Instance Based Learning

[Read Ch. 8]

- k-Nearest Neighbor
- Locally weighted regression
- Radial basis functions
- Case-based reasoning
- Lazy and eager learning

Instance-Based Learning

Key idea: just store all training examples $\langle x_i, f(x_i) \rangle$ Nearest neighbor:

• Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

k-Nearest neighbor:

- Given x_q , take vote among its k nearest nbrs (if discrete-valued target function)
- take mean of f values of k nearest nbrs (if real-valued)

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k f(x_i)}{k}$$

When To Consider Nearest Neighbor

- Instances map to points in \Re^n
- Less than 20 attributes per instance
- Lots of training data

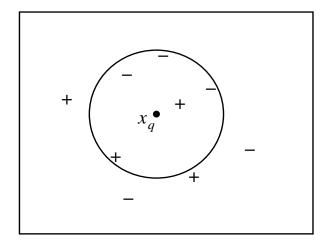
Advantages:

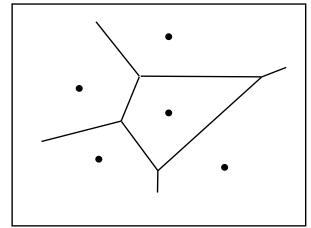
- Training is very fast
- Learn complex target functions
- Don't lose information

Disadvantages:

- Slow at query time
- Easily fooled by irrelevant attributes

Voronoi Diagram





Behavior in the Limit

Consider p(x) defines probability that instance x will be labeled 1 (positive) versus 0 (negative).

Nearest neighbor:

• As number of training examples $\to \infty$, approaches Gibbs Algorithm

Gibbs: with probability p(x) predict 1, else 0

k-Nearest neighbor:

• As number of training examples $\to \infty$ and k gets large, approaches Bayes optimal

Bayes optimal: if p(x) > .5 then predict 1, else 0

Note Gibbs has at most twice the expected error of Bayes optimal

Distance-Weighted kNN

Might want weight nearer neighbors more heavily...

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k w_i f(x_i)}{\sum_{i=1}^k w_i}$$

where

$$w_i \equiv rac{1}{d(x_a, x_i)^2}$$

and $d(x_q, x_i)$ is distance between x_q and x_i

Note now it makes sense to use all training examples instead of just k

 \rightarrow Shepard's method

Curse of Dimensionality

Imagine instances described by 20 attributes, but only 2 are relevant to target function

Curse of dimensionality: nearest nbr is easily mislead when high-dimensional X

One approach:

- Stretch jth axis by weight z_j , where z_1, \ldots, z_n chosen to minimize prediction error
- Use cross-validation to automatically choose weights z_1, \ldots, z_n
- Note setting z_j to zero eliminates this dimension altogether

see [Moore and Lee, 1994]

Locally Weighted Regression

Note kNN forms local approximation to f for each query point x_q

Why not form an explicit approximation $\hat{f}(x)$ for region surrounding x_q

- \bullet Fit linear function to k nearest neighbors
- Fit quadratic, ...
- \bullet Produces "piecewise approximation" to f

Several choices of error to minimize:

• Squared error over k nearest neighbors

$$E_1(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest nbrs of } x_q} (f(x) - \hat{f}(x))^2$$

• Distance-weighted squared error over all nbrs

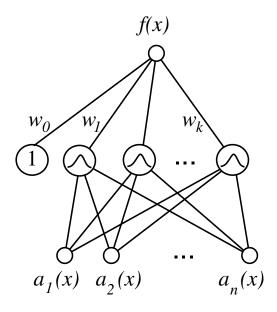
$$E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

• . . .

Radial Basis Function Networks

- Global approximation to target function, in terms of linear combination of local approximations
- Used, e.g., for image classification
- A different kind of neural network
- Closely related to distance-weighted regression, but "eager" instead of "lazy"

Radial Basis Function Networks



where $a_i(x)$ are the attributes describing instance x, and

$$f(x) = w_0 + \sum_{u=1}^{k} w_u K_u(d(x_u, x))$$

One common choice for $K_u(d(x_u, x))$ is

$$K_u(d(x_u, x)) = e^{\frac{1}{2\sigma_u^2}d^2(x_u, x)}$$

Training Radial Basis Function Networks

Q1: What x_u to use for each kernel function $K_u(d(x_u, x))$

- Scatter uniformly throughout instance space
- Or use training instances (reflects instance distribution)

Q2: How to train weights (assume here Gaussian K_u)

- First choose variance (and perhaps mean) for each K_u
 - -e.g., use EM
- Then hold K_u fixed, and train linear output layer
 - efficient methods to fit linear function

Case-Based Reasoning

Can apply instance-based learning even when $X \neq \Re^n$

→ need different "distance" metric

Case-Based Reasoning is instance-based learning applied to instances with symbolic logic descriptions

```
((user-complaint error53-on-shutdown)
(cpu-model PowerPC)
(operating-system Windows)
(network-connection PCIA)
(memory 48meg)
(installed-applications Excel Netscape VirusScan)
(disk 1gig)
(likely-cause ???))
```

Case-Based Reasoning in CADET

CADET: 75 stored examples of mechanical devices

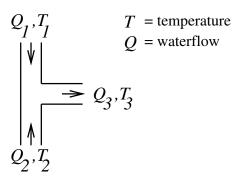
- each training example: \(\) qualitative function, mechanical structure \(\)
- new query: desired function,
- target value: mechanical structure for this function

Distance metric: match qualitative function descriptions

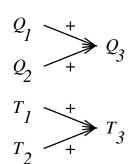
Case-Based Reasoning in CADET

A stored case: T-junction pipe

Structure:



Function:

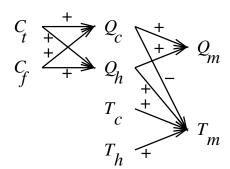


A problem specification: Water faucet

Structure:

?

Function:



Case-Based Reasoning in CADET

- Instances represented by rich structural descriptions
- Multiple cases retrieved (and combined) to form solution to new problem
- Tight coupling between case retrieval and problem solving

Bottom line:

- Simple matching of cases useful for tasks such as answering help-desk queries
- Area of ongoing research

Lazy and Eager Learning

Lazy: wait for query before generalizing

• k-Nearest Neighbor, Case based reasoning

Eager: generalize before seeing query

• Radial basis function networks, ID3, Backpropagation, NaiveBayes, . . .

Does it matter?

- Eager learner must create global approximation
- Lazy learner can create many local approximations
- if they use same H, lazy can represent more complex fns (e.g., consider H = linear functions)