
(if (=n0)

1
(if (=n 1)
1
(+ (fibb (- n 1))
(fibb (- n 2)))))))

(a) Is this definition tail recursive?

Solution: No: each recursive call to fi bb is a non-tail-call, since the results must
be added.
(b) Translate fi bb into CPS.
Solution:
(define cfibb
(lambda (k n)
(c= (lanbda (n=0)
(if n=0
(k 1)
(c= (lanbda (n=1)
(if n=1
(k 1)
(c- (lanmbda (nnt)
(cfibb (lanbda (fnml)
(c- (lanbda (nn)
(cfibb (lanbda (fnnR)
(c+ fnnl fnnR))
nme)
n 2)
nm))
n1)))
n1)))))
n 0)))

3. Write a tail recursive definition of ny- r ever se which is functionally identical to the
predefined function r ever se.

Solution:

(defi ne aux

(lambda (x a)
(if (null? x)
a

(aux (cdr x) (cons (car x) a)))))

(define ny-reverse
(lambda (x)
(aux x "())))

4. Define cal | s- non-tr? which takes two arguments: an s-expression representing a
fragment of Scheme code and the name of a procedure, and returns true iff that fragment
of code calls the given procedure in a non-tail-recursive fashion. The fragment of code is
constrained to the following subset of Scheme, where s denotes an expression in this
Scheme subset, p denotes a symbol representing a procedure name, v denotes a symbol
representing a variable, and n denotes a number,

su=(ps...) [n|(ifsss)|v

Sample expressions in this Scheme subset:

f oo
+

(foo (+ 1 (car x y (car)) cons 32))
(if (a(bc) 3) d(e(fgh)))

Examples:

(calls-non-tr?
(calls-non-tr?
(calls-non-tr?

f12) = #f

f(f f)) = #f

f T (a (f 12))) = #t
(calls-non-tr? 'f " (f (f 12))) = #t
(calls-non-tr? "a ’'(a (f 12))) = #f
(calls-non-tr? 'f "(if (a) (b) (c))) =#f
(calls-non-tr? 'f " (if (f) (b) (c))) =#t
(calls-non-tr? 'f " (if (a) (f) (f))) =#f
(calls-non-tr? 'f " (if (a) f f)) = #f
(calls-non-tr? 'f " (if (a) (car f) f)) =#f
(calls-non-tr? 'f "(if (a) (car (f g)) c)) = #t
(calls-non-tr? 'f " (if (a) c (car (f g)))) = #t

Solution:

(define calls-non-tr?
(lanbda (f x)
(and (pair? x)
(if (eg? (car x) 'if)
(or (calls? f (cadr x))
(calls-non-tr? f (caddr x))
(calls-non-tr? f (cadddr x)))
(any? (lanmbda (x) (calls? f x))
(cdr x))))))

(define calls?
(lambda (f x)
(and (pair? x)
(if (eqg? (car x) '"if)
(or (calls? f (cadr x))
(calls? f (caddr x))
(calls? f (cadddr x)))
(any? (lanbda (x) (calls? f x))
x)))))

(define any?
(lambda (p? Iis)
(and (not (null? lis))
(or (p? (car lis))
(any? p? (cdr lis))))))

5. (Optional) If you encountered any problems with the assignment, or have any comments
on it, or other comments or suggestions, I would appreciate hearing them. As practice for
actual work, where weekly reports are not unusual, please embody these in a brief report.

Solution:

This is the best class ever. My only suggestion: longer harder assignments. And more of
them!

Honor Code: You may discuss these with others, but please write your answers by yourself
and without reference to communal notes. In other words, your answers should be from
your own head.

