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This document is a “cheat sheet” on Hidden Markov Models (HMMs). It resem-
bles lecture notes, except that it cuts to the chase a little faster by defining terms
and divulging the useful formulas as quickly as possible, in the place of gentle
explanations and intuitions.

1 Notation

HMM:

e states are not observable.
e observations are probabilistic function of state
e state transitions are probabilistic

N: number of hidden states, numbered 1,..., N

M: number of output symbols, numbered 1,..., M

T: number of time steps in sequence of states and sequence of output symbols

¢: sequence of states traversed, § = (¢1,...,q,...,qr) whereeach ¢, € {1,... , N}
d: observed output symbol sequence, ¢ = (01,...,0...,0r) where o, € {1,..., M}

A: state transition matrix, a;; = P(¢+1 = Jj | ¢ = 1)

B: per-state observation distributions, b;(k) = P(o; = k| ¢ = 7)

7: initial state distribution, m; = P(¢; = 1)

A: all numeric parameters defining the HMM considered together, A = (A, B, )
indices: i, j index states; k£ indexes output symbols; ¢ indexes time

We proceed to review the solutions to the three big HMM problems: finding P(d | \),
finding ¢* = argmax; P(¢| d, \), and finding \* = argmax, P(d|\).

2 Probability of sequence of observations

We wish to calculate P(d | \).
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Definition: ay(i) = P(o1,...,04,q; = i|A). (In words: the probability of observing
the head of length ¢ of the observations and being in state ¢ after that.)

Initialization: Oél( ) = T; b'(Ol)
Loop: at+1 (Z Oét az]) Ot+1>

At termination, P(d|\) Z ar(i

Note: complexity is O(N 2T) time, O(NT) space.

Note: calculating the « values is called the “forward algorithm.”

3 Optimal state sequence from observations

—

Find ¢* = argmax; P(7| 0,
observations.

A), the most likely sequence of hidden states given the

Note: calculating the most likely sequence of states is called a “Viterbi alignment.”

Definition: f,(i) = P(0441,0142,.-.,07|q = i,A). (In words: the probability that
starting in state ¢ at time ¢, then generating the remaining tail of the observations.)

Initialization: BT(') = 1.
Loop: 5;(1) Z a;;b;(0141)Bi+1(j). Calculated backwards: t =7 —1,7—2,...,1.

Note: calculatlng the 3 values is called the “backward algorithm.”

Define:
5t(l): max P(Q1a-~>Qt—1aQt:i>01>---70t|>‘)-

q1;---s qt—1

(In words: the probability of generating the head of length ¢ of observables and
having gone through the most likely states for the first ¢ — 1 steps and ending up
in state i.)

Initialization: §, (i) = m; b;(01)
Loop: &:(j) = (maxét 1(2) a;j) bj(or)
Initialization: ¢, (i) = 0

Loop: ¢(j) = argmax &1 (i) ay;

Termination: P* = maxdr(i), the probability of generating the entire sequence of

observables via the most probable sequence of states.
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Termination: ¢; = argmax dr(i), the most probable final state.

2

Loop to find state sequence (“backtracking”): ¢; = ¥111(¢, 1)

[{%)

Note: ¢ is written “psi” in English, and pronounced “p’sai.”

3.1 Useful property of o and
Note that
> (@) Bili) =Y Plor, ... 00,q = i| ) P(0441, 0112, 07 | @ = i, \)
= P(01,...,04,0141, 0142, ..., 07, Gy = i | )

— P@E|N)

This logic holds for any ¢, so the given sum should be the same for any ¢. (The
earlier formula for P(d|\) was for the special case t = T since 87(i) = 1.) This
formula thus provides a useful debugging test for HMM programs.

4 Estimate model parameters

Given ¢ find \* = argmax, P(d|\).

Not an analytic solution. Instead, we start with a guess of A, typically random,
then iterate \ to a local maximum, using an EM algorithm. At each step we “re-
estimate” a new ), called )\, which has an increased probability of generating 3.
(Or if already at a (possibly local) optimum, the same probability.)

Note: this process is called “Baum-Welch Re-Estimation.”

Typical stopping rule for this re-estimation loop is:
stop when log P(G|\) —log P(3|)\) < ¢ for some small e
Note: debugging hint, P(3|\) > P(3|\) should always be true.
Definition: (i) = P(¢; = 7| 5, \). (In words: the probability of having been in state

¢ at time t.) () A0
V(i) = ﬁ
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Definition: &(i,7) = P(¢; = i,q121 = j|0,\). (In words: the probability of having
transitioned from state i to j at time ¢.)

o ay(i) aigbi(opg1) Brya(F)
gt(@vj) - P(a’/\)

Note: >, w(i) =1and >, >, &(i,5) = 1.
Note: ¢ is written “xi” in English, and pronounced “k’sai.”

We write “#” to abbreviate the phrase “expected number of times”

T
# state i visited: Z Ye(7)
t=1
T-1
# transitions from state  to state j is: Z &(1,7)
t=1

T-1

th@?j)

# transitions state i to state j =

~

% = "4 transitions from state i T-1
> i)
t=1
T
) ) Z[Ot = k] % (J)
i (k) # in state j and output symbol £ =
j — —

# in state j T

Z%(ﬁ

t=1

where we use Knuth notation, [boolean _condition| = 1 or 0 depending on whether
boolean _condition is true or false.

4.1 Training on multiple sequences

The above is for one output observable sequence ¢. If there are multiple such ob-
servable output sequences, i.e. a training set of them, then the basic variables de-
fined above («, (3, etc) are computed for each of them. Except for the re-estimation
formulas, which need to sum over them as an “outer” sum around the sums shown.

We use a superscript (p) to indicate values computed for observable sequence 5.
Note that A and N and M are independent of p, but 7" is not since each string in
the training set might be a different length, 7® = dim 5.

4
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The update formulas become:

> ()

= ———
21
p
TP _1
y PDIREE)
. # transitions state 7 to state j _p  t=1
% = "# transitions from state i T 1
DI
t
T7(P)

ZZ (p) _ (p) )

# in state j and output symbol k P
T(P)

bi(k) = - :
i(F) # in state j ZZ »
p
Tt

p t=1




