
The
Oaklisp Language Manual

October 21, 2002

Barak A. Pearlmutter
Dept of Computer Science, FEC 313

University of New Mexico
Albuquerque, NM 87131

bap@cs.unm.edu

Kevin J. Lang
NEC Research Institute

4 Independence Way
Princeton, NJ 08540

kevin@research.nj.nec.com

Copyright c©1985, 1986, 1987, 1988, 1989, 1991. by Barak Pearlmutter and Kevin Lang.

Contents

1 Introduction 3

2 Types and Objects 6
2.1 Fundamental Types . 6
2.2 Operations on Objects . 7
2.3 Operations on Types . 7
2.4 Defining New Types . 7
2.5 Type Predicates . 8
2.6 Constants . 8
2.7 Standard Truth Values . 8
2.8 Coercion . 9
2.9 Mixing Types . 9

3 Methods and Scoping 10
3.1 Methods . 10
3.2 Scoping . 10
3.3 Functional Syntax . 11
3.4 Dispatching to Supertypes . 11
3.5 Rest Args . 12

4 Side Effects 13
4.1 Assignment . 13
4.2 Locatives . 13
4.3 Operation Types . 14
4.4 Modification Forms . 14

5 Evaluation and Locales 15
5.1 Evaluation . 15
5.2 Installing Names in a Locale . 15
5.3 Structuring the Namespace . 16
5.4 Variables . 17
5.5 Macros . 17
5.6 Compilation . 18

1

6 Dynamic State 19
6.1 Fluid Variables . 19
6.2 Non-local Exits . 19
6.3 Error Resolution . 21

6.3.1 Signaling Errors . 21
6.3.2 Restart Handlers . 21
6.3.3 Error Handlers . 22
6.3.4 Operations on Errors . 22
6.3.5 Error Types . 23

7 Control 24
7.1 Simple Constructs . 24
7.2 Mapping Constructs . 25

8 Sequences 26
8.1 Type Predicates . 26
8.2 Sequence Operations . 27
8.3 Vector Constructors . 27
8.4 List Constructors . 28
8.5 List Accessors . 28
8.6 Lists as Sets . 29
8.7 Lists as Associations . 29
8.8 Lists as Stacks . 29

9 Numbers 31
9.1 Arithmetic . 31
9.2 Comparison . 32
9.3 Predicates . 32
9.4 Rounding . 33
9.5 Bitwise Logical Operations . 33
9.6 Accessing Components . 34

10 Input and Output 35
10.1 Streams and Files . 35
10.2 Reading . 36
10.3 Printing . 38

11 Miscellaneous 40
11.1 Tables . 40
11.2 Delays . 40

12 User Interface 42
12.1 The Top Level Environment . 42
12.2 Miscellaneous Functions . 43
12.3 Debugging . 43

2

Chapter 1

Introduction

This is the introduction to the original Oaklisp proposal which we wrote in January 1985. Although
the core language hasn’t changed since then, some of the periperal ideas in the proposal have been
modified or abandoned.

One of the most interesting language ideas to emerge from the 1970’s was the object-oriented
programming model. Although this model has been incorporated to some extent in a number of
recent Lisps, these implementations have not had the generality and power that characterize a true
object-based system like Smalltalk. The most significant trend in the contemporary Lisp world is
the move toward lexical scoping, which was initiated by Steele and Sussman with their Scheme
papers and continued most faithfully by the designers of T.

The major goal of Oaklisp was to combine the ideas of Smalltalk and Scheme in a simple
but expressive language that inherits their exemplary properties of modularity and consistency.
Unlike T, which adds an object-based capability to Scheme by constructing objects out of closures,
Oaklisp builds a lexically scoped Lisp system on top of a general message-passing system that
allows for full inheritance of methods from multiple superclasses.

The first design choice for Oaklisp was the extent to which we should push the object-based
model. We agreed with the designers of ADA that the packaging of state and procedures into
new types can be a significant modularity tool for users of the language. We also agreed with the
designers of the Lisp Machine that single-user Lisp systems should be open, with no clear line
between system and user code. Therefore, both to allow the system implementors to use powerful
user-level tools and to allow users to easily manipulate the system, we decided that absolutely
everything should be a full-fledged object in Oaklisp. There is no reason why user-defined types
should be any different from the types used to build the system. Oaklisp stands in marked contrast
to other object-oriented Lisp systems which have magic data types that are not part of the user-level
type hierarchy.1 Our current Oaklisp implementation takes this idea to such an extreme that there
are no magic objects anywhere in the system, no matter how deep you go. This meant not only that
the vast majority of the system could be written in Lisp, but that the construction of the debugger
and garbage collector was greatly simplified.

As a corollary to the previous decision, we decided that all computation should be performed
by methods that are invoked after a search up the type hierarchy. Functions can be thought of as
methods attached to the top of the hierarchy, since they are methods that can perform an operation

1For example, ZetaLisp flavors are not themselves instances of flavors.

3

on any type. This leads to the interesting result that after a function has been defined, a new method
can be added to take over that operation for a special case.

The power of the method-invocation model of computation is derived from the generality of
the inheritance mechanism.2 A simple type-tree would have provided Oaklisp with the ability to
define shadowable system-wide defaults for print and so forth. However, we felt that the mixin
concept of flavors was such a valuable tool for factoring object functionality that inheritance from
multiple supertypes was essential. This idea of inheriting from several mixins, each of which
knows how to do something and encapsulates its own state, led to the following inheritance rule: a
new type inherits all of the methods of its supertypes, but methods for the new type cannot refer to
instance variables from the supertypes (even though those variables do exist in the new composite
object.) This does not cause problems, because when operations for the supertypes are passed to
the object, the methods which handle them can reference the appropriate instance variables. Since
the names of instance variables are never inherited, conflicts cannot occur between names in the
various supertypes.

This treatment of instance variable names was also motivated by our decision to follow Scheme
and make Oaklisp lexically scoped. Oaklisp not only benefits from the conceptual correctness
which results from being able to close methods at compile time, but takes full advantage of tail-
recursion and the lack of search associated with variable references. Once again, we decided to
carry a principle to its extreme, and say that all variable references must be resolved at compile
time, which results in both a simpler compiler and faster execution of code. Although this decision
sounds intolerable for users, it actually represents a shift of functionality from the compiler to the
error-handling system and user-interface, both of which we decided to make unusually powerful
in our Oaklisp implementation.

Another principle which we borrowed from Scheme is anonymity. The lack of coupling be-
tween names and objects gives the system a degree of modularity and flexibility that would other-
wise be difficult to achieve. For example, if a type is redefined, old instances of that type will still
have pointers to the old type descriptor. Operations on both kinds of object will be handled by the
correct methods, and when the last instance of the old type goes away, the old type descriptor will
also be garbage collected.

The portion of Oaklisp that has been described so far can be considered its kernel. The portion
that follows can mostly be implemented as methods at the user level. It is interesting to note that
the dynamic variables and mutable binding contours which are described below can be built on
top of a bare lexical Lisp kernel. However, the Oaklisp kernel is not a usable system, since we
intentionally stripped it down knowing that the lost facilities would be replaced at a higher level.

The first addition is a mutable binding contour facility based the locale structures of T.3 Oak-
lisp locales are objects that accept messages which install and look up names. Locales can have
multiple superiors which are recursively searched if a name can’t be found. Unlike T locales,
Oaklisp locales are not associated with textual binding contours that can interact with let’s and
generate ambiguities. Moreover, a reference to an undefined name creates an error, which means
that forward references to uninstalled names are impossible.

The second addition is a dynamic scoping facility that knows how to deal with catch and
throw. The new dynamic variables are entirely separate from the static variables, and are always

2It is primarily the lack of inheritance that weakens the T object facility.
3In place of locales we could have implemented a simple top-level binding environment.

4

textually distinguishible from static variables to avoid confusion. Dynamic variables use deep-
binding in our implementation so that they will behave correctly when there is more than one
process. The implementation of dynamic variables is an issue since we decided to follow the Lisp
Machine and implement light-weight processes that share the same address space to expedite data
sharing and fast context switching.

Our final design decision was also influenced by the Lisp Machine. Error handling in Oaklisp
is designed to take maximum advantage of the type inheritance mechanism that is built into the
language. A complete hierarchy exists of all the types of system errors. When an error occurs, an
instance of that error type is created, and a message is sent to the error object asking for a handler
to take control. The default message causes the debugger to be invoked. However, each process
has some dynamic state which can be modified with the condition-bind construct to cause a
different handler to be invoked when a particular error occurs at a particular time. This mechanism
brings the full power of the language to bear on the problem of resolving errors, and is the reason
that we felt we could make the language itself so strict with respect to variable references. Since
our implementation of Oaklisp runs on the Lisp Machine and the Macintosh, it was no problem
to delegate authority for reporting and resolving unbound variable references to the user-interface,
which uses menus and dialog boxes to determine the user’s intentions. If the user sets a switch that
indicates that he wants unbound names to be automatically installed in the innermost locale, then
the interface merely creates an error-handler to perform that function, and the user is not bothered
again.

5

Chapter 2

Types and Objects

Oaklisp is an object-oriented language which is organized around the concept of type. The type
of an object determines its behavior when operations are performed on it. To permit the modular
specification of types with complex behaviors, a type is allowed to have multiple supertypes. There
is no distinction in Oaklisp between predefined system types and user-defined types.

A type specifies the behavior of an object by providing methods that are used to perform op-
erations on that object. Because methods are inherited from supertypes, a subtype only needs
to supply those methods which are required to distinguish itself from the more general types. A
method defined for a given type pre-empts any inherited methods for the same operation.

Instance variables are the mechanism for keeping state in objects. Every object possesses a
data structure where the values of its instance variables are stored. Although each object contains
storage for all of the instance variables required by its type and supertypes, methods for a given
type can only refer to instance variables defined in that type. In particular, methods cannot refer to
instance variables that are defined in supertypes.

It is possible to think of Oaklisp in terms of messages that are being passed to objects, rather
than in terms of operations that are being performed on objects. The latter view was chosen because
it is more consistent with Lisp syntax and semantics.

2.1 Fundamental Types

There are two important relations in the Oaklisp type system: is-a and subtype. An object is related
to its type by the relation is-a, and a type is related to its supertypes by the relation subtype. Each
of these relations defines a tree structure which includes all of the objects in the system.

The most fundamental types in the system are type and object. They are distinguished by
their position at the top of the is-a and subtype hierarchies, and by their circular definitions.

type Type
This type is the top of the is-a hierarchy. It is the type of types, so new types are
created by instantiating it.

object Type
This type is the top of the subtype hierarchy, and has no supertype. Every other type is
a subtype of object, so default methods for operations such as print are defined
for object.

6

2.2 Operations on Objects

The following operations are defined for all objects. Because they determine the semantics of the
language, they cannot be redefined or shadowed.

(get-type object) Operation
Returns the type of object.

(eq? object object) Predicate
Determines object identity. Two objects may look and act the same, but still fail the
eq? test. In particular, numbers are not guaranteed to be unique. Symbols are in-
terned, though.

2.3 Operations on Types

Types are distinguished from other objects by the fact that they can perform the make operation,
which is the mechanism for generating new objects.

(make type) Operation
Returns a new instance of type.

The instance variables of an object returned by make are all bound to some unspecified value.
Usually new objects need to be initialized in some other way, which can be accomplished by
performing an operation on them immediately after they are made. By convention, this operation
is initialize.

(initialize object) Operation
Returns object.

This method for initialize is clearly a no-op. When a type requires special initialization,
it should shadow this default.

2.4 Defining New Types

Since types are objects, new ones are created by sending a make message to the appropriate type
object, which in this case is type.

(make type ivars supertypes) Operation
Returns a new type-object with the supertypes and instance variables specified by the
argument lists.

At run-time, methods are chosen by performing a left-to-right depth-first search on the super-
type list.1 Instances of the new type will contain a block of instance variables for each of the
ancestor types, although duplicate types in the ancestor tree are eliminated.2

1Of course, Oaklisp implementations are free to use more efficient mechanisms that have the same effect.
2This aspect of the language is in flux, and should not be relied upon by users.

7

2.5 Type Predicates

The implicit type checking performed by the method invocation mechanism of Oaklisp reduces
the need to call explicit type predicates. Furthermore, the two predicates defined in this section
are sufficiently general to replace all of the ordinary Lisp type predicates such as null? and
number?. A few of these have been retained to make the environment more familiar.

(is-a? object type) Predicate
Determines whether object is an instance of type or one of its subtypes. (is-a?
object object) is always true.

(subtype? type1 type2) Predicate
Determines whether type1 is a subtype of type2. As you would expect, subtype? is
transitive. Since each type is a subtype of itself, subtype? defines a partial ordering
of all the types in the system.

2.6 Constants

Some objects have external representations that are not self-evaluating expressions. quote allows
the inclusion of such objects as constants in code.

(quote object) Special Form
Returns object without evaluating it.

2.7 Standard Truth Values

The standard truth values of Oaklisp are represented by the objects bound to the following vari-
ables.

t Global Variable
The value of this is #t. Any non-false value will do just as well for the purpose of
logical tests.

#f Global Variable
This is the false value, the only object recognized by logical tests as denoting false-
hood.

nil Global Variable
The value of this is the empty list, written (). Notice that nil itself is just a variable,
so (eq? nil ’nil) is false.

Note: currently () is the same as #f, the object used to represent false-
hood. In the future it is possible that these two notions, emptiness and
falsehood, will be disconfabulated. Programs should be written in such a
way that if #f and () were not the same object, they would still work.

8

2.8 Coercion

Some types are coercable, meaning that there is an operations associated with that type that allows
objects to be coerced to it. To create a coercable type, one instantiates coercable-type rather
than type.

(coercer coercable-type) Locatable Operation
This returns the coercer of a type. For example, to coerce a list into a string one
uses (coercer string), as in ((coercer string) ’(#\f #\o #\o))
⇒ "foo". The reader will read frog preceded by a control-y character as (coercer
frog); this was motivated by the fact that control-y prints as → on both Macintoshtm

and Symbolics computers, giving coercion a pleasant syntax, (→ string ’(#\f
#\o #\o))⇒ "foo".

coercable-type Type
This is a subtype of type with has the added functionality of responding to the
coercer message by returning its coercion operation. By default, (is-a? foo
bar) implies that ((coercer bar) foo)⇒ foo

2.9 Mixing Types

Frequently, type hierarchies become so rich that they threaten to overwhelm users with a plethora
of possible combinations of mixins. The combinatorial explosion of the number of possible con-
cocted types seems intrinsic to the style of programming involving multiple functionally orthogo-
nal mixins. Above a certain level of complexity, finding a type with certain known characteristics
can become difficult. Programmers are left wondering “Has a type based on foo with bar, baz and
zonk mixed in been created, if so what’s its name, and if not what should I name it and where
should I define it?”

Oaklisp’s mixin managers take care of this problem. When one needs “the type based on foo
with bar, baz and zonk mixed in,” one asks a mixin manager for it. If such a type has already been
created, it is returned; if not, the mixin manager creates an appropriate new type, caches it, and
returns it. This eliminates the burden of remembering which types have been concocted and what
they are named.

(mix-types mixin-manager type-list) Operation
This returns a composite type whose supertypes are type-list. Mixin-manager checks
its cache, and if the requested type is not found it creates a type with (make type
’() type-list), caches it, and returns it.

mixin-manager Type
Instances of this cache composite types, acting as a sort of composite type library.

The Oaklisp operation type hierarchy is quite elaborite, containing a large number of function-
ally orthogonal mixins, and therefore the Oaklisp internals make heavy use of the mxin manager
facility when dealing with operations. For example, the following definition for + is drawn from
deep within the bowels of Oaklisp.

(define-constant-instance +
(mix-types oc-mixer

(list foldable-mixin open-coded-mixin operation)))

9

Chapter 3

Methods and Scoping

In chapter 2, the concept of type was discussed. The assertion was made that operation methods
lie at the heart of the typing system, because they determine the behavior of objects. This chapter
describes the mechanism for defining methods.

3.1 Methods

A table of methods is maintained in the descriptor of every type. At run-time, these tables are
searched to find the methods which are used to handle operations on objects. The only mechanism
for manipulating method tables is the following side-effecting special form.

(add-method (operation [(type . ivar-list)] . arg-list) . body) Special
Form

Adds a method for operation to the method table of type. If a method for operation
already exists, it is replaced. The value returned by add-method is operation.

The body of the form is surrounded by an implicit block. The arguments to the method
are specified by arg-list. Since the first argument is always the object handling the message, a
useful convention is to call it self. Instance variables of type can be referenced in the body
if they are declared in ivar-list. Instance variables of supertypes may not be referenced in any
case. Naming conflicts between instance variables and arguments are resolved by the rule that the
variables in arg-list shadow instance variables that have the same names. Oaklisp closes methods
over free variable references at compile-time, thereby solving the upward funarg problem and
allowing procedures to share state in a controlled manner.

3.2 Scoping

Oaklisp is a lexically scoped language in which all variable references are resolved at compile-time.
When a variable reference is encountered, the compiler searches outwards from that point through
the nested lexical binding contours until it finds a declaration for the variable.1 We have already
seen one mechanism for introducing new lexical contours: the argument list of the add-method

1If a declaration isn’t found, the compiler proceeds to look for the variable in the appropriate locale. See chapter 5.

10

special form. Oaklisp provides several other forms which can be used to define local variables and
procedures.

(let ((var1 val1). . . varn valn) . body) Special Form
Evaluates body in an environment where the n variables are bound to the n values.
The value returned is that of body.

(let* ((var1 val1). . . varn valn) . body) Special Form
This form is similar to let. The difference is that let performs the bindings si-
multaneously whereas let* performs the bindings sequentially so that each value
expression can refer to the preceding variables.

(labels ((var1 val1). . .(varn valn)) . body) Special Form
labels differs from let in that the value expressions are evaluated in a binding
environment in which all of the variables are already defined. This facilitates the
definition of mutually recursive procedures.

3.3 Functional Syntax

Sometimes it is convenient to adopt a more conventional Lisp viewpoint while designing programs.
This viewpoint considers functions to be the primary programming abstraction, with objects down-
graded to the status of data which is passed around between functions. The key to this programming
style is the ability to write functions which can accept arguments of any type.

Oaklisp readily accommodates the functional programming style, since methods can be defined
for the type object, which is the supertype of all other types. In fact, if the type specifier is omit-
ted in an add-method form, the type object is assumed. Thus, (add-method (cons-1
x) (cons x 1)) defines a method that is valid for any type. To give the language a more
familiar appearance when this programming style is used, the following macros are also provided.

(lambda arg-list . body) Macro
≡ (add-method ((make operation) . arg-list) . body)

(define (variable . arg-list) . body) Macro
≡ (define variable (lambda arg-list . body))

3.4 Dispatching to Supertypes

Sometimes a method doesn’t want to override the inherited method completely, but rather wishes
to only to modify or extent its behaviour. For instance, imagine that the type dog has a method
so that the notice-stranger operation causes it to run around, jump up and down, bark,
and return the amount of time wasted. Say that stupid-dog is a subtype of dog defined by
(define-instance stupid-dog type ’() (list dog)), and that we want stupid
dogs to behave just like regular dogs in response to a see-stranger message, except that they
do it twice. This could be accomplished without the duplication of code by dispatching to the
supertype twice, as in the following code fragment.

11

(add-method (see-stranger (stupid-dog) self stranger)
(+ (↑super dog see-stranger self stranger)

(↑super dog see-stranger self stranger)))

(↑super type operation self . args) Operation
This is just like (operation self . args) except that the method search begins at type
rather than at the type of self. It is required that type be an immediate supertype of the
type that the method this call appears in is added to, although our current implemen-
tation does not yet enforce this restriction. ↑super is analogous to the Smalltalk-80
mechanism of the same name, except that due to Oaklisp’s multiple inheritance it is
necessary for the programmer to explicitly state which supertype is to be dispatched
to.

3.5 Rest Args

When a method is defined with a parameter list that is improper (i.e. dotted) the method is permitted
to receive extra values in addition to its regular parameters at run time. These values are associated
with the pseudo variable name that appears after the dot, which will henceforth be called the rest
name. Unlike a real variable name, a rest name can’t be evaluated and can only be referred to
in two places: at the end of a function call that uses dotted syntax (which signifies that the extra
values should be passed on to the function being called), and in a rest-length form, which is
the mechanism for finding out how many rest args a method has been passed.

(rest-length rest-name) Special Form
Yields the number of extra values that were received by the method in which rest-name
is declared.

Rest args can never be accessed directly, but must be passed tail recursively to other functions.
In fact, a function is not permitted to return without disposing of its rest args. Usually a function
that takes a variable number of arguments will recurse on itself or on a helper function, consuming
its arguments one by one until they are all gone, at which point the function is free to return.

The following functions have been provided to make it easier to write a function definition that
satisfies all of the rules for rest args.

(consume-args val . args) Operation
Returns val after consuming args.

(listify-args op . args) Operation
Calls op on a list consisting of the values of args.

A call to listify-args can be used as the body of a method definition as a means of
trivially satisfying the rest arg rules. When using this technique, op is a lambda that performs all of
the computation for the method. The rest args of the method are wrapped up in a list that is passed
in as the lambda’s one parameter, and the regular parameters and instance variables of the method
are available inside the lambda because of lexical scoping.

12

Chapter 4

Side Effects

The treatment of side effects in Oaklisp is modelled on that of T. The salient feature of this approach
is the use of reversible access procedures to perform side effects on composite data structures and
anonymous storage cells.

4.1 Assignment

Side effects on variables and objects are performed with the set! special form, which combines
the functionality of the setq and setf forms found in other Lisps.

(set! location new-value) Special Form
Changes the value of location to new-value, which is then returned as the value of the
expression.

If location is a symbol, then it is interpreted as a variable name. The variable must
have been previously defined in some lexical binding contour or locale.

If location is a list, then it is interpreted as a reference to a settable access operation.
For example, (set! (car foo) ’bar) means the same thing as (rplaca
foo ’bar) in Common Lisp.

(setter operation) Locatable Operation
Takes a settable access operation and returns the corresponding alteration operation.

4.2 Locatives

locative is an Oaklisp type that is similar to the pointer types found in procedural languages
such as C or Pascal. Locatives are created and dereferenced by the following constructs.

(make-locative location) Special Form
Returns a locative that points to location, which must be a variable or a list with the
form of a call on a locatable access operation.

(locater operation) Locatable Operation
Takes a locatable access operation and returns the corresponding locative-making op-
eration.

13

(contents locative) Locatable Operation
Returns the contents of the location which is referenced by locative. Since contents
is a settable operation, side effects can be performed on locations through locatives.
For example, (set! (contents (make-locative (car foo))) ’bar)
has the same effect as (set! (car foo) ’bar).

4.3 Operation Types

Since operations are objects, they are classified into types according to the operations which can be
performed on them. The types discussed here can generate side-effecting operations from access
operations.

operation Type
This is the generic operation type that is a component of all other operation types.

settable-operation Type
An access operation is settable if side effects can be performed through it. Settable
operations respond to setter.

locatable-operation Type
An access operation is locatable if it retrieves information from a single physical loca-
tion. Locatable operations respond to setter and locater.

4.4 Modification Forms

See chapter 6 of The T Manual for a description of the following forms.
(swap location new-value) Special Form

(modify location procedure) Special Form

(modify-location location continuation) Special Form

14

Chapter 5

Evaluation and Locales

Locales are the namespace structuring mechanism of Oaklisp. Whenever an Oaklisp expression
is evaluated, a locale must be provided in order to specify a particular mapping from symbols to
macro-expanders and from symbols to storage cells.

5.1 Evaluation

(eval form locale) Operation
Evaluates form relative to locale.

Although programmers don’t often need to call eval directly, every expression typed at the
top level is passed in to eval to be evaluated relative to the locale specified by the fluid variable
current-locale. Files may be evaluated using the load function.

(load file-name [locale]) Operation
Reads all of the forms in the file file-name and evaluates them relative to locale, which
defaults to the value of (fluid current-locale) if not specified.

The file compiler can be used to create an assembly language file that has the same effect as an
Oaklisp source file.

(compile-file locale file-name) Operation
Compiles the file file-name relative to locale, which defaults to the value of (fluid
current-locale). A file must be compiled and loaded relative to the same locale
in order to guarantee that the program’s semantics are preserved.

Oaklisp source files have a default extension of .oak while compiled files are
given the extension .oa. compile-file first tries to read the file file-name.oak,
and then looks for file-name, while load looks first for file-name.oa, then for file-
name.oak, and finally for file-name.

5.2 Installing Names in a Locale

Oaklisp has several forms that can be used to insert global variables and macro definitions into a
locale. The target locale isn’t explicitly specified by any of these forms, but is implicitly understood

15

to be the locale with respect to which the form is being evaluated. Thus, when a form is typed at
the top level, the effect is on (fluid current-locale), and when a file is loaded, the effect
is on the locale specified in the call to load.

(define var val) Special Form
Installs the global variable var in the current locale with value val.

(define-constant var val) Special Form
This form is like define except that var is marked as frozen in the current locale so
that the compiler can be free to substitute the value for references to var.

(define-instance var typ . make-args) Special Form
If the contents of var isn’t of type typ, this is the same as (set! var (make typ
. make-args)). If var is already bound to an object of the right type, this form has
no effect. Note: this language feature is in flux. Currently, it send an initialize
message to the object with the new make-args.

(define-syntax macro-name expander) Special Form
Installs macro-name in the current locale. expander should be a lambda that is able to
translate an example of the macro into a form that has simpler syntax.

As with all Oaklisp forms, the effect of a define-syntax form in a file is not felt until
run-time when the file is loaded. Since it is often convenient to be able to use a macro in the file in
which it is defined, a special mechanism has been provided for defining file-local macros that are
in effect at compile time. The following magic forms should be used with care, since they violate
the usually absolute dichotomy between compile time and load time.

(local-syntax macro-name expander) Special Form
During the compilation of a file in which a local-syntax form is contained, the

form augments the name space with the macro specified by macro-name and expander.
This form can only appear at top level in a file; and essentially disappears before load
time.

(define-local-syntax macro-name expander) Special Form
Temporarily augments the compile-time name space with the specified macro, and

also installs the macro in the current locale when the file is loaded. This form can only
appear at top level in a file.

5.3 Structuring the Namespace

Oaklisp locales are not associated with textual binding contours, nor are
they particularly user-friendly objects. They were designed to be a powerful
implementation tool, leaving the task of providing a convenient interactive
interface to higher-level code.

(make locale superior-list) Operation
Returns a new locale which inherits names from the locales in superior-list. During
recursive name lookups, the superiors are searched deapth first in left-to-right order.

16

5.4 Variables

Locales are essentially mappings from symbols to storage cells. Although locales can be created
on-the-fly, their main use is in building the structured top-level environment for global variables.
Variable names must be installed in a locale before they can be referenced. Precise control over
shadowing and cross-referencing can be achieved using the following settable operations.

(variable? locale symbol) Settable Operation
Returns a locative to the appropriate storage cell if symbol is installed as a variable
name, or #f otherwise. The search is allowed to proceed to superior locales if neces-
sary.

(set! (variable? locale symbol) locative) Operation
If symbol is not currently defined at any level, then it is installed in locale, with the
location named by locative serving as its value cell. If symbol is defined at some level,
then its value cell at the highest level1 is changed to be the location referenced by
locative.

(set! (variable? locale symbol) #f) Operation
If symbol is defined at some level, then its definition is removed from the highest level.
Otherwise an error is generated.

(variable-here? locale symbol) Settable Operation
Returns a locative to the appropriate storage cell if symbol is installed as a variable
name, or #f otherwise. The search is constrained to locale itself.

(set! (variable-here? locale symbol) locative) Operation
If symbol is not currently defined in locale, then it is installed, with the location named
by locative serving as its value cell. If symbol is defined in locale, then its value cell
is changed to be the location referenced by locative.

(set! (variable-here? locale symbol) #f) Operation
If symbol is defined in locale then its definition is removed. Otherwise an error is
generated.

5.5 Macros

Macro definitions are also stored in locales. These definitions are stored as a mapping from
names to macro expanders. A macro expander is simply a one-argument function that takes an
S-expression as its input and returns a transformed S-expression. Macro definitions are installed
with the following settable operations, which are entirely analogous to the ones described in section
5.4.

(macro? locale symbol) Settable Operation
Returns the appropriate macro expander if symbol is installed as a macro name and #f
otherwise. The search is allowed to proceed to superior locales if necessary.

(macro-here? locale symbol) Settable Operation
Returns the appropriate macro expander if symbol is installed as a macro name, or #f
otherwise. The search is constrained to locale itself.

1i.e. in the nearest locale to the one handling the operation.

17

5.6 Compilation

All evaluation in Oaklisp is performed with respect to some locale. The syntax of the language is
determined by the macro tables visible from that locale, and free variable references are likewise
resolved using the global variables defined in its name space.

(frozen? locale symbol) Settable Predicate
Returns #t if symbol is a frozen variable, otherwise #f. The search is allowed to
proceed to superior locales if necessary. If symbol is not found anywhere, an error
occurs.

(frozen-here? locale symbol) Settable Predicate
Returns #t if symbol is a frozen variable, otherwise #f. The search is constrained to
locale itself. If symbol is not installed as a variable in locale, an error occurs.

18

Chapter 6

Dynamic State

As Steele and Sussman pointed out in The Art of the Interpreter, dynamic scoping provides the
most natural decomposition of state in certain situations. This chapter describes the Oaklisp facil-
ities for creating and manipulating state that has dynamic extent.

6.1 Fluid Variables

To avoid the problems that arise when fluid variables are integrated with
the lexical environment, Oaklisp fluid variables have been placed in a com-
pletely separate dynamic environment. Fluid variables don’t even look like
lexical variables, since they can only be referenced using the fluid special
form. The mechanism for creating fluid variables is bind, which syntacti-
cally resembles let.

(bind ((fluid var1)val1). . .((fluid varn valn) . body) Special Form
Evaluates body in a dynamic environment where the n symbols are bound to the n

values.

(fluid symbol) Special Form
Returns the value of the fluid variable symbol. Even though fluid is a special form,
it is settable, so (set! (fluid symbol) value) changes the value of the fluid
variable symbol to value. The reader will read foo preceded by a control-v character
as (fluid foo); this was motivated by the fact that control-v prints as • on both
Macintoshtm and Symbolics computers.

6.2 Non-local Exits

19

Most Lisp dialects include some sort of catch facility for performing non-
local exits. Oaklisp provides two facilities at varying points on the general-
ity vs. cost spectrum.

(call-with-current-continuation operation) Operation
Calls operation with one argument, the current continuation. The synonym call/cc
is provided for those who feel that call-with-current-continuation is ex-
cessively verbose.

(catch variable . body) Special Form
variable is lexically bound to an escape operation that may be called from anywhere
within body’s dynamic extent. If variable is not called, catch yields the value of
body. This is implemented in such a way that body is called tail recursively.

(native-catch variable . body) Special Form
variable is lexically bound to an escape tag that may be thrown from anywhere within
body’s dynamic extent. If variable is not thrown to, native-catch yields the value
of body. This is implemented in such a way that body is called tail recursively.

(throw tag value) Operation
Causes execution to resume at the point specified by tag. This point is always a
native-catch expression, which immediately yields value. Cleanup actions spec-
ified with wind-protect are performed while the stack is being unwound.

(wind-protect before form after) Special Form
≡ (dynamic-wind (lambda () before) (lambda () form) (lambda
() after))

(funny-wind-protect before abnormal-before form after abnormal-after) Special
Form

A wind-protect evaluates before, form, and after, returning the value of form.
If form is entered or exited abnormally (due to call/cc or catch) the before and
after forms, respectively, are automatically executed. funny-wind-protect is
the same except that different guard forms are evaluated depending on whether the
dynamic context is entered or exited normally or abnormally.

(dynamic-wind before-op main-op after-op) Operation
Calls the operation before-op, calls the operation main-op, calls the operation after-op,
and returns the value returned by main-op. If main-op is exited abnormally, after-op
is called automatically on the way out. Similarly, if main-op is entered abnormally,
before-op is called automatically on the way in.

20

6.3 Error Resolution

Note: the error system is not stable, and will probably evolve towards the
Common Lisp error system, which has a number of good ideas.

Programs interact with the error system in three ways: they signal various sorts of errors (typ-
ically throwing the user into the debugger), they provide restart handlers that the user can invoke
(using ret) to escape from the debugger, and they provide handlers to be invoked when various
types of errors occur.

6.3.1 Signaling Errors

Errors are signalled using the following operations.
(warning format-string . format-args) Operation
Prints out the message specified by format-string and format-args and continues exe-
cution.

(error format-string . format-args) Operation
This signals generic-fatal-error, which normally has the effect of printing
out the error message specified by format-string and format-args and dumping the
user into a subordinate read-eval-print loop.

(cerror continue-string format-string . format-args) Operation
This signals generic-proceedable-error, which normally has the effect of
printing the error message specified by format-string and format-args and dumping the
user into a subordinate read-eval-print loop in which there is a restart handler that con-
tinues the computation by returning a user specified value from cerror. Continue-
string is the text associated with this handler when it is listed as an option by the
subordinate evaluator.

6.3.2 Restart Handlers

There are two special forms that programs can use to define more complex restart handlers than
just returning from the call to cerror. The simpler of the two is error-return, which is
similar to catch in that it can be forced to return a value before its body has been fully evaluated.
This form is used in the definition of cerror.

(error-return string . body) Macro
Evaluates body in a dynamic context in which a restart handler is available that can
force the form to return. The handler is identified by string in the list of choices
the debugger presents to the user. If the handler is invoked by calling ret with an
argument in addition to the handler number, the error-return form returns this
value; otherwise it returns #f. If no error occurs, error-return yields the value
of body.

21

The second special form acts just like a let unless an error occurs, in which case an error
handler is available that re-executes the body of the form after (possibly) rebinding the lexical
variables specified at the top of the form.

(error-restart string ((var0 val0). . .) . body) Macro
Evaluates body in a dynamic context in which a restart handler is available that can
force the re-evaluation of the body with new values for var0 These new values
are specified as additional arguments to ret. If there are not enough arguments to
ret, the remaining variables are left at their previous values. The handler is iden-
tified by string in the list of choices printed by the debugger. If no error occurs,
error-restart yields the value of body.

6.3.3 Error Handlers

Oaklisp uses its type system to govern the resolution of errors. The top-level environment contains
a hierarchy of types which characterizes every error that can occur. When an error condition arises,
the appropriate type is instantiated, and an error resolution operation is performed on the new
object. This operation is performed by a method that deals with the error in a manner consistent
with its type.

There are clearly better ways of dealing with some errors than invoking the debugger. A va-
riety of methods have been written to deal with the most common errors. For example, there are
proceed methods for simple arithmetic traps which substitute a program specified value for that
of the failed computation. The use of proceed and other error resolution operations is prescribed
by the following special form.

(bind-error-handler ((err1 op1). . .(errn opn)) . body) Macro
Evaluates body in a dynamic environment where the n error types have been associated
with the n error resolution operations. When an error occurs, the current list of con-
dition bindings is searched to find an operation to perform. An operation associated
with a supertype of the actual error type will be selected if it is encountered on the list.
If a suitable operation cannot be found, the default operation invoke-debugger is
performed.

6.3.4 Operations on Errors

There are a number of operations that can be invoked on error objects in error handlers.
(report error stream) Operation
Instructs error to print a descriptive message to stream.

(invoke-debugger error) Operation
This is the default error resolution operation. It is performed on all errors unless it is
explicitly overridden.

(proceed error . values) Operation
Attempts to continue from the error, eg. a file system error would retry the failed
operation. The values have semantics determined by the precise type of error. For
instance, continuing a failed attempt to open a file with a value might instruct the
system to try a new filename.

22

(remember-context error after-operation) Operation
Instructs error to salt away the current continuation and then call after-operation,
which should never return.

(invoke-in-error-context error operation) Operation
Invokes operation on error after moving back to the context of the error if its been
salted away.

6.3.5 Error Types

There are a plethora of error types defined in Oaklisp.
general-error Type
This is the top of the error type hierarchy. An operation defined for general-error
can be used to resolve any error.

generic-fatal-error Type
Signaled by error.

(make proceedable-error message) Operation
Uses message in composing its report.

generic-proceedable-error Type
Signaled by cerror.

error-opening Type
Various subtypes of this are signaled when various types of error while opening files
occur.

read-error Type
Subtypes of this are signaled when read sees malformed or truncated input.

unexpected-eof Type
This subtype of read-error is signaled when the reader comes to the end of a file
unexpectedly.

Work for idle hands: Many types of errors have yet to be implemented.
For example, domain errors in arithmetic functions generally call error
rather than signaling some special variety of error, template mismatch in
the destructure* macro should signal some special type of error rather
than calling cerror, etc. Basically, most calls to error and cerror
in system level code should be replaced with signal, and appropriate
ideosyncratic types of errors should be defined, thereby giving users more
precise control over what types of system level errors to handle.

23

Chapter 7

Control

Nonlocal control constructs like call/cc are described in section 6.2.

Since control structures are not a very interesting issue, we followed ex-
isting Lisp dialects closely when designing this aspect of Oaklisp. Every
control structure in this chapter does just what you would expect.

7.1 Simple Constructs

These forms are compatible with both T [14, chapter 5] and the Scheme standard [13].
(cond . clauses) Special Form
The clauses are run through sequentially until one is selected. Each clause can be of
four possible forms. (test . body) evaluates body if test is true. (else . body)
always evaluates body, and if present must be the last clause. (test => operation)
calls operation on the result of test if the result of evaluating test was not false. (test)
is equivalent to (test => identity).

(if test consequent [alternate]) Special Form

(not object) Predicate

(and . tests) Special Form

(or . tests) Special Form

(iterate variable specs . body) Special Form

(block . body) Special Form
Evaluates the forms of body sequentially, returning (tail recursively) the value of the
last one.

24

(block0 form . body) Special Form
≡(let ((x form)) (block . body) x)

(dotimes (variable number [rform]) . body) Special Form
≡(let ((x (lambda (variable) . body))) (map x (iota number)) rform)

(dolist (variable list [rform]) . body) Special Form
≡(let ((x (lambda (variable) . body))) (map x list) rform)

(dolist-count (variable list count-var) . body) Special Form
Just like dolist except that count-var gives the count of the current element in the
list, starting at zero.

(while condition . body) Special Form
≡(let ((q (lambda () test))(x (lambda () . body))) (iterate aux () (cond ((q) (x)
(aux)))))

(unless test . body) Special Form
≡(cond ((not test) . body))

(do ((var initial step). . .)(termination-test . termination-body) . body) Special
Form

≡(iterate aux ((var initial) . . .) (cond (termination-test . termination-body) (else
(block . body) (aux step . . .))))

7.2 Mapping Constructs

Although these can be used as control constructs, they can also be thought of as ways to manipulate
data structures. map maps an operation over some sequences generating a sequence of results.
for-each, which doesn’t save the results, is used when the operation is called for effect only.
For all of these, the order of evaluation is undefined; the system may apply the operation to the
various elements of the sequence in any order it desires.

(map operation . sequences) Operation

(mapcdr operation . lists) Operation
Applies operation to successive “cdrs” rather than to elements, and returns a list of the
returned values.

(for-each operation . sequences) Operation

(for-each-cdr operation . lists) Operation
Like mapcdr but for effect only.

(map! operation . sequences) Operation
Like map, except that the retuned values are destructively placed into the successive
storage locations of the first sequence.

25

Chapter 8

Sequences

Sequences are manipulated using the nth operation, which is settable (and locatable). The se-
quence heirarchy is shown in figure 8.1.

sequence

vector-type list-type

simple-vector

string

pair

cons-pair lazy-cons-pair

null-type

Figure 8.1: The sequence type hierarchy. Abstract types are in plain face and instantiable ones in
bold.

8.1 Type Predicates

(sequence? object) Predicate

(vector? object) Predicate

(string? object) Predicate

(list? object) Predicate

(pair? object) Predicate

26

(null? object) Predicate

(atom? object) Predicate

8.2 Sequence Operations

These operations work on all sequences.
(length list) Operation

(nth list n) Locatable Operation

(last list) Locatable Operation

(tail list n) Locatable Operation

(copy sequence) Operation

(append sequence1 sequence2) Operation
Returns a sequence of the type of sequence1. One slight bug is that one may not pass
append a first argument that’s a list and a second that’s not. This may be fixed in the
future. All other combinations should work correctly.

(append! sequence1 sequence2) Operation
Most sequences have immutable lengths, and hence are not appropriate arguments to
append!. The major exception is lists. The same bug is present here as in append.

(reverse sequence) Operation

(reverse! sequence) Operation

Some mapping operations are also applicable to sequences, and are documented in section 7.2.

8.3 Vector Constructors

(vector . objects) Operation
Returns a simple-vector containings objects.

(make simple-vector length) Operation

((coercer simple-vector) sequence) Coarcable Type

27

8.4 List Constructors

(list . objects) Operation

(make list-type length fill-value) Operation

((coercer list-type) sequence) Coarcable Type

(cons object1 object2) Operation

(make lazy-cons-pair car-thunk cdr-thunk) Operation

(lcons car-form cdr-form) Macro
≡ (make lazy-cons-pair (lambda () car-form) (lambda () cdr-form))

8.5 List Accessors

(car pair) Locatable Operation

(cdr pair) Locatable Operation

(c[ad]∗r pair) Locatable Operation
Actually these are only provided for up to four a’s and d’s. If you think you need
more, you should probably be defining accessor functions or using nth or perhaps
destructure.

(last-pair pair) Locatable Operation
Takes successive cdr’s of pair until it finds a pair whose cdr is not a pair, which it
returns. (last-pair ’(a b c))⇒ (c). (last-pair ’(a b c . d))
⇒ (c . d).

(destructure template structure . body) Macro
This is for destructuring lists, and is sort of the inverse of backquote. Template is a
possibly nested list of variables. These variables are bound to the corresponding val-
ues of structure while body is evaluated. For instance, (destructure (a (b) .
c) x (foo a b c)) ≡ (let ((a (car x))(b (caadr x))(c (cddr
x))) (foo a b c))
. It is guaranteed that structure will be evaluated only once. We note that destructure
typically generates more efficient code than the corresponding code one might typi-
cally write.

If there is a position in template that should be ignored, one can place a #t there.
For convenience and compatiblity with destructure*, positions in template con-
taining (), #f and (quote x) are also ignored.

(destructure* template structure . body) Macro

28

This is just like destructure except that an error is signaled if structure doesn’t
precisely match template. Positions containing #f and () are required to match liter-
ally. Positions containing (quote x) are required to match x literally, where x is not
evaluated. As with destructure, positions containing #t are ignored.

destructure* is particularly useful in macro expanders where it can do much
of the syntax checking automatically.

(destructure** structure (template . body)... [(otherwise . nomatch-body)])
Macro

This is just like destructure* except that, when one template does not match,
the next in line is considered. If none match than the OTHERWISE one does; if no
otherwise clause is present, an error is signaled.

8.6 Lists as Sets

(mem predicate object list) Operation
Returns the first tail of list whose car equals object according to predicate.

(memq object list) Operation

(del predicate object list) Operation

(delq object list) Operation

(del! predicate object list) Operation

(delq! object list) Operation

8.7 Lists as Associations

(ass predicate object list) Operation

(assq object list) Operation

(cdr-ass predicate object list) Settable Operation

(cdr-assq object list) Settable Operation

8.8 Lists as Stacks

(push location object) Macro

29

(pop location) Macro

30

Chapter 9

Numbers

number

real

rational float

fractioninteger

fixnum bignum

complex

Figure 9.1: The numeric type hierarchy. Abstract types are in plain face and instantiable ones in
bold. Floating point numbers are not implemented.

9.1 Arithmetic

(+ . numbers) Operation

(1+ n) Operation

(- n1 n2 . numbers) Operation

(- n) Operation

31

(* . numbers) Operation

(/ n1 n2) Operation

(quotient n1 n2) Operation

(modulo n1 n2) Operation

(abs n1) Operation

(max n1 n2) Operation

(min n1 n2) Operation

(expt n1 n2) Operation

9.2 Comparison

(= n1 n2) Operation

(!= n1 n2) Operation

(< n1 n2) Operation

(> n1 n2) Operation

(<= n1 n2) Operation

(>= n1 n2) Operation

9.3 Predicates

(zero? n) Predicate

(negative? n) Predicate

(positive? n) Predicate

(even? n) Predicate

32

(odd? n) Predicate

(factor? n1 n2) Predicate

9.4 Rounding

These operations should work on any subtype of real.
(floor x) Operation
Returns the largest integer less than or equal to x.

(ceiling x) Operation
Returns the smallest integer greater than or equal to x.

(truncate x) Operation
Could be defined (if (negative? x) (ceiling x) (floor x)).

(round x) Operation
Returns nearest integer to x. Ties are broken by rounding to an even number.

9.5 Bitwise Logical Operations

These operations are only defined for integers.
(ash-left i amount) Operation

(ash-right i amount) Operation

(rot-left i amount) Operation

(rot-right i amount) Operation

(bit-not i) Operation

(bit-and i1 i2) Operation

(bit-or i1 i2) Operation

(bit-nor i1 i2) Operation

(bit-xor i1 i2) Operation

(bit-nand i1 i2) Operation

(bit-andca i1 i2) Operation

(bit-equiv i1 i2) Operation

33

9.6 Accessing Components

(numerator rational) Operation

(denominator rational) Operation

(real-part number) Operation

(imag-part number) Operation

34

Chapter 10

Input and Output

10.1 Streams and Files

Streams are the tokens through which interaction with the outside world occurs. Although streams
are primarily used for reading and writing to files, they have found a number of internal uses.

stream Type
The supertype of all streams.

input-stream Type
This is an abstract type. Instantiable subtypes must define methods for the really-read-char
operation.

(read-char input-stream) Operation
Return a character, or the-eof-token if we’ve already read the last character in
the stream.

(unread-char input-stream character) Operation
Puts character back into input-stream. One can only put one character back, and it
must be the last character read.

(peek-char input-stream) Operation
Equivalent to (let ((c (read-char input-stream))) (unread-char input-
stream c) c).

the-eof-token Object
This distinguished object is returned to indicate that one has read past the end of the
file.

output-stream Type
This is an abstract type. Instantiable subtypes must define methods for the write-char
operation.

(write-char output-stream character) Operation

(newline output-stream) Operation

35

Outputs a carriage return to output-stream.

(freshline output-stream) Operation
Ensures that output-stream is at the beginning of a line.

(flush output-stream) Operation
Flushes any buffered output.

(interactive? stream) Operation
Returns true if and only if stream is connected to the user. This is used to check if an
end of file condition on the control stream is really an end of file or if the user just
typed control-D.

(position stream) Settable Operation
Returns the position we are at within stream. By setting this, one can get back to a
previous position.

(write-string string output-stream) Operation
Writes the characters of string to stream.

(with-open-file (variable filename . options) . body) Macro
Binds variable to a stream which is connected to the file with the name filename.
Options is not evaluated, and describes how filename should be opened. Possible
symbols include in for input, out for output, and append for output with position
set to the end of the file. The ugly option can be added to either out or append
if the user doesn’t mind poor formating, as in files meant to be read only by other
programs. The opened stream will be closed when the with-open-file is exited,
even upon abnormal exit. Note: the stream is not reopened upon abnormal entry, but
this may be changed in future versions of the system.

(with-input-from-string (variable sequence) . body) Macro
Binds variable to an input stream whose contents are the characters of sequence. Al-
though sequence is usually a string, this will work correctly for any sequence type.

(make string-output-stream) Operation
These save all their output and return it as a string in response to the (coercer
string) operation.

10.2 Reading

Oaklisp has an industrial strength reader, replete with nonterminating macro characters and de-
scriptive error messages. List syntax is not described below; read some other lisp manual. Our
reader is modeled after the Common Lisp reader, so we emphasize differences with the Common
Lisp reader below.

(read input-stream) Operation
Returns a lisp object read from stream. This is sensitive to a large number of factors
detailed below.

36

standard-read-table Object
This holds the read table for usual lisp syntax. The nth operation can be used to get
and set elements of read tables, which are indexed by characters. Potential entries are
whitespace, constituent, single-escape, illegal, (terminating-macro
. operation), and (nonterminating-macro . operation).

(skip-whitespace input-stream) Operation
Reads characters from input-stream until the next character is not whitespace.

The reader is not sensitive to the case of macro characters.
(define-macro-char character operation) Operation
Defines character to be a reader macro in standard-read-table. When char-
acter is encountered by the reader, operation is called with two arguments, the stream
and the character that was read.

(define-nonterminating-macro-char character operation) Operation
Just like define-macro-char except that the macro is not triggered if character
is read inside a token.

There are a number of “quotelike” macro characters present for the convenience of the user.

macro character symbol
’ quote
‘ quasiquote

control-v fluid
control-y coercer

,@ unquote-splicing
, unquote

(define-quotelike-macro-char character object) Operation
Makes character a terminating macro which returns a list of object and the next thing
read. This also arranges for the printer to print using analogous syntax. For instance,
the quote syntax is defined with the line (define-quotelike-macro-char
#\’ ’quote) in the system internals.

the-unread-object Object
When a reader macro returns this, the reader takes it to mean that nothing at all was
read. For instance, the reader macro for ; reads the remainder of the line and returns
this.

The character [is used to read lists in the same way that (is, except that [must be matched
by a]. This is mostly for compatiblity with code written at the University of Indiana.

Since there are no packages in Oaklisp, the : character is treated like any other constituent.
Most of the Common Lisp hash reader macros are supported. For instance, the character object

representing a is read #\a. Many special characters have long names, such as #\space.
(define-hash-macro-char character operation) Operation

37

Defines character to be a hash reader macro character. Operation should take three
arguments: a stream, the character, and the numeric argument that was between the
hash and the character, #f if none was passed.

There are many hash reader macro characters, including #o, #x, #d, #b and #c for octal,
hexidecimal, decimal, binary and complex numbers, respectively. The syntax #nrxxx is used to
read xxx in base n. #(...) is used for reading vectors. The #| macro comments out text until a
matching |#, with proper nesting. As described in section 2.7, #t and #f are read as the canonical
true and false values, respectively.

The #[symbol "..."] syntax can be used to read arbitrary characters, although the |. . .|
construction is prefered. Analogous constructors can be added with the settable operation hash-bracket-option.

(fluid input-base) Fluid Variable
The radix in which numbers will be read.

(fluid features) Fluid Variable
A list of “features” present in the current implementation, used by the #+ and #-
reader macros. Testable and settable with the feature? settable operation. It is
guaranteed that the oaklisp and scheme features will be present in any implemen-
tation of Oaklisp.

(fluid current-locale) Fluid Variable
The #. macro evaluates its argument in this locale.

(fluid read-suppress) Fluid Variable
This is true when what is being read will just be ignored, and indicates to the reader
that it shouldn’t go to the trouble of interpreting the meaning of complex tokens or
anything like that.

10.3 Printing

The printer is pretty heavy duty, but has no facilities for printing circular objects.
(format stream control-string . args) Operation
This is very similar to the Common Lisp format function, and is the usual way for
users to print things.

Stream is permitted to be #t to indicate that output should be sent to the standard
output, and #f to indicate that the output should be bundled up into a string and
returned.

Characters in control-string are printed directly, except for the character which
indicates that some action should be taken. The may be followed by a number or by
a : or @, which vary the action that would normally be taken in some way.

Currently defined characters and their associated actions are:

A— Print and argument with (fluid print-escape) bound to #f.

Print a .

% Do a newline.

38

& Do a freshline.

S Print an argument with (fluid print-escape) bount to #t.

B Print an argument in binary.

D Print an argument in decimal.

O Print an argument in octal.

X Print an argument in hex.

nR Print an argument in base n.

C Print an argument which is a character.

P Print an s if the argument is not 1.

! Print a weak pointer to the argument, preceded by an expression which evaluates
to the argument if (fluid fancy-references) is on. This is used to print
unique id’s for objects without nice printed representations, like operations.

A tilde followed by a newline is ignored; this construct is used for making control-
string more readable by breaking it across lines.

(print object stream) Operation
Writes a representation of object to stream. Users are encouraged to add informative
print methods for types they define.

(define-simple-print-method type string) Operation
Instructs the printer to include string in the printed representation of instances of type.

(fluid print-radix) Fluid Variable
The radix in which numbers will be printed. The default is ten.

(fluid print-level) Fluid Variable
The number of level of list structure to be printed before the printer abbreviates. The
default is #f, meaning never abbreviate.

(fluid print-length) Fluid Variable
The number of elements of a list to be printed before the printer abbreviates. The
default is #f, meaning never abbreviate.

(fluid print-escape) Fluid Variable
This controls whether the printer tries to print things that are easy for people to read,
or ones that can be read back in to Oaklisp. The default is #t, meaning to maintain
print/read consistency at the expense of readability.

(fluid symbol-slashification-style) Fluid Variable
This controls the style of printing of symbols when they are escaped. See the imple-
mentation manual for details.

(fluid fraction-display-style) Fluid Variable
This can be either normal, fancy or float. In these cases, (/ -5 3) would
print as either -5/3, -1·2/3 or -1.6666666666, respectively.

39

Chapter 11

Miscellaneous

11.1 Tables

The types are generic-hash-table and eq-hash-table. The access interface is present?,
which returns a pair whose car is the key and whose cdr is the associated value. A different
interface to hash tables is provided by the T-style table-entry operation which returns the as-
sociated value or #f if the key isn’t in the table. The setter of either operation can be used to add,
modify, and remove associations.

(make generic-hash-table key-hash-op equal-op) Operation

(make eq-hash-table) Operation

(present? table key) Settable Operation
Returns (key . val) pair, or #f if not present.

(table-entry table key) Settable Operation
Returns value indexed by key or #f if not present.

11.2 Delays

Oaklisp’s delays are compatible with the facility defined in R3RS, but extend those primitive fa-
cilities in two ways. First, the system will automatically force promises when appropriate. For
instance, (+ 2 (delay 3)) does not signal an error; it returns 5. Similarly, delays are printed
transparently, slightly violating read/print consistency. Secondly, the delay facility is user extensi-
ble. Users can create new kinds of delays that have special protocols, for instance numeric delays
that do not force themselves upon arithmetic operations, but instead make more and more compli-
cated delays.

(delay expression) Special Form
This immediately returns a promise for expression, without actually computing ex-
pression. This promise does not compute expression until it is forced, at which point
it returns the value of expression, computing it if it hasn’t already done so.

(force x) Operation

40

If x is a promise, it is forced to compute its value, which is returned. If x is not a
promise, it itself is returned.

promise Type
This is the type of the objects returned by delay.

forcible Type
This is an abstract type, of which promise is a concrete subtype. Subtypes of
forcible are expected to respond to the force operation in a sensible fashion.
Oaklisp’s system internals sometimes force instances of forcible automatically,
for instance when sending them messages for which no appropriate method can other-
wise be found.

(fluid forcible-print-magic) Fluid Variable
Controls how delays are printed. This is how (delay ’foo) would print under
various settings of forcible-print-magic.

value print style
#f #<DELAY 3462>
indicate #[DELAY FOO 3462]
transparent FOO

The default is transparent. A setting of indicate is more instructive if you
encounter odd behavior that might be due to delays.

41

Chapter 12

User Interface

The Oaklisp user interface currently consists of a read-eval-print loop and a simple debugging
facility.

Errors land the user into a recursive evaluation loop in which special restart handlers are avail-
able. Our implementation includes mechanisms for inspecting objects and tracing functions calls.

12.1 The Top Level Environment

All expressions must be evaluated with respect to a particular naming environment. The read-
eval-print loop uses the locale specified by the fluid variable current-locale. The Oak-
lisp system boots up with this variable bound to user-locale. Other useful name spaces are
scheme-locale, system-locale, and compiler-locale.

Several fluid variables are used to keep a short history of the dialogue conducted by the top
level evaluator. The most useful of these is (fluid *), which contains the value produced by
the most recent user expression. The value of this variable is rolled back into (fluid **) and
then into (fluid ***) to provide access to the three most recent values. Similarly, there are
three copies of (fluid +) and (fluid ?) that provide access to recent expressions that were
read in and to their form after macro expansion.

The switch (fluid fancy-references) controls the printing of anonymous objects.
When this switch is turned off, an object usually prints out something like this: #<op 806>.
This format indicates the type of the object, and provides a weak pointer that can be derefenced
with object-unhash to get the object. When the (fluid fancy-references) switch
is turned on, the printer attempts to generate an expression that will evaluate to the object in the
current locale. For example, the above operation might print out as #<op (setter car)
806>. The default value for this switch is #f, but it is briefly switched on by describe.

Two more fluid variables that are frequently used at the top level are (fluid print-length)
and (fluid print-level), which are normally set to small integer values in order to abbre-
viate the printing of long lists, but which can be set to #f in order to enable exhaustive printing.

42

12.2 Miscellaneous Functions

There are some other very useful functions that are part of the user interface.
(apropos word [place]) Operation
Returns either variables or symbols containing word, depending on place, which can
be a locale or symbol-table. place defaults to (fluid current-locale).

(%gc) Operation
Collect garbage. This does not collect garbage in “static space,” but it is exceedingly
unlikely that there is any there.

(%full-gc) Operation
Collect more garbage. This does collect garbage from “static space,” but more im-
portantly, it put everything not freed into static space, so it need not be transported in
future normal garbage collections.

12.3 Debugging

The following special forms can be used to trace the execution of an operation.
(trace-variable-in global-var) Special Form
Puts a trace on the operation stored in global-var, causing a message to be printed
every time the operation is called.

(trace-variable-out global-var) Special Form
Puts a trace on the operation stored in global-var, causing a message to be printed
every time a call to the operation returns.

(trace-variable-in-out global-var) Special Form

(untrace-variable global-var) Special Form

Objects can be examined in detail with describe function, which prints the object and
its type with (fluid fancy-references) turned on, and then prints the object’s internal
state, organized as instance-variable blocks from the object’s various component types. An ob-
ject’s internal state usually contains anonymous objects whose printed representation includes
weak pointers which can be dereferenced using object-unhash. Together, describe and
object-unhash constitute a simple but effective inspector.

(describe object) Operation
Prints out lots of stuff about object.

(object-unhash i) Operation
Dereferences the weak pointer i.

When an error occurs in our implementation of Oaklisp, the user is thrown into a recursive
evaluation loop whose dynamic context is nested inside that of the error. Several restart handlers
are typically available in a recursive evaluation loop, and the ret function is the mechanism for
invoking one of these handlers. call/cc can be used to preserve an error context when it might
be useful to restart the computation at a later time.

(ret n . args) Operation

43

Invokes restart handler n, as specified by the list of handlers printed out by a subor-
dinate evaluation loop. (ret 0), which returns control to the top level evaluation
loop, is always in effect.

The following dialogue with Oaklisp illustrates some of these points.

Oaklisp 1.0 - (C) 1987 Barak Pearlmutter and Kevin Lang.
Oaklisp evaluation loop.

Active handlers:
0: Return to top level.

> (with-open-file (inf "fone.nums" in) (car (read inf)))

Error: Error opening "fone.nums" for reading.
Oaklisp evaluation loop.

Active handlers:
0: Return to top level.
1: Retry opening file (argument for different file name).
2: Return to debugger level 1.

>> (call/cc identity) ;get error context.

>> (set foo (fluid *)) ;stash it away.

>> (ret 0) ;back to top level.

Invoking handler Return to top level..

> (describe foo) ;inspect continuation.

#<Op FOO 798> is of type #<Type OPERATION 801>.

from #<Type 801>:
LAMBDA? : #<Object 802> ;what’s this thing?
CACHE-TYPE : 0
CACHE-METHOD : 0
CACHE-TYPE-OFFSET : 0

> (describe (object-unhash 802))

#<Object 802> is of type #<Type %METHOD 803>.

from #<Type 803>:
THE-CODE : #<VLmixin 804>
THE-ENVIRONMENT : #<VLmixin 805>

44

> (foo 0) ;re-enter error context.

>> (ret 1 "phone.nums") ;resume computation

Invoking handler Retry opening the file ...

268-7598 ;got that phone number!

> (exit)

Oaklisp stopped itself...

Using the error system effectively is an important part of providing the user with a helpful
interface. Details on the error system can be found in section 6.3.

45

Bibliography

[1] Software helps city plan trash pickup. Government Computer News, 6(18), September 1987.

[2] Henry G. Baker, Jr. Actor systems for real-time computation. Technical Report TR-197, MIT
Laboratory for Computer Science, March 1978.

[3] Danny Bobrow et al. Commonloops: Merging common lisp and object-oriented program-
ming. In OOPSLA-86 [9], pages 17–29. Special issue of SIGPLAN Notices.

[4] Adele J. Goldberg and David Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

[5] Robert H. Halstead. Multilisp: A language for concurrent symbolic computation. Transac-
tions of Programming Languages and Systems, 7(4):501–538, October 1985.

[6] Kevin J. Lang and Barak A. Pearlmutter. Oaklisp: an object-oriented Scheme with first class
types. In OOPSLA-86 [9], pages 30–37. Special issue of SIGPLAN Notices.

[7] Kevin J. Lang and Barak A. Pearlmutter. Oaklisp: an object-oriented dialect of Scheme. Lisp
and Symbolic Computation, 1(1):39–51, May 1988.

[8] David A. Moon. Object-oriented programming with flavors. In OOPSLA-86 [9], pages 1–8.
Special issue of SIGPLAN Notices.

[9] ACM Conference on Object-Oriented Systems, Programming, Languages and Applications,
September 1986. Special issue of SIGPLAN Notices.

[10] Barak A. Pearlmutter. Garbage collection with pointers to single cells. Communications of
the ACM, 39(12):202–206, December 1996.

[11] Barak A. Pearlmutter and Kevin J. Lang. The implementation of Oaklisp. In Peter Lee, editor,
Topics in Advanced Language Implementation, pages 189–215. MIT Press, 1991.

[12] Jonathan A. Rees and Norman I. Adams, IV. T: A dialect of lisp or, lambda: the ultimate
software tool. In ACM Symposium on Lisp and Functional Programming, August 1982.

[13] Jonathan A. Rees, William Clinger, et al. The revised3 report on the algorithmic language
Scheme. SIGPLAN Notices, 21(12):37–79, December 1986.

[14] Jonathan A. Rees et al. The T Manual. Yale University Computer Science Department, fourth
edition, 1984.

46

[15] Brian Cantwell Smith. Reflection and semantics in lisp. Technical Report CSLI-84-8, Center
for the Study of Language and Information, 1984.

[16] Alan Snyder. Encapsulation and inheritance in object-oriented programming languages. In
OOPSLA-86 [9], pages 38–45. Special issue of SIGPLAN Notices.

[17] Guy L. Steele Jr. Lambda: the ultimate declarative. Technical Report AI Memo 379, MIT AI
Lab, 1976.

[18] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, 1984.

[19] Guy L. Steele Jr. and Gerald J. Sussman. The art of the interpreter. Technical Report AI
Memo 453, MIT AI Lab, 1978.

[20] Symbolics, Inc. Symbolics Release 7 Documentation, Volume 2A, August 1986.

47

Index

(), 8, 28, 29

fluid, 42
**

fluid, 42
*

fluid, 42
Operation, 31

+, 9
+

fluid, 42
Operation, 31

-
Operation, 31

.oak, 15

.oa, 15
/

Operation, 32
1+

Operation, 31
<=

Operation, 32
<

Operation, 32
=

Operation, 32
>=

Operation, 32
>

Operation, 32
?

fluid, 42
#+, 38
#-, 38
#., 38
#b, 38
#c, 38

#d, 38
#f, 8, 17, 18, 21, 28, 29, 38–40, 42
#f

Global Variable, 8
#o, 38
#t, 8, 18, 28, 29, 38, 39
#x, 38
%full-gc

Operation, 43
%gc

Operation, 43
abs

Operation, 32
add-method, 10, 11
add-method

Special Form, 10
and

Special Form, 24
append!, 27
append!

Operation, 27
append, 27, 36
append

Operation, 27
apropos

Operation, 43
ash-left

Operation, 33
ash-right

Operation, 33
assq

Operation, 29
ass

Operation, 29
atom?

Predicate, 27
bind-error-handler

48

Macro, 22
bind, 19
bind

Special Form, 19
bit-andca

Operation, 33
bit-and

Operation, 33
bit-equiv

Operation, 33
bit-nand

Operation, 33
bit-nor

Operation, 33
bit-not

Operation, 33
bit-or

Operation, 33
bit-xor

Operation, 33
block0

Special Form, 25
block, 10
block

Special Form, 24
c[ad]∗r

Locatable Operation, 28
call-with-current-continuation,

20
call-with-current-continuation

Operation, 20
call/cc, 20, 24, 43
car, 29, 40
car

Locatable Operation, 28
catch, 4, 20, 21
catch

Special Form, 20
cdr-assq

Settable Operation, 29
cdr-ass

Settable Operation, 29
cdr, 28, 40
cdr

Locatable Operation, 28
ceiling

Operation, 33
cerror, 21, 23
cerror

Operation, 21
coercable-type, 9
coercable-type

Type, 9
coercer, 9, 37
coercer

Locatable Operation, 9
compile-file, 15
compile-file

Operation, 15
compiler-locale, 42
condition-bind, 5
cond

Special Form, 24
constituent, 37
consume-args

Operation, 12
cons

Operation, 28
contents, 14
contents

Locatable Operation, 14
copy

Operation, 27
current-locale, 15, 42
current-locale

fluid, 15, 16, 43
Fluid Variable, 38

define-constant
Special Form, 16

define-hash-macro-char
Operation, 37

define-instance
Special Form, 16

define-local-syntax
Special Form, 16

define-macro-char, 37
define-macro-char

Operation, 37

49

define-nonterminating-macro-char
Operation, 37

define-quotelike-macro-char
Operation, 37

define-simple-print-method
Operation, 39

define-syntax, 16
define-syntax

Special Form, 16
define, 16
define

Macro, 11
Special Form, 16

del!
Operation, 29

delay, 41
delay

Special Form, 40
delq!

Operation, 29
delq

Operation, 29
del

Operation, 29
denominator

Operation, 34
describe, 42, 43
describe

Operation, 43
destructure**

Macro, 29
destructure*, 23, 28, 29
destructure*

Macro, 28
destructure, 28, 29
destructure

Macro, 28
dolist-count

Special Form, 25
dolist

Special Form, 25
dotimes

Special Form, 25
do

Special Form, 25
dynamic-wind

Operation, 20
else, 24
eq-hash-table, 40
eq-hash-table

Making, 40
eq?, 7
eq?

Predicate, 7
error-opening

Type, 23
error-restart, 22
error-restart

Macro, 22
error-return, 21
error-return

Macro, 21
error, 23
error

Operation, 21
eval, 15
eval

Operation, 15
even?

Predicate, 32
expt

Operation, 32
factor?

Predicate, 33
fancy-references

fluid, 39, 42, 43
fancy, 39
feature?, 38
features

Fluid Variable, 38
float, 39
floor

Operation, 33
fluid, 19, 37
fluid

Special Form, 19
flush

Operation, 36

50

for-each-cdr
Operation, 25

for-each, 25
for-each

Operation, 25
force, 41
force

Operation, 40
forcible-print-magic

Fluid Variable, 41
forcible, 41
forcible

Type, 41
format, 38
format

Operation, 38
fraction-display-style

Fluid Variable, 39
freshline, 39
freshline

Operation, 36
frozen-here?

Settable Predicate, 18
frozen?

Settable Predicate, 18
funny-wind-protect, 20
funny-wind-protect

Special Form, 20
general-error, 23
general-error

Type, 23
generic-fatal-error, 21
generic-fatal-error

Type, 23
generic-hash-table, 40
generic-hash-table

Making, 40
generic-proceedable-error, 21
generic-proceedable-error

Type, 23
get-type

Operation, 7
hash-bracket-option, 38
if

Special Form, 24
illegal, 37
imag-part

Operation, 34
indicate, 41
initialize, 7, 16
initialize

Operation, 7
input-base

Fluid Variable, 38
input-stream

Type, 35
interactive?

Operation, 36
invoke-debugger, 22
invoke-debugger

Operation, 22
invoke-in-error-context

Operation, 23
in, 36
is-a?

Predicate, 8
iterate

Special Form, 24
labels, 11
labels

Special Form, 11
lambda

Macro, 11
last-pair

Locatable Operation, 28
last

Locatable Operation, 27
lazy-cons-pair

Making, 28
lcons

Macro, 28
length

Operation, 27
let*, 11
let*

Special Form, 11
let, 4, 11, 19, 22
let

51

Special Form, 11
list-type

Coercer, 28
Making, 28

list?
Predicate, 26

listify-args, 12
listify-args

Operation, 12
list

Operation, 28
load, 15, 16
load

Operation, 15
local-syntax, 16
local-syntax

Special Form, 16
locale, 16
locatable-operation

Type, 14
locater, 14
locater

Locatable Operation, 13
locative, 13
macro-here?

Settable Operation, 17
macro?

Settable Operation, 17
make-locative

Special Form, 13
make, 7
make

Operation, 7, 16
map!

Operation, 25
mapcdr, 25
mapcdr

Operation, 25
map, 25
map

Operation, 25
max

Operation, 32
memq

Operation, 29
mem

Operation, 29
min

Operation, 32
mix-types

Operation, 9
mixin-manager

Type, 9
modify-location

Special Form, 14
modify

Special Form, 14
modulo

Operation, 32
native-catch, 20
native-catch

Special Form, 20
negative?

Predicate, 32
newline, 38
newline

Operation, 35
nil, 8
nil

Global Variable, 8
nonterminating-macro, 37
normal, 39
not

Predicate, 24
nth, 26, 28, 37
nth

Locatable Operation, 27
null?, 8
null?

Predicate, 26
number?, 8
numerator

Operation, 34
oaklisp, 38
object-unhash, 42, 43
object-unhash

Operation, 43
object, 6–8, 11

52

object
Type, 6

odd?
Predicate, 32

operation
Type, 14

or
Special Form, 24

output-stream
Type, 35

out, 36
pair?

Predicate, 26
pair, 40
peek-char

Operation, 35
pop

Macro, 29
position

Settable Operation, 36
positive?

Predicate, 32
present?, 40
present?

Settable Operation, 40
print-escape

fluid, 38, 39
Fluid Variable, 39

print-length
fluid, 42
Fluid Variable, 39

print-level
fluid, 42
Fluid Variable, 39

print-radix
Fluid Variable, 39

print, 4, 6
print

Operation, 39
proceedable-error

Making, 23
proceed, 22
proceed

Operation, 22

promise, 41
promise

Type, 41
push

Macro, 29
quasiquote, 37
quote, 8, 37
quote

Special Form, 8
quotient

Operation, 32
read-char

Operation, 35
read-error, 23
read-error

Type, 23
read-suppress

Fluid Variable, 38
read, 23
read

Operation, 36
real-part

Operation, 34
really-read-char, 35
real, 33
remember-context

Operation, 23
report

Operation, 22
rest-length, 12
rest-length

Special Form, 12
rest-name, 12
ret, 21, 22, 43
ret

Operation, 43
reverse!

Operation, 27
reverse

Operation, 27
rot-left

Operation, 33
rot-right

Operation, 33

53

round
Operation, 33

scheme-locale, 42
scheme, 38
self, 10
sequence?

Predicate, 26
set!, 13
set!

Special Form, 13
setf, 13
setq, 13
settable-operation

Type, 14
setter, 14
setter

Locatable Operation, 13
signal, 23
simple-vector, 27
simple-vector

Coercer, 27
Making, 27

single-escape, 37
skip-whitespace

Operation, 37
standard-read-table, 37
standard-read-table

Object, 37
stream

Type, 35
string-output-stream

Making, 36
string?

Predicate, 26
string

coercer, 9, 36
subtype?, 8
subtype?

Predicate, 8
swap

Special Form, 14
symbol-slashification-style

Fluid Variable, 39
symbol-table, 43

system-locale, 42
table-entry, 40
table-entry

Settable Operation, 40
tail

Locatable Operation, 27
terminating-macro, 37
the-eof-token, 35
the-eof-token

Object, 35
the-unread-object

Object, 37
throw, 4
throw

Operation, 20
trace-variable-in-out

Special Form, 43
trace-variable-in

Special Form, 43
trace-variable-out

Special Form, 43
transparent, 41
truncate

Operation, 33
type, 6, 7, 9
type

Making, 7
Type, 6

t
Global Variable, 8

ugly, 36
unexpected-eof

Type, 23
unless

Special Form, 25
unquote-splicing, 37
unquote, 37
unread-char

Operation, 35
untrace-variable

Special Form, 43
user-locale, 42
variable-here?

Settable Operation, 17

54

Setter, 17
variable?

Settable Operation, 17
Setter, 17

vector?
Predicate, 26

vector
Operation, 27

warning
Operation, 21

while
Special Form, 25

whitespace, 37
wind-protect, 20
wind-protect

Special Form, 20
with-input-from-string

Macro, 36
with-open-file, 36
with-open-file

Macro, 36
write-char, 35
write-char

Operation, 35
write-string

Operation, 36
zero?

Predicate, 32
!=

Operation, 32
↑super, 12
↑super

Operation, 12
bignum, 31
call/cc, see call-with-current-continuation
complex, 31
cons-pair, 26
fixnum, 31
float, 31
fraction, 31
integer, 31
lazy-cons-pair, 26
list-type, 26
null-type, 26

number, 31
pair, 26
rational, 31
real, 31
sequence, 26
simple-vector, 26
string, 26
vector-type, 26

Smalltalk-80, 12

55

