Instance Based Learning
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[Read Ch. §]
e -Nearest Neighbor

e Locally weighted regression
e Radial basis functions
e Case-based reasoning

e Lazy and eager learning
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Instance-Based Learning

Key idea: just store all training examples (z;, f(z;))

Nearest neighbor:

e Given query instance z,, first locate nearest
training example x,, then estimate

f(zg) < f(zn)
k-Nearest neighbor:

e Given z,, take vote among its k nearest nbrs (if
discrete-valued target function)

e take mean of f values of k nearest nbrs (if
real-valued)

o S
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When To Consider Nearest Neighbor

e Instances map to points in R"
e Less than 20 attributes per instance

e Lots of training data

Advantages:
e Training is very fast
e Learn complex target functions
e Don’t lose information
Disadvantages:
e Slow at query time

e Easily fooled by irrelevant attributes
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Voronoi Diagram
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Behavior in the Limit

Consider p(x) defines probability that instance x
will be labeled 1 (positive) versus 0 (negative).

Nearest neighbor:

e As number of training examples — oo,
approaches Gibbs Algorithm

Gibbs: with probability p(z) predict 1, else O

k-Nearest neighbor:

e As number of training examples — oo and k gets
large, approaches Bayes optimal

Bayes optimal: if p(x) > .5 then predict 1, else 0

Note Gibbs has at most twice the expected error of
Bayes optimal
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Distance-Weighted tNN

Might want weight nearer neighbors more heavily...

k
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and d(z,, x;) is distance between x, and z;

Note now it makes sense to use all training
examples instead of just k

— Shepard’s method
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Curse of Dimensionality

Imagine instances described by 20 attributes, but
only 2 are relevant to target function

Curse of dimensionality: nearest nbr is easily
mislead when high-dimensional X

One approach:

e Stretch jth axis by weight z;, where 2;,..., 2,
chosen to minimize prediction error

e Use cross-validation to automatically choose
weights 21, ..., 2,

e Note setting z; to zero eliminates this dimension
altogether

see [Moore and Lee, 1994]
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Locally Weighted Regression

Note ENN forms local approximation to f for each
query point x,

Why not form an explicit approximation f(z) for
region surrounding zx,,

e it linear function to k£ nearest neighbors

e F'it quadratic, ...

e Produces “piecewise approximation” to f
Several choices of error to minimize:

e Squared error over k£ nearest neighbors

: (f(z) - f(2))’

2 x€ k nearest nbrs of xq

E1 <£Cq) =

e Distance-weighted squared error over all nbrs

By(z,) = o ¥ (f(z) = f(2))* K(d(z,,2))
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Radial Basis Function Networks

e Global approximation to target function, in
terms of linear combination of local
approximations

e Used, e.g., for image classification
e A different kind of neural network

e Closely related to distance-weighted regression,
but “eager” instead of “lazy”
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Radial Basis Function Networks

where a;(x) are the attributes describing instance
x, and

k
f(x) = wy+ X w, K, (d(zy,z))
One common choice for K,(d(x,,x)) is

L@ (.
Ko(d(z,2)) = exi" ")
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Training Radial Basis Function Net-
works

Q1: What z, to use for each kernel function
K.(d(z,,z))

e Scatter uniformly throughout instance space

e Or use training instances (reflects instance
distribution)

Q2: How to train weights (assume here Gaussian
K,)

e First choose variance (and perhaps mean) for
each K,

—e.g., use EM
e Then hold K, fixed, and train linear output layer

— efficient methods to fit linear function
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Case-Based Reasoning

Can apply instance-based learning even when

X # R

— need different “distance” metric

Case-Based Reasoning is instance-based learning
applied to instances with symbolic logic
descriptions

((user-complaint errorb53-on-shutdown)

(cpu-model PowerPC)

(operating-system Windows)

(network-connection PCIA)

(memory 48meg)

(installed-applications Excel Netscape VirusScan)
(disk 1gig)

(likely-cause 777))
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Case-Based Reasoning in CADET

CADET: 75 stored examples of mechanical devices

e cach training example: ( qualitative function,
mechanical structure)

e new query: desired function,

e target value: mechanical structure for this
function

Distance metric: match qualitative function
descriptions
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Case-Based Reasoning in CADET

A stored case: T—junction pipe

Structure: Function:
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Case-Based Reasoning in CADET

e Instances represented by rich structural
descriptions

e Multiple cases retrieved (and combined) to form
solution to new problem

e Tight coupling between case retrieval and
problem solving

Bottom line:

e Simple matching of cases useful for tasks such as
answering help-desk queries

e Area of ongoing research
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Lazy and Eager Learning

Lazy: wait for query before generalizing

e .-NEAREST NEIGHBOR, Case based reasoning

Eager: generalize before seeing query

e Radial basis function networks, ID3,
Backpropagation, NaiveBayes, ...

Does it matter?
e Eager learner must create global approximation

e Lazy learner can create many local
approximations

o if they use same H, lazy can represent more
complex fns (e.g., consider H = linear functions)
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