Learning Sets of Rules

[Read Ch. 10]
[Recommended exercises 10.1, 10.2, 10.5, 10.7, 10.8]

e Sequential covering algorithms
e FOIL
e Induction as inverse of deduction

e Inductive Logic Programming

229 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Learning Disjunctive Sets of Rules

Method 1: Learn decision tree, convert to rules

Method 2: Sequential covering algorithm:
1. Learn one rule with high accuracy, any coverage
2. Remove positive examples covered by this rule

3. Repeat

230 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Sequential Covering Algorithm

SEQUENTIAL-
COVERING(Target_attribute, Attributes, Examples, Thresh.

o Learned rules < {}

e Rule <~ LEARN-ONE-
RULE(T arget_attribute, Attributes, Examples)

e while PERFORMANCE(Rule, Examples)
> T'hreshold, do
— Learned_rules < Learned_rules + Rule

— Examples < Examples — {examples
correctly classified by Rule}

— Rule <~ LEARN-ONE-
RULE(T arget_attribute, Attributes, Examples)

e Learned_rules + sort Learned_rules accord to
PERFORMANCE over Examples

e return Learned_rules

231 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Learn-One-Rule

IF
THEN PlayTennis=yes

IF Wind=weak
THEN PlayTennis=yes

IF Wind=strong IF Humidity=high
THEN PlayTennis=no IF Humidity=normal THEN PlayTennis=no

THEN PlayTennis=yes

IF Humidity=normal /
Wind=weak
THEN PlayTennis=yes
IF Humidity=normal

IF Humidity=normal
Wind=strong IF Humidity=normal Outlook=rain
THEN PlayTennis=yes Outlook=sunny THEN PlayTennis=yes

THEN PlayTennis=yes

232 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

LEARN-ONE-RULE
e Pos < positive Examples

e Neg < negative Examples
e while Pos, do

Learn a NewRule
— NewRule <+ most general rule possible
— NewRuleNeg < Neg
— while NewRuleNeg, do
Add a new literal to specialize New Rule
1. Candidate_literals < generate candidates

2. Best literal «+ ArgMAX [c Candidate_literals
Per formance(Specialize Rule(New Rule, L))

3. add Best_literal to NewRule preconditions

4. NewRuleNeg < subset of NewRuleNeg
that satisfies New Rule preconditions

— Learned_rules < Learned_rules + NewRule

— Pos < Pos — {members of Pos covered by
NewRule}

e Return Learned_rules

233 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Subtleties: Learn One Rule

1. May use beam search

2. BEasily generalizes to multi-valued target
functions

3. Choose evaluation function to guide search:

e Entropy (i.e., information gain)

e Sample accuracy:

Ne
n
where n. = correct rule predictions, n = all
predictions
e m estimate:
Ne +mp
n—+m

234 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Variants of Rule Learning Programs

o Sequential or simultaneous covering of data?
e General — specific, or specific — general?

e Generate-and-test, or example-driven?

e Whether and how to post-prune?

e What statistical evaluation function?

235 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Learning First Order Rules

Why do that?

e Can learn sets of rules such as

Ancestor(x,y) < Parent(z,y)
Ancestor(xz,y) < Parent(x, z) N Ancestor(z,y)

e General purpose programming language
PROLOG: programs are sets of such rules

236 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

First Order Rule for Classifying Web
Pages

[Slattery, 1997]

course(A) «
has-word (A, instructor),
Not has-word(A, good),
link-from(A, B),
has-word (B, assign),
Not link-from(B, C)

Train: 31/31, Test: 31/34

237 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

FOIL(Target_predicate, Predicates, Examples)

e Pos < positive Examples

e Neg < negative Examples
e while Pos, do

Learn a NewRule

— NewRule < most general rule possible
— NewRuleNeg < Neg
— while NewRuleNeg, do

1.
2.

Add a new literal to specialize New Rule
Candidate_literals < generate candidates

Best_literal +
argmaxry c condidate_literals Foil_Gain(L, NewRUJe)

. add Best_literal to NewRule preconditions
. NewRuleNeg < subset of NewRuleNeg

that satisfies New Rule preconditions

— Learned_rules < Learned_rules + NewRule

— Pos < Pos — {members of Pos covered by
NewRule}

e Return Learned_rules

238

lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Specializing Rules in FOIL

Learning rule: P(xi,x9,...,x;) < L1... L,
Candidate specializations add new literal of form:

e)(vy,...,v,.), where at least one of the v; in the
created literal must already exist as a variable in
the rule.

e Fqual(z;, xy), where x; and xj are variables
already present in the rule

e The negation of either of the above forms of
literals

239 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Information Gain in FOIL

1o Po

Foil Gain(L,R) =t|lo
() &2 p1+ 11 ngO ¥ ng

Where
e [is the candidate literal to add to rule R

e po = number of positive bindings of R
e ny = number of negative bindings of R
e p; = number of positive bindings of R + L
e n; = number of negative bindings of R + L

e ¢ is the number of positive bindings of R also
covered by R + L

Note

e —log, po{)kono is optimal number of bits to indicate

the class of a positive binding covered by R

240 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Induction as Inverted Deduction

Induction is finding h such that
(V{(x;, f(xi)) € D) BAhAz; F f(x;)
where
e r; is ¢th training instance
o f(x;) is the target function value for z;

e B is other background knowledge

So let’s design inductive algorithm by inverting
operators for automated deduction!

241 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Induction as Inverted Deduction

“pairs of people, (u,v) such that child of u is v,”

f(x;) : C'hild(Bob, Sharon)
x; . Male(Bob), Female(Sharon), Father(Sharon, Bob)
B : Parent(u,v) < Father(u,v)

What satisfies (V{z;, f(x;)) € D) BAhAx; F f(x;)?

hi: Child(u,v) < Father(v,u)
hy : Child(u,v) < Parent(v,u)

242 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Induction is, in fact, the inverse operation of
deduction, and cannot be conceived to exist
without the corresponding operation, so that
the question of relative importance cannot
arise. Who thinks of asking whether addition
or subtraction is the more important process
in arithmetic? But at the same time much
difference in difficulty may exist between a
direct and inverse operation; ... it must be
allowed that inductive investigations are of a
far higher degree of difficulty and complexity
than any questions of deduction.. ..

(Jevons 1874)

243 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Induction as Inverted Deduction

We have mechanical deductive operators
F(A,B) =C, where ANBFC

need inductive operators

O(B, D) = h where (¥Y(x;, f(x;)) € D) (BAhAz;) F f(x;)

244 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Induction as Inverted Deduction

Positives:

e Subsumes earlier idea of finding h that “fits”
training data

e Domain theory B helps define meaning of “fit”
the data
B/\h/\ZEi |_f<£li‘z>

e Suggests algorithms that search H guided by B

245 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Induction as Inverted Deduction

Negatives:

e Doesn’t allow for noisy data. Consider
(V{zi, f(2:)) € D) (BAhAz) - f(a:)

e First order logic gives a huge hypothesis space H

— overfitting...
— intractability of calculating all acceptable h’s

246 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Deduction: Resolution Rule

P v L
-L V R
P VvV R

1. Given initial clauses C; and C), find a literal L
from clause C7 such that =L occurs in clause C5

2. Form the resolvent C' by including all literals
from C7 and C, except for L and —L. More
precisely, the set of literals occurring in the
conclusion C' is

C=(Cr={L})U(Cy—{~L})

where U denotes set union, and “—” denotes set
difference.

247 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Inverting Resolution

% : KnowMaterial V' —Study % : KnowMaterial V —Study

C] : PassExam \I' —KnowMaterial C} :PassExam \|' —KnowMaterial

C: PassExam \ —Study

C: PassExam N —Study

248 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Inverted Resolution (Propositional)

1. Given initial clauses C and C, find a literal L
that occurs in clause C, but not in clause C.

2. Form the second clause Cs by including the
following literals

Cy=(C—(C1—{L}))U{~L}

249 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

First order resolution

First order resolution:

1. Find a literal L; from clause C}, literal Ly from

clause C5, and substitution 6 such that
L19 — _|L29

2. Form the resolvent C' by including all literals
from C160 and C50, except for L0 and —L-6.
More precisely, the set of literals occurring in
the conclusion C' is

C = (C1 - {LNOU(Cy— {L1)8

250 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Inverting First order resolution

Cy = (C — (Cy — {L:1})61)6; ' U {~L:16:65"}

251 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Cigol

Father (Tom, Bob)

Father (Shannon, Tom)

GrandChild(y,x) V — Father(x,z) V — Father(z,y)

{Bob/y, Tom/z}

GrandChild(Bob,x) N — Father(x,Tom)

{Shannon/x}

GrandChild(Bob, Shannon)

252 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

Progol

PrOGOL: Reduce comb explosion by generating the
most specific acceptable h

1. User specifies H by stating predicates, functions,
and forms of arguments allowed for each

2. PROGOL uses sequential covering algorithm.
For each (z;, f(x;))

e F'ind most specific hypothesis h; s.t.
— actually, considers only k-step entailment

3. Conduct general-to-specific search bounded by
specific hypothesis h;, choosing hypothesis with
minimum description length

253 lecture slides for textbook Machine Learning, T. Mitchell, McGraw Hill, 1997

