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ABSTRACT: Source separation arises in a variety of signal process-

ing applications, ranging from speech processing to medical image
analysis. The separation of a superposition of multiple signals is

accomplished by taking into account the structure of the mixing proc-

ess and by making assumptions about the sources. When the infor-
mation about the mixing process and sources is limited, the problem

is called ‘‘blind’. By assuming that the sources can be represented

sparsely in a given basis, recent research has demonstrated that sol-

utions to previously problematic blind source separation problems
can be obtained. In some cases, solutions are possible to problems

intractable by previous non-sparse methods. Indeed, sparse meth-

ods provide a powerful approach to the separation of linear mixtures

of independent data. This paper surveys the recent arrival of sparse
blind source separation methods and the previously existing non-

sparse methods, providing insights and appropriate hooks into the-

literature along the way. VVC 2005 Wiley Periodicals, Inc. Int J Imaging

Syst Technol, 15;18–33;2005; Published online in Wiley InterScience

(www.interscience.wiley.com). DOI 10.1002/ima.20035

Key words: Blind Sources Separation; sparse methods; Non-

negative Matrix Factorization

I. INTRODUCTION

When presented with a set of observations from sensors such as

microphones, the process of extracting the underlying sources is

called source separation. Doing so without strong additional infor-

mation about the individual sources or constraints on the mixing

process is called blind source separation (BSS). Generally the prob-

lem is stated as follows: givenM linear mixtures of N sources mixed

via an unknown M � N mixing matrix A, estimate the underlying

sources from the mixtures. When M � N, this can be achieved by

constructing an unmixing matrix W, where W ¼ A�1 up to permu-

tation and scaling of the rows. The conditions that must be satisfied

to guarantee separation are given by Darmois’ Theorem (Darmois,

1953), which states that the sources must be non-Gaussian and stat-

istically independent. The dimensionality of the mixing process

influences the complexity of source separation. IfM¼ N, the mixing

process A is defined by an even-determined (i.e. square) matrix and,

provided that it is non-singular, the underlying sources can be esti-

mated by a linear transformation. If M > N, the mixing process A is

defined by an over-determined matrix and, provided that it is full

rank, the underlying sources can be estimated by least-squares opti-

misation or linear transformation involving matrix pseudo-inver-

sion. IfM< N, then the mixing process is defined by an under-deter-

mined matrix and consequently source estimation becomes more

involved and is usually achieved by some non-linear technique.

Environmental assumptions about the surroundings in which the

sensor observations are made also influence the complexity of the

problem. BSS of acoustic signals is often referred to as the cocktail
party problem (Cherry, 1953); that is the separation of individual

voices from a myriad of voices in an uncontrolled acoustic environ-

ment such as a cocktail party. Sensor observations in a natural envi-

ronment are confounded by signal reverberations, and conse-

quently, the estimated unmixing process needs to identify a source

arriving from multiple directions at different times as one individual

source. Generally, BSS techniques depart from this difficult real-

world scenario and make less realistic assumptions about the envi-

ronment so as to make the problem more tractable. There are typi-

cally three assumptions that are made about environment. The most

rudimentary of these is the instantaneous case, where sources arrive
instantly at the sensors but with differing signal intensity. An exten-

sion of the previous assumption, where arrival delays between sen-

sors are also considered, is known as the anechoic case. The

anechoic case can be further extended by considering multiple paths

between each source and each sensor, which results in the echoic
case, sometimes known as convolutional mixing. Each case can be

extended to incorporate linear additive noise, which is usually

assumed to be white and Gaussian.

Assumptions can also be made about the nature of the sources.

Such assumptions form the basis for most source separation algo-

rithms and include statistical properties such as independence and

stationarity. One increasingly popular and powerful assumption is

that the sources have a parsimonious representation in a given basis.
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These methods have come to be known as sparse methods. A signal

is said to be sparse when it is zero or nearly zero more than might

be expected from its variance. Such a signal has a probability den-

sity function or distribution of values with a sharp peak at zero and

fat tails. This shape can be contrasted with a Gaussian distribution,

which would have a smaller peak and tails that taper quite

rapidly. A standard sparse distribution is the Laplacian distribution

(p(c) ! e�|c|), which has led to the sparseness assumption being

sometimes referred to as a Laplacian prior. The advantage of a

sparse signal representation is that the probability of two or more

sources being simultaneously active is low. Thus, sparse representa-

tions lend themselves to good separability because most of the

energy in a basis coefficient at any time instant belongs to a single

source. This statistical property of the sources results in a nicely

defined structure being imposed by the mixing process on the resul-

tant mixtures, which can be exploited to make estimating the mix-

ing process much easier. Additionally, sparsity can be used in many

instances to perform source separation in the case when there are

more sources than sensors. A sparse representation of an acoustic

signal can often be achieved by a transformation into a Fourier,

Gabor or Wavelet basis.

The sparse representation of an acoustic signal has an interpreta-

tion in information theoretic terms, where the representation of a

signal using a small number of coefficients corresponds to transmis-

sion of information using a code utilising a small number of bits.

Sparse representation of information is a phenomenon that also

occurs in the natural world. In the brain, neurons are said to encode

data in a sparse way, if their firing pattern is characterised by long

periods of inactivity (Földiák and Young, 1995; Körding et al.,

2002), and recent work (DeWeese et al., 2003) indicates that sparse

representations exist in the auditory cortex.

Blind source separation has been studied for nearly two decades.

The earliest approach traces back to Herault and Jutten (1986)

whose goal was to separate an instantaneous linear even-determined

mixture of non-Gaussian independent sources. They proposed a sol-

ution that used a recurrent artificial neural network to separate the

unknown sources, and the crucial assumption being that the under-

lying signals were independent. This early work led to the pioneer-

ing adaptive algorithm of Jutten and Herault (1991). Linsker (1989)

proposed unsupervised learning rules based on information theory

that maximise the average mutual information between the inputs

and outputs of an artificial neural network. Comon (1994) proposed

that mutual information was the most natural measure of independ-

ence and showed that maximising the non-Gaussianity of the source

signals was equivalent to minimising the mutual information

between them. He also dubbed the concept of determining underly-

ing sources by maximising independence, independent component
analysis (ICA). Bell and Sejnowski (1995) developed a BSS algo-

rithm called BS-Infomax, which is similar in spirit to that of Linsker

and uses an elegant stochastic gradient learning rule that was pro-

posed by Amari et al. (1996). The idea of non-Gaussianity of sour-

ces was used by Hyvärinen and Oja (1997) to develop their fICA
algorithm. As an alternative approach to separation using mutual

information, Gaeta and Lacoume (1990) proposed maximum likeli-

hood estimation, an approach elaborated by Pham et al. (1992),

although, Pearlmutter and Parra (1996) and Cardoso (1997) later

demonstrated that the BS-Infomax algorithm and maximum likeli-

hood estimation are essentially equivalent. The early years of BSS

research concentrated on solutions for even-determined and over-

determined mixing processes. It was not until recent years that a

solution for the under-determined case was proposed when Belou-T
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chrani and Cardoso (1994) presented a maximum a posteriori
(MAP) probability approach for discrete QAM sources. An app-

roach for sparse sources was later proposed by Lewicki and Sejnow-

ski (1998). The first practical algorithm for separation in an

anechoic environment was the DUET algorithm initially proposed

by Jourjine et al. (2000) and further explored by Yilmaz and Rickard

(2004). The first algorithms for the anechoic separation of moving

speakers were presented by Rickard et al. (2001) and Anemüller and

Kollmeier (2003). A selection of sparse and non-sparse source sepa-

ration algorithms and their characteristics are presented in Table I.

Blind source separation techniques are not confined to acoustic

signals. BSS has also been applied to the decomposition of func-

tional brain imaging data such as electroencephalography (Jung

et al., 1999, 2000), functional magnetic resonance imaging

(McKeown et al., 1998), and magnetoencephalography (Tang et al.,

2000; Vigário et al., 2000; Wübbeler et al., 2000; Ziehe et al., 2000;

Pearlmutter and Jaramillo, 2003). BSS has also been applied to such

diverse areas as real time robot audition (Nakadai et al., 2002), digi-

tal watermark attacks (Du et al., 2002), and financial time series

analysis (Roth and Baram, 1996; Back and Weigend, 1997). It has

even been conjectured that BSS will have a role in the analysis of

the Cosmic Microwave Background (Cardoso et al., 2003), poten-

tially helping to elucidate the very origins of the universe.

This paper presents an overview of BSS techniques and is organ-

ised as follows. The mixing models specific to each of the three

cases specified earlier are presented in Section II and then a staged

algorithm approach is discussed; staged algorithms perform mixing

parameter estimation and source separation independently. Because

these stages are separate, any method from stage one can be com-

bined with any method in stage two to form a source separation

algorithm. Thus, in Section III, we present a selection of mixing

parameter estimation techniques, and in Section IV, we present the

unmixing methods for these staged algorithms. Within these sec-

tions, we divide the techniques presented into instantaneous,

anechoic and echoic mixing model subsections. Alternatively, some

source separation techniques estimate mixing parameters and sour-

ces simultaneously; these methods are presented in Section V.

II. Mixing Models The generative model for the BSS problem

can be presented as follows: a set of T observations ofM sensors

X ¼ ½xð1Þj � � � jxðTÞ� ¼

x1ð0Þ x1ðpÞ � � � x1ððT � 1ÞpÞ
x2ð0Þ x2ðpÞ � � � x2ððT � 1ÞpÞ
..
. ..

. . .
. ..

.

xMð0Þ xMðpÞ � � � xMððT � 1ÞpÞ

2
66664

3
77775

consist of a linear mixture of N source signals

S ¼ ½sð1Þj � � � jsðTÞ� ¼

s1ð0Þ s1ðpÞ � � � s1ððT � 1ÞpÞ
s2ð0Þ s2ðpÞ � � � s2ððT � 1ÞpÞ
..
. ..

. . .
. ..

.

sNð0Þ sNðpÞ � � � sNððT � 1ÞpÞ

2
66664

3
77775

by way of an unknown linear mixing process characterised by the

M � N mixing matrix A

A ¼

a11 a12 � � � a1N

a21 a22 � � � a2N

..

. ..
. . .

. ..
.

aM1 aM2 � � � aMN

2
66664

3
77775

yielding the equation

xðtÞ ¼ A ? sðtÞ þ �ðtÞ; ð1Þ

where [(t) is noise (usually white and Gaussian), p is the sample

period, and ? denotes the model dependent linear operator. The

form of the elements of the mixing matrix, aij, and the linear opera-

tor in the above equation are mixing model dependent and define

whether the mixing process is instantaneous, anechoic or echoic.

Table II presents the linear operators and mixing matrix elements

specific to the three cases of BSS, where the operator �(t � �ij) is
used to denote a delay between source j to sensor i, cij is a scalar

attenuation factor between source j to sensor i, �ij
k and cij

k are the

delay and attenuation parameters for the k-th arrival path, and L is

the number of paths the sources can take to the sensors.

The following subsections detail the three cases of BSS. In a

slight abuse of conventional notation, the temporal index t is used
for the relevant domain, which will be made explicit only when

necessary.

A. Instantaneous Mixing. For the instantaneous case, the mix-

ing matrix A simply consists of scalars representing signal ampli-

tudes. Taking a simple example where there are two sources and

two mixtures, the generative model takes the form

x1ðtÞ
x2ðtÞ

� �
¼ a11 a12

a21 a22

� �
s1ðtÞ
s2ðtÞ

� �
; ð2Þ

and can be described as a linear mixture of N linear subspaces in

M-space. This linear mixing imposes a structure on the resultant

mixtures, which becomes apparent when the mixtures have a sparse

representation (see Fig. 1). The existence of this structure can be

explained as follows: from Eq. (2) it is evident that if only one

source is active, say s1, then the resultant mixtures would be

x1ðtÞ
x2ðtÞ

� �
¼ s1ðtÞ a11

a21

� �
:

Therefore, the points on the scatter plot of x1(t) versus x2(t)
would lie on the line through the origin whose direction is given by

the vector [a11 a21]
T. When the sources are sparse, making it

unusual for more than one source to be active at the same time, the

scatter plot of coefficients would constitute a mixture of lines, with

the lines broadened because of noise and the occasional simultane-

ous activity. These line orientations are unique to each source and

correspond to the columns of the mixing matrix A; therefore, the
essence of the sparse approach is the identification of line orienta-

Table II. Mixing Model Specific Linear Operators and Mixing Parameters.

Mixing Model Linear operator Generative Model aij

Instantaneous Matrix multiply x (t) ¼ As(t) cij

Anechoic Convolution x (t) ¼ A � s(t) cij � (t � �ij)

Echoic Convolution x (t) ¼ A � s(t) SL
k¼1c

k
ij �(t � �kij)

20 Vol. 15, 18–33 (2005)



tions vectors (also known as basis vectors) from the observed data.

In contrast, traditional non-sparse approaches exploit the statistics

of the sources as opposed to the structure of the mixtures and

employ methods such as mutual information minimisation and inde-

pendence maximisation to identify the mixing process (see Table I).

B. Anechoic Mixing. Anechoic mixing is an extension of instan-

taneous mixing in which source transmission delays between sen-

sors are also considered. Taking a simple example with two mix-

tures and N sources, the generative model is

x1ðtÞ ¼
XN
j¼1

a1jsjðt� �1jÞ; ð3Þ

x2ðtÞ ¼
XN
j¼1

a2jsjðt� �2jÞ; ð4Þ

where the attenuation and delay of source j to sensor i would be

determined by the physical position of the source relative to the

sensors. Some algorithms make an assumption that the distance

between the sensors is smaller than half the wavelength of the high-

est frequency of interest. This assumption, referred to in the array

signal processing literature as the narrow band assumption, makes

it possible for a delay between sensors to be represented unambigu-

ously as a phase shift of a signal. The problem of anechoic signal

unmixing is therefore to identify the attenuation factor and relative

delay associated with each source. An illustration of the anechoic

case is provided in Figure 2.

C. Echoic Mixing. The echoic case of BSS considers not only

transmission delays but reverberations too. This results in a more

involved generative model that in turn makes finding a solution

more difficult. A parametric mixing model with two sources and

two mixtures takes the form

x1ðtÞ ¼
XL
k¼1

ak11s1ðt� �k11Þ þ ak12 s2ðt� �k12Þ; ð5Þ

x2ðtÞ ¼
XL
k¼1

ak21s1ðt� �k21Þ þ ak22s2ðt� �k22Þ; ð6Þ

where L is the number of paths the source signal can take to the sen-

sors. The mixing matrix A can be thought of as a matrix of finite

impulse response (FIR) filters that are defined by the environment

Figure 1. Scatter plot of two linear mixtures of three zero-mean sources in both the time domain (left) and the transform domain (right). The
‘sparse’ transform domain consists of the coefficients of 512-point windowed FFTs. The figures axes are measured in arbitrary units of transform

domain mixture coefficients.

Figure 2. Anechoic mixing: speech is observed at the microphones with differing intensity and arrival times (because of propagation delays)

but with no reverberations.

Vol. 15, 18–33 (2005) 21



in which the observations are made, and observations are generated

by convolving the sources with this FIR matrix

x1ðtÞ
x2ðtÞ

� �
¼ ~A11

~A12
~A21

~A22

� �
� s1ðtÞ

s2ðtÞ
� �

; ð7Þ

where ~A represents an individual FIR filter. Therefore, the problem

of unmixing is to find the appropriate filters for the model so that

the source signals can be unmixed and deconvolved.

An illustration of the echoic case is provided in Figure 3.

III. MIXING PARAMETERS ESTIMATION

In a staged algorithm approach, the first step is to estimate A, the
form of which is dependent on the environment considerations and

the dimensionality of the problem. The following subsections

explore the complexity of estimating A using sparse and non-sparse

methods in the context of instantaneous, anechoic and echoic mix-

ing assumptions.

A. Instantaneous Mixing

A.1. Sparse Methods. The following methods illustrate how the

underlying mixing structure can be used to estimate the mixing

matrix using the sparseness assumption. These methods estimate

the mixing process in a piecemeal fashion, where each column of

the mixing matrix is determined individually; thus, enabling a solu-

tion to be found for the under-determined case. Each method

involves a transformation of the observed data into a sparse basis

using either the Fourier or Wavelet transform.

One approach that can be used to identify line in a scatter plot is

to use a clustering technique. Zibulevsky et al. (2002) perform clus-

tering by normalising all observed data points and then mapping

them to the unit hemisphere, this mapping being required because

the line orientation for each source exists in both hemispheres, pro-

ducing two clusters for each source. Each cluster pair is consoli-

dated by this mapping and line orientations are represented as clus-

ters of data points on the unit hemisphere.* A fuzzy C-Means algo-

rithm is used to identify the cluster centres, which are adjoined to

create the estimated mixing matrix Â.
Another clustering based approach in which topographic maps

are used is presented by van Hulle (1999). Two data observations

are represented in a polar coordinate form, which results in line ori-

entations creating clusters. An unsupervised learning technique

called a topographical map, which uses a kernel-based maximum

entropy learning rule (Hulle, 1998), is used to learn the features of

the mixture distribution. When the topographic map has converged,

the density estimate of the mixture distribution is calculated from

the weights of the map and is used to estimate the mixing matrix.

This technique was shown to unmix time domain instantaneous

mixtures of speech, demonstrating that speech is sparse in the time

domain. However, speech is more sparse in the time-frequency

domain (Rickard and Yilmaz, 2002).

The line orientation of a data set can be thought of as the direc-

tion of its greatest variance. One way to find this direction is to per-

form an eigenvector decomposition on the covariance matrix of the

data, the resultant principal eigenvector i.e. the eigenvector with the

largest eigenvalue, indicates the direction of the data. This calcula-

tion forms the basis of the principal component analysis (PCA)

(Pearson, 1901) dimensionality reduction technique, which is based

on second order statistics, and is considered here in a degenerate

form in which only one principal component is retained. In the case

of identifying lines in a scatter plot where the line orientations are

not orthogonal, N different line orientations exist, which require

separation of the data into N disjoint sets, each with an individual

PCA computation. It is also worth noting that PCA is used in the

pre-whitening step of many algorithms and that methods exist that

are equivalent to PCA for fourth order statistics that achieve separa-

tion of sources; the problem here is the diagonalisation of a quadri-

covariance tensor (Cardoso, 1990).

A modified k-Means (MacQueen, 1967) algorithm can be used

to identify lines in a scatter plot (O’Grady and Pearlmutter, 2004a).

The approach can be described as follows: the algorithm is ran-

domly initialised with N line orientation estimates vi and each data

point is hard assigned to the closest line orientation estimate. Each

line orientation has a stochastic gradient algorithm associated with

it, which is updated using the new data point assigned to it. The sto-

chastic gradient algorithm is an online PCA technique, which calcu-

lates an estimate of the principal eigenvector of the data, which is

then used as the new line orientation estimate. The procedure is

Figure 3. Echoic mixing: speech is observed at the microphones with differing arrival times, intensity and multiple arrival paths because of

reverberations.

*Except when line orientation lies on the equator in which case the mapping can
fail to consolidate its two halves.
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repeated over all data points where each stochastic gradient algo-

rithm converges to an individual line orientation, which are then

adjoined to form the estimated mixing matrix, Â ¼ [v1| � � � |vN]. This
algorithm is analogous to k-Means where line orientations and dis-

tances from a line replace cluster centres and distance from the

cluster centres of conventional k-Means. This idea can be modified

to include soft data assignments and a batch mode of operation,

where the stochastic gradient algorithm is replaced by an eigenvec-

tor decomposition of the covariance matrix of the data set (O’Grady

and Pearlmutter, 2004b). This approach is an expectation maximisa-

tion (EM) algorithm (Dempster et al., 1976), where the E-step cal-

culates posterior probabilities assigning data points to lines and

M-step repositions the lines to match the points assigned to them.

The separation of 6 sources from 4 mixtures using this EM based

approach is presented in Figure 4. Theis (2001) presents a similar

approach and Kearns et al. (1997) contains a useful discussion of

hard and soft assignments.

Feature detection techniques from image processing have also

been used to locate line orientations in a scatter plot. Lin et al.

(1997) present an algorithm that uses a Hough transform to identify

lines. The scatter plot data are partitioned into bins, providing an

image representation, the image is then convolved with an edge

detection operator, and the resultant image is normalised and

thresholded to form a binary image. This image is then Hough

transformed using line orientations as the feature of interest and the

line orientation vectors of the scatter plot are identified as peaks in

the Hough transform space. The line orientation parameters associ-

ated with each peak in Hough space are then adjoined to form the

estimated mixing matrix.

Bofill and Zibulevsky (2001) present a method that is

restricted to two observations. A radial grid of K lines that covers

the space of all possible directions (i.e. from 0 to � radians) is

imposed on the scatter plot, the difference between the polar

phase of all data points and one radial grid line is calculated, and

each value is used to parameterise a local kernel density function

(sometimes called a potential function). Each of the T local kernel

estimates is then combined to give a single kernel estimate for

that grid line. Grid lines that are close to scatter plot line orienta-

tions are highly activated compared with those that are not. The

procedure is repeated for all grid lines and the result is a global

kernel density function spanning K-grid lines where the local

maxima of the function correspond to the columns of the mixing

matrix.

Figure 4. Separation of 6 sources from 4 mixtures using the Soft-LOSTalgorithm (O’Grady and Pearlmutter, 2004b). The plots above show 10-s

clips of six acoustic sources s1, . . . ,s6, 4 mixtures x1, . . . ,x4 and 6 source estimates ŝ1, . . . ,ŝ6, where sound wave pressure is plotted against time in

units of seconds. The signal-to-noise ratios of the estimated sources in dB are as follows: 10.5845, 13.3895, 13.7402, 8.9102, 15.2732 and 11.3213.

Vol. 15, 18–33 (2005) 23



Source separation techniques specific to the separation of sour-

ces within a stereophonic music recording also exist. Barry et al.

(2004) present an algorithm that exploits the fact that stereophonic

music recordings are mixed using a panoramic potentiometer,

which positions individual sources (instruments) within the stereo

field. Gain-scaling is applied to one mixture so that one source’s

intensity becomes equal in both the left and right mixture. Subtrac-

tion of the mixtures will cause the source to cancel out because of

phase cancellation. The appropriate gain required for the gain-scal-

ing operation is determined by creating a frequency-azimuth spec-

trogram; both mixtures are transformed using a discrete Fourier

transform (DFT) of a specified frame size and the left mixture is

scaled by a range of values corresponding to 08 (far left) to 1808
(far right) azimuth. The resultant frames are subtracted from the

right mixture frame and the results are used to construct the fre-

quency-azimuth spectrogram. This procedure is repeated for the left

mixture. As can be seen from Figure 5, nulls or local minima are

formed in the frequency bands specific to each source. These nulls

represent the gain needed to cancel each source. In this way, the

position (mixing parameters) of each source can be determined by

visual inspection or by using some optimisation technique.

A.2. Non-Sparse Methods. The following methods do not make

the sparseness assumption and instead estimate the mixing process

by exploiting the statistics of the observations in the time domain.

These methods are restricted to the even-determined case.

The BS-Infomax algorithm of Bell and Sejnowski (1995) shows

that for signals with a positive kurtosis, such as speech, minimising

the mutual information between the source estimates and maximis-

ing the entropy of the source estimates are equivalent. Entropy

maximisation can then be implemented using a stochastic gradient

ascent rule. There are a couple of interesting aspects to the

approach. First, the model is parameterised not by the mixing

matrix, as is natural for a forward model, but rather by its inverse

i.e. the unmixing matrix. Although the inverse contains the same

information, it makes for a much simpler update rule and superior

numeric conditioning. The second interesting aspect is that the algo-

rithm takes a naive stochastic gradient descent algorithm and modi-

fies it by multiplying the gradient by a particular positive-definite

matrix, WTW, where W is the current estimate of the unmixing

matrix. While Amari et al. (1996) provide a theoretical justification

of this based on information geometry, a naive perspective would

be that the multiplier chosen fortuitously eliminates a matrix inver-

sion, making each step of the algorithm much faster and the conver-

gence rate independent of the condition number of the unmixing

matrix.

Parra and Sajda (2003) formalise the problem of finding the

unmixing matrix as a generalised eigenvector decomposition of two

matrices, where one of the matrices is the covariance matrix of the

observations and the other is a symmetric matrix whose form

depends on the statistical assumptions on the sources (non-station-

ary decorrelated, non-white decorrelated or non-Gaussian independ-

ent). This formulation combines subspace analysis and mixing

matrix construction into a single computation, making for simple

implementation.

Algorithms that rely solely on second order statistics have also

been developed, one such algorithm is the SOBI algorithm (Belou-

chrani et al., 1997). SOBI is based on the unitary diagonalisation of

the whitened data covariance matrix. This idea is extended to

exploit the time coherence of the original sources, where multiple

whitened covariance matrices are diagonalised simultaneously, and

each matrix is calculated from observation data taken at different

time delays. The algorithm considers the effect of noise on the

observations by using a whitening matrix calculation that improves

robustness to noise. Unitary diagonalisation can be explained as fol-

lows: given a whitening matrix V and the observations X, the cova-

riance matrix of the whitened observations is E[VXXHVH] ¼
VRXV

H ¼ VARSA
HVH ¼ I, where superscript H denotes the com-

plex conjugate transpose of a matrix, RX denotes the observed data

covariance matrix, and RS denotes the covariance matrix of the

original sources. The source signals are assumed to have unit var-

iance and are uncorrelated, therefore RS ¼ I. It turns out that VA is

a unitary matrix, therefore VA ¼ U and the mixing process can be

factored as A ¼ V�1U. The problem is then to find a unitary matrix

that diagonalises the whitened covariance matrix, and for the case

where there are multiple covariance matrices, the problem is to find

a unitary matrix that simultaneously diagonalises all matrices gen-

erated from the different time delays. This joint approximate diago-

nalisation operation can be computed efficiently using a generalisa-

tion of the Jacobi technique for the exact diagonalisation of a single

Hermitian matrix.

Sometimes a distinction is made between BSS and ICA tech-

niques; for the purposes of the paper, we consider ICA to be a

restrictive case of BSS where only the even-determined or over-

determined case is considered, the mixing process is instantaneous

and the observed data is pre-whitened. Consequently the mixing

matrix A is factorised into A ¼ VR, where V is the whitening

matrix and R is an orthogonal rotation. The factor R is determined

by assuming independence between the original sources and select-

ing a matrix that will maximise independence in the observations,

using some independence criteria. The fICA algorithm of Hyvärinen

and Oja (1997) uses an independence criteria that forces non-Gaus-

sianity of the estimated sources. Other criteria such as maximum

likelihood (Gaeta and Lacoume, 1990) and mutual information

(Comon, 1994) are presented in the literature; for an in depth dis-

cussion on techniques particular to our definition of ICA, see

Hyvärinen (1999) and Cardoso (1998).

Figure 5. The frequency-azimuth spectrogram for the right channel.
Two synthetic sources comprising 5 non-overlapping partials are used.

The arrows indicate frequency dependent nulls caused by phase

cancellation. (From Barry et al., 2004, Figure 1, with permission).
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B. Anechoic Mixing
B.1. Sparse Methods. A simple online approach to anechoic

unmixing is presented by Aoki et al. (2001). Two sensor observa-

tions are transformed into the Fourier domain, and the amplitude

and phase differences between the frequency bins of each observa-

tion are calculated. The amplitude and phase associated with each

source is known in advance, and if the difference between these

ideal values and the current calculated values is smaller than some

specified threshold, then the associated frequency bin coefficient is

assigned to that source. Although this method could not be

described as a blind model, it gives a good insight into how sources

can be separated in an anechoic environment.

A more sophisticated blind approach called the DUET algorithm

is presented in Jourjine et al. (2000) and further explored in Yilmaz

and Rickard (2004). The observations of each sensor are trans-

formed into the time–frequency domain using a short-time win-

dowed Fourier transform, and the relative attenuation and delay val-

ues between the two observations are calculated from the ratio of

corresponding time–frequency points. The main assumption is that,

because of the sparsity of speech in the time–frequency domain,

almost all mixture time–frequency points with significant magni-

tude are in fact due to only one of the original sources. Thus, each

point in the stereo mixing is essentially a mixture of at most one

source, and the goal is to calculate to which source each time–fre-

quency point belongs. To do this, the relative attenuation and delay

from each ratio of time–frequency points are placed into a 2D power-

weighted histogram. Each source will cause a peak in the histogram.

These peaks correspond to the relative attenuation and delay mixing

parameters of the sources. An attenuation-delay histogram that indi-

cates the existence of six sources and their associated attenuation and

delay parameters can be seen in Figure 6. Rickard et al. (2001)

present an online algorithm based on DUET that uses a maximum

likelihood-based gradient search method to track the mixing parame-

ters. Choi (2003) presents a real-time approach to anechoic unmixing

using a method similar to DUET, where the 2D histogram of esti-

mates is replaced by a k-Means clustering algorithm.

Scatter plot representations can also be used in the anechoic

case. Bofill (2002) presents a method for anechoic unmixing that

uses the same line orientation identification approach used in the

instantaneous case. The generative model is modified slightly in

which the attenuation and delay parameters of the mixing process

are segregated into two matrices. Observed data is transformed

using a DFT and the magnitude of the resultant complex data is

used to create a scatter plot. The line orientations of the scatter plot

are identified by the kernel density estimation method of Bofill and

Zibulevsky (2001) (discussed in Section IIIA) and the resultant line

orientation vectors are adjoined to form the attenuation matrix. The

estimated delay matrix is formed by taking the real and imaginary

coefficients assigned to source j in the previous operation and itera-

tively rectifying the delay parameter until the kernel function of the

data is maximised. The procedure is repeated for the N sources and

the resultant delay parameters form the estimated delay matrix.

B.2. Non-Sparse Methods. A number of modifications that allow

existing instantaneous case algorithms to be used for anechoic situa-

tions have been proposed. Platt and Faggin (1992) apply the mathe-

matics of adaptive noise cancelling networks (Widrow et al., 1975)

to the source separation network of Herault and Jutten (1986). The

adaption of noise cancellation networks is based on an elegant

notion: if a signal is corrupted by noise, it will have higher power

than when it is not, because the noise power adds to the signal

power. This principle known as the minimum output power principle
is used to adapt an extension of the Hérault-Jutten network that con-

tains delays in the feedback path. These delays cancel out interfer-

ence from the delayed versions of other sources in the mixtures and

the new network is then capable of unmixing delayed mixtures. This

model can also be extended to the echoic case.

The BS-Infomax algorithm has also been extended to the

anechoic case. Torkkola (1996b) extends BS-Infomax using the

adaptive delay architecture of Platt and Faggin (1992). The resultant

network maximises the entropy at the output of the network with

respect to the weights and the delays. One problem with the

approach taken is that sometimes the network is unable to converge

to a proper separating solution. It is therefore crucial for conver-

gence that the initial delay estimates are approximately in the cor-

rect range, which can be achieved by using prior knowledge of the

recording situation. Torkkola (1996a) also extends the algorithm to

the echoic case.

The simultaneous diagonalisation technique of the SOBI algo-

rithm has also been transposed to the anechoic case. Yeredor (2001)

uses joint diagonalisation of spectral matrices to estimate the mix-

ing coefficients as well as the delays. An analysis is provided in the

frequency domain, resulting in a diagonalisation of a set of spectral

matrices at different selected frequencies. The problem is to find a

diagonalising matrix B, which can be factored into a matrix of mix-

ing coefficients and delays. This problem can be solved by extending

Yeredor (2000), which solves the joint diagonalisation problem by

alternately minimising a least squares cost function with respect to a

matrix of mixing coefficients A, delays D, and source spectra C. The
algorithm is iterated over three steps: first minimise the least squares

cost function with respect to C with A and D fixed; then minimise

Figure 6. The DUET smoothed power-weighted histogram for a six

speech source mixture. Each peak corresponds to one source and
the peak locations correspond to the associated source’s mixing

parameters. (From Yilmaz and Rickard, 2004, Figure 8, with permission).
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with respect to each column of A, assuming the other columns and T
and C are fixed and finally minimise with respect to each column of

D, assuming the other columns and A and C are fixed. The parameter

estimates after convergence define the mixing process.

C. Echoic Mixing. Lambert (1996) develops an FIR matrix alge-

bra that can be used to solve problems involving echoic mixtures.

The idea is to extend the algebra of scalar matrices to matrices of

filters (time domain) or polynomials (frequency domain). Lambert

presents techniques that compute the inverse of a matrix of FIR fil-

ters. These techniques are required to determine the inverse mixing

process and have enjoyed wide deployment in separation methods

for echoic mixtures.

Westner and Bove (1999) discuss the separation of over-deter-

mined mixtures (more sensors than sources). A technique is pre-

sented that involves taking the impulse response of the room in

which the observations are made and then parameterising the FIR

filters in the mixing process with the inverse of the impulse

response. As described in Lambert (1996), it is possible to use

standard scalar matrix operations to invert FIR polynomial matrices,

and in the case of an over-determined system, it is possible to use a

pseudo-inverse to determine the unmixing matrix. The motivation

for using more sensors than sources is quality of separation: results

are presented that show that the signal to noise ratio of the separated

sources improves with an increase in the number of sensors. This

approach, where impulse responses are measured, diverges from the

blind separation model. However this technique indicates the infor-

mation needed to estimate sources from echoic mixtures.

A computationally efficient method to determine the inverse

mixing process is to estimate the parameters of the mixing process

in the frequency domain, where convolution becomes scalar multi-

plication, f(t) � g(t) !F f(!) g(!). It is possible to transform an FIR

filter matrix to an FIR polynomial matrix by performing a fre-

quency transform on its elements. FIR polynomial matrices are

matrices whose elements are complex valued polynomials (Lam-

bert, 1996). A consequence of the transformation is that the fre-

quency components observed at the sensors are in fact instantane-

ous mixtures of the original frequency components of the sources,

i.e each frequency bin of x(t) is an instantaneous mixture. The mix-

ing process can be observed in the frequency domain by performing

an FFT transformation on x(t). When the mixing process is trans-

formed in this way, the resultant FIR polynomial matrix can be

modelled by a combination of multiple complex valued matrices

and therefore can be viewed as solving multiple instantaneous mix-

ing problems in the frequency domain.

Smaragdis (1998) uses this approach and presents an algorithm

that employs BS-Infomax. The BS-Infomax learning rules are refor-

mulated for complex domain data and are used to learn the unmix-

ing process at each frequency bin. One major problem with this

approach is that of permutation and scaling: the columns of the

resultant mixing matrices may not all correspond to the same

source, which results in incorrect source estimation. Although a

number of heuristics to alleviate this problem are presented (Ane-

müller and Kollmeier, 2003), it remains an open problem. A flow

diagram of this algorithm is shown in Figure 7.

Murata et al. (2001) also formulated the problem of convolutive

mixture separation in the frequency domain. The instantaneous

mixtures at each frequency bin are separated using simultaneous

diagonalisation similar to the SOBI algorithm. To solve the permu-

tation problem, a method based on the temporal structure of signals

that exploits the non-stationarity of speech is introduced. The sepa-

rated components at each bin are combined with the components in

the other bins that exhibit a similar envelope over some specified

time. This method makes use of the fact that non-stationary signals

exhibit correlation between the frequency bins of the signals spec-

trum.

Sahlin and Broman (1998) present an algorithm that is applied

to the problem of separating a signal from noise. A mobile phone is

fitted with two microphones and the noise performance of the algo-

rithm is tested in a range of echoic environments. Echoic separation

is formulated as an optimisation problem in which the cost function

is the sum of squared cross correlations between the separated sig-

nals, the goal is to estimate appropriate filter weights that will

achieve separation. Minimisation of the cost function is performed

using a Gauss–Newton search, and when separation is achieved, the

separated sources are mutually uncorrelated. One problem that

arises in convolutive mixture separation is to determine the filter

order required for separation. One way to tackle this problem is to

use a technique known as ‘leaking’ (Ljung and Sjöberg, 1992),

which involves modifying the cost function with the benefit that

there is no performance degradation because of over-parameterisa-

tion of the algorithm.

Convolutive mixtures also appear in digital information trans-

mission. A typical assumption in this area is that the number of

sources is less than the number of observations. Icart and Gautier

(1996) present a method in which the generative model of Eq. (5) is

modelled using an auto-regressive moving average (ARMA)

model. The first stage of the algorithm is to estimate the convolutive

mixture using a linear predictor, which is used to create a filter that

provides an instantaneous mixture of the source signals. Sources

can then be estimated from this new mixture using any instantane-

ous mixture method. A similar approach is also presented in Goro-

khov et al. (1996).

The problem of blind separation of convolutive sources can be

compared with that of blind channel equalisation (sometimes called

blind deconvolution). Blind equalisation is an adaptive filtering

technique, which can restore a signal corrupted by a multipath

channel. Lambert (1995) extended this idea to the multichannel

problem of blind separation where separation is achieved by decor-

relating multiple source signals. Lambert formulates a multichannel

blind equalisation cost function and makes use of the Bussgang

property (Bussgang, 1952) (also discussed in Fiori (2002)) to

achieve separation (Lambert and Bell, 1997). The Bussgang prop-

Figure 7. Flow diagram of the Smaragdis’ frequency domain algo-

rithm for echoic separation. (From Smaragdis, 1998, Figure 3, with
permission).
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erty can be stated as follows: two random variables xi and xj are

independent if and only if E[f(xi) g(xj)] ¼ E[f(xi)] E[g(xj)] for all

functions f(�) and g(�).
Baxter and McWhirter (2003) present an algorithm, which is a

generalisation of instantaneous ICA, where hidden rotation matrix

estimation is replaced by estimation of a Hidden Paraunitary Matrix

(HPM). An initial process of strong decorrelation and spectral

equalisation (whitening), based entirely on second order statistics,

is followed by the identification of a HPM that necessitates the use

of fourth order statistics. The concept of an Elementary Paraunitary

Matrix (EPM) is introduced, and this takes the form of a number of

delays applied to one of the channels, followed by a rotation. The

HPM is built up as a sequence of EPMs. The parameters required

for the HPM are determined using a novel method termed the

sequential best rotation algorithm. At each iteration of the algo-

rithm, a delay and rotation angle are computed and between them

they specify an EPM. These parameters are chosen to maximise

statistical independence (using any instantaneous ICA method) at

the output of that stage. The number of stages is not specified in

advance. Instead, the algorithm continues until no further improve-

ment can be achieved, which differs from previous methods (Vai-

dyanathan, 1993) of paraunitary matrix estimation.

Monaural source separation of convolutive sources has also

received some attention. A biologically inspired technique that

exploits spectral cues is presented in Pearlmutter and Zador (2004).

When sound reaches an organism’s inner ear, the sound’s spectrum

is ‘coloured’ by the head and the shape of the ears. This spectral

colouring or filtering is known as the head-related transfer function

(HRTF) and is defined by the direction of the sound and the acous-

tic properties of the ear. When using the HRTF, it is assumed that

each source has a unique position in space. The auditory scene is

segregated into a number of different locations each with an associ-

ated HRTF filter. Sources coming from these locations will be col-

oured by its associated filter, which indicates the source’s position;

thus, identification of the HRTF filter applied to each source will

lead to separation of sources. This can be achieved by sparsely rep-

resenting the sources in an over-complete (under-determined) dic-

tionary, which is performed as follows: a known HRTF is used with

a given signal dictionary where each dictionary element is filtered

by the HRTF filter at each location in the auditory scene, resulting

in an over-complete signal dictionary. The monaural mixture signal

is then decomposed into these dictionary elements by L1-norm mini-

misation (see Section IVA) and the resultant coefficients indicate

the location of the sources in the signal. The dictionary elements of

the locations identified are then scaled by their coefficients and line-

arly combined to create the estimated sources. By estimating the

coefficients by using a post-HRTF (sensor space) dictionary but

reconstructing using a pre-HRTF (source space) dictionary, separa-

tion and deconvolution can be simultaneously achieved.

Careful placement of microphones can greatly simplify the prob-

lem of separating echoic sources. Sanchis et al. (2004) discuss how

to convert echoic mixtures to instantaneous mixtures using two ster-

eophonic microphones: the microphones are positioned at the same

point in space (making the observations instantaneous at each

microphone) but in different directions. The directional properties

of the microphones cause the mixtures observed at the microphones

to have a differing contribution form each source (if regular non-

directional microphones were used, each microphone would record

the same observation). Thus, the problem is converted to the instan-

taneous case. In some practical situations, the mixtures are not truly

instantaneous because of reverberations and are considered to be

still echoic, and the advantage of the microphone arrangement in

this case is that fewer taps are need for the separation filters. Similar

work is presented by Katayama et al. (2004).

IV. SEPARATION TECHNIQUES

Subsequent to the estimation of the mixing matrix, separation of the

underlying sources can be performed. The complexity of the separa-

tion process is influenced by the mixing model used and the relative

number of sources and sensors. The next section presents a number

of techniques used in the separation stage of BSS algorithms.

A. Instantaneous Separation. Separation in the even-deter-

mined case can be achieved by a linear transformation using the

unmixing matrixW,

ŝðtÞ ¼ WxðtÞ; ð8Þ

where ŝ(t) holds the estimated sources at time t, Â is the estimated mix-

ing matrix andW¼ Â�1 up to permutation and scaling of the rows.

For the under-determined case, which is usually restricted to

sparse methods (see Table I), a linear transformation is not possible,

since Âŝ(t) ¼ x(t) has more unknowns in s than knowns in x and is

therefore non-invertible. Consequently, some non-linear technique

is needed to estimate the sources. Usually, these techniques involve

assigning observed data x(t) to the columns of Â that characterise

each source. The most rudimentary technique is to hard assign each

data point to only one source based on some measure of proximity

to columns of Â (Vielva et al., 2000, 2002; Lin et al., 1997). A logi-

cal extension of the previous technique is the partial assignment of

each data point to multiple sources. This is generally done by mini-

misation of the L1-norm (sometimes referred to as the shortest-path

algorithm (Bofill and Zibulevsky, 2000) or basis pursuit (Chen

et al., 1998)). L1-norm minimisation is a piecewise linear operation

that partially assigns the energy of x(t) to the M columns of Â that

form a cone around x(t) in RM space. The remaining N –M columns

are assigned zero coefficients; therefore, L1-norm minimisation pro-

vides more accurate source estimates when the sources are sparse,

in this case, when the number of sources active at any one time is

less than or equal to M. L1-norm minimisation can be accomplished

by formulating the problem as a linear program

minimise ŝðtÞk k1 subject to ÂŝðtÞ ¼ xðtÞ; ð9Þ

where the observed data point x(t) is in an appropriate domain and

the ŝ(t) coefficients, properly arranged, constitute the estimated

sources, ŝ ¼ [ŝ(1) | � � � |ŝ(T)]. A detailed discussion of signal recov-

ery using L1-norm minimisation is presented by Takigawa et al.

(2004). When using complex data, as in the case of a FFT represen-

tation, the real and imaginary parts are treated separately; thus, dou-

bling the number of coefficients.

Source separation can be formalised in a probabilistic frame-

work: given x(t) and Â, a standard approach for reconstructing ŝ(t)
is maximum likelihood, which finds an ŝ(t) that maximises the pos-

terior probability. If the prior probability P(ŝ(t)) is Laplacian
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(P(ŝ(t)) ! e�|ŝ(t)|), then this probabilistic approach becomes the L1-
norm minimisation of Eq. (9)

B. Anechoic Separation. For algorithms that are constrained to

the even-determined case (Yeredor, 2001), separation can be

achieved by linear transform in the frequency domain. Observations

are transformed using a DFT and the underlying sources are esti-

mated by multiplying with the inverse product of the amplitude and

delay matrix, and the sources are then transformed back to the time

domain.

For algorithms such as DUET (Jourjine et al., 2000) that use

time–frequency representations of the observations, one powerful

approach, known as time–frequency masking (Yilmaz and Rick-

ard, 2004), is to partition the time–frequency domain into regions

corresponding to individual sources. These regions are defined by

proximity to the estimated delay and amplitude parameters and

each source is then estimated by synthesising the coefficients

contained in its region. This technique relies on the assumption

of source disjointness; sources are said to be disjoint if the inter-

section of the supports of the sources is zero, i.e. each source

occupies an exclusive region in the time–frequency domain.

Although this condition is not fully met in practice, particularly

in acoustics, it has proven a very useful and practical approxima-

tion (Rickard and Yilmaz, 2002).

Bofill (2002) presents a method that reduces the anechoic case

to the instantaneous case, resulting in individual matrices for the

amplitudes and delays. Sources can then be estimated using meth-

ods presented in the previous subsection. Bofill uses a technique

similar to L1-norm minimisation called second order conic pro-
gramming, the difference being that the latter can include the mag-

nitudes of complex numbers in the L1-norm; therefore, eliminating

the need for, and approximation made by, putting the real and imag-

inary components separately into the L1-norm.

C. Echoic Separation. Separation of echoic mixtures is gener-

ally only attempted in the even-determined case, where it can be

achieved by convolving mixture observations with an inverse mix-

ing process W,

ŝðtÞ ¼ W � xðtÞ: ð10Þ

The most widely deployed method to obtain an inverse mixing

process is the FIR matrix inversion of Lambert (1995). Matrices of

filters have inverses of the same form as matrices of reals, and a

convolutive mixing process with two mixtures and two sources

would have an inverse of the form

W ¼ Â
�1 ¼ 1

~A11 � ~A22 � ~A12 � ~A21

~A22 � ~A12

� ~A21
~A11

� �
: ð11Þ

Thus, in the low-noise even-determined case, estimation of the convol-

utive mixing process allows the construction of an unmixing process.

For algorithms such as Icart and Gautier (1996) and Gorokhov

et al. (1996), which reduce the problem to one of instantaneous

mixing, the methods described in Sections IIIA and IVA are suffi-

cient to unmix the original convolved sources. For the blind equal-

isation approach of Lambert (1995), source estimates can be

obtained by making use of feedback where the current best esti-

mates of Ã21 and Ã12 are used to obtain estimates of the sources.

The equations for the two sensor two source case are as follows:

ŝ1ðtÞ ¼ x1ðtÞ � ŝ2ðtÞ � ~A21;

ŝ2ðtÞ ¼ x2ðtÞ � ŝ1ðtÞ � ~A12: ð12Þ

V. JOINT ESTIMATION

The previous two sections outlined a staged approach to BSS,

where source separation is performed after estimating the mixing

process. It is also possible to estimate the sources and mixing proc-

ess concurrently by selecting an appropriate cost function and defin-

ing the problem as an optimisation problem. Such a cost function

can be constructed using a measure of distance between X and the

product AS. One typical measure is the square of the Euclidean dis-

tance between X and AS.

CðX;A;SÞ ¼ X �ASk k2 ¼
X
ij

ðxij � ðASÞijÞ2: ð13Þ

This is insufficient to fully constrain the solution, since an optimum

can be transformed into another equivalent optimum by S 7! US, A
7! AU�1, where U is any invertible matrix. However, we are now

in a position to formulate X ¼ AS as an optimisation problem. We

will focus our discussion on the emerging field of non-negative
matrix factorisation (NMF) (Lee and Seung, 1999), which is an

optimisation problem of the following form

minimize CðX;A;SÞ subject to A;S � 0:

The presented cost function is convex in A or S only, but not in both

variables together. Therefore, it is unrealistic to expect an algorithm

to find a global minima for both variables together and usually,

algorithms alternate updates of A and S.

A. Non-Negative Matrix Factorisation. Non-negative matrix

factorisation is a technique for the decomposition of multivariate

data. It is based on the fact that in many data processing tasks, nega-

tive numbers are physically meaningless and contradict physical

realities. For example, when considering grey-scale images, the

principal component analysis decomposition of an image may result

in basis vectors that have both positive and negative components.

This image is then represented by a linear combination of these basis

vectors weighted by both positive and negative coefficients, with

some basis vectors being cancelled out by others. Since negative

basis has no real-world representation in a grey-scale image context,

this has led researchers to argue that the search for a basis should be

ŝðtÞ ¼ max
ÂŝðtÞ¼xðtÞ

PðŝðtÞjxðtÞ; ÂÞ

¼ max
ÂŝðtÞ¼xðtÞ

PðxðtÞjŝðtÞ; ÂÞPðŝðtÞÞ

¼ max
ÂŝðtÞ¼xðtÞ

PðŝðtÞÞ

¼ max
ÂŝðtÞ¼xðtÞ

exp�ðjŝ1ðtÞj þ � � � þ jŝNðtÞjÞ

¼ min
ÂŝðtÞ¼xðtÞ

jŝ1ðtÞj þ � � � þ jŝNðtÞj

¼ min
ÂŝðtÞ¼xðtÞ

ŝðtÞk k1:
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confined to a non-negative basis with real-world manifestations.

Formally, this idea can be interpreted as decomposing a non-nega-

tive matrix P into two non-negative factors V and H such that

P � VH:

In a source separation context, provided that there is a non-negative

constraint on X, S and A, the above can be replaced by

X � AS: ð14Þ

Although an exact decomposition (i.e. X ¼ AS) is possible, in the

context of source separation reconstructions are usually approxi-

mate. The significance of Eq. (14) is that when rewritten column by

column, i.e. x(t) ¼ As(t), it is evident that x(t) is approximated by a

linear combination of the columns of A weighted by the compo-

nents of s(t). Therefore, A can be regarded as having an optimised

basis for the approximation of the data in X. Since A contains N
basis vectors in its columns to represent T data vectors in X, where
typically T >> N, good approximation can only be achieved if the

basis vectors discover structure that is latent in the data. For a

sparse non-negative representation of X, provided that the dimen-

sions of A are appropriate, the latent structure of the data may be

defined by a mixing process and in that case S will contain esti-

mates of the original sources in its rows. It is worth noting that a

non-negativity constraint on the mixing process defined by A limits

the applicability of NMF in source separation, as the mixing matrix

can often include negative components. However, NMF readily

lends itself to monaural source separation problems.

For data such as speech, which contain negative components,

the power spectrum density can be calculated by DFT of the data,

X(t) 7! |X(w)|2, and this non-negative representation can then be

factorised.

A.1. NMF Algorithms. In a highly influential paper, Lee and

Seung (2001) presented an algorithm that optimises A and S individu-

ally based on the cost function of Eq. (13). This is the standard algo-

rithm for NMF and works as follows: when optimising S, A is fixed

and a multiplicative update rule is used to update S, and vice versa,

Stþ1 ¼ St ATX

ATASt
; ð15Þ

Atþ1 ¼ At XS
T

ASSt : ð16Þ

It is important to have an understanding of the conditions required

for a correct NMF solution. Donoho and Stodden (2004) investigate

what conditions make the NMF objective well defined and the

answer correct independent of the algorithm used. Non-negative

matrix factorisation can be interpreted geometrically as finding its

geometric counterpart called the simplical cone. The developed

geometric conditions are considered in the context of image articu-

lation libraries and it is shown that in the case of separable factorial

articulation families, non-negative matrix factorisation is essentially

unique. An experiment using the Lee and Seung (2001) algorithm is

presented, and the results demonstrate that the theoretical results

are predictive of the performance of the algorithm.

As discussed in Section I, it is often desirable to decompose data

into a sparse representation. In the context of NMF, the requirement

for a sparse decomposition of X would result in another constraint

being added to the optimisation problem. Non-negative matrix fac-

torisation with an added sparseness constraint is presented in Hoyer

(2002), where the sparse decomposition technique introduced is

referred to as non-negative sparse coding (NSC). This technique

uses the same cost function as Eq. (13) but introduces an additional

term that enforces sparseness on S,

CðX;A;SÞ ¼ 1

2
X �ASk k2þ�

X
ij

f ðsijÞ; ð17Þ

where the function f(�) defines how sparseness is measured (typi-

cally f(�) ¼ |�|) and the parameter � controls the trade off between

sparseness and accurate reconstruction. This objective creates a

new problem: f(�) is typically a strictly increasing function of the

absolute value of its argument, so it is possible that the objective

can be decreased by scaling up A and scaling down S (A 7! �A and

S 7! (1/�)S, with � > 1). This situation does not alter the first term

in the objective function, but will cause the second term to

decrease, resulting in the elements of A growing without bound and

S tending toward zero. The consequence is that the solution arrived

at by the optimisation algorithm is not influenced by the second

term of the objective function and the resultant S matrix is not

sparse. Therefore, another constraint needs to be introduced in order

to make the cost function well-defined. This is achieved by fixing

the norm of the columns of A to unity, which constrains the scale of

the elements in A and S.

The algorithm presented by Hoyer (2002) is similar to Lee and

Seung (2001), although the unit-norm constraint on the columns of

A complicates the update calculation for A; the update for A is

Figure 8. Experiments on bars data. Features: the 10 original features (columns of Aorig) that were used to construct the dataset. Data: a ran-
dom sample of 12 data vectors (columns of X). These constitute superpositions of the original features. NSC: features (columns of A) learned by

NSC, with dimensionality of the hidden representation (number of rows of S) equal to 10, starting from random initial values. NMF (6): features

learned by NMF, with dimensionality 6. NMF (10): features learned by NMF, with dimensionality 10. (From Hoyer, 2002, Figure 1, with permission).
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replaced by a projected gradient descent calculation with the resul-

tant update elements set to zero if negative and each column nor-

malised. An experiment using simple 3 � 3 pixel images in which

each image is treated as a 9-element vector is presented (see Fig. 8).

A data matrix X with 12 data images in its columns is constructed

from random non-negative data Sorig using the generative model

X¼ AorigSorig. An over-complete basis of 10 images is manually

constructed from a complete basis of 6 images with the remaining 4

images constructed from a combination of 2 from the complete

basis, these images are then placed in the columns of Aorig. NSC is

compared with NMF and the results show that, provided the dimen-

sions of A are appropriate, NSC correctly identifies all the over-

complete basis vectors of the data set, while NMF identifies only

the complete basis vectors. The images in X can be perfectly

described by the complete subset of the over-complete basis vec-

tors, and the advantage of identifying the entire over-complete basis

is that a sparser description of the data can be achieved.

An interesting application of NSC for monaural sound separa-

tion using a temporal continuity assumption is presented in Virta-

nen (2003). The Temporal continuity assumption is motivated by

the human auditory system (Bregman, 1990) and assumes that the

mixture sources have constant spectra with time-varying gain. This

algorithm considers only monaural signals; therefore, a different

generative model is used. The observed signal is split into T frames

of F samples, the power spectrum within each frame is calculated

using a DFT and these frames are adjoined to form the columns of

X. The matrix of constant source spectra S has N � F dimensions

with spectra contained in each row. A is a T � N matrix containing

time-varying spectral gain information and defines the mixing of

the constant spectra in S for each frame. It is also assumed that the

sound sources are inactive most of the time resulting in a sparse A
matrix. The observations X are generated by X ¼ AS. The addi-

tional temporal continuity requirement can be included as an addi-

tional constraint on the NSC cost function of Eq. (17)

CðX;A;SÞ ¼ w1 X �ASk k22 þw2 Ak k1

þ w3

XT
t¼1

XM
i¼1

jat�1;i � at;ij; ð18Þ

where w1, w2 and w3 are constants of proportionality that balance

the cost function for accuracy of reconstruction, sparseness and

temporal continuity, respectively. Temporal continuity is achieved

by the third term of Eq. (18), which ensures that the gain differen-

ces between consecutive frames are minimised. It is also worth not-

ing that the sparse constraint has shifted from S to A. The optimisa-

tion algorithm used is similar to Hoyer (2002) and is applied to the

task of separation and transcription of drum sources from real-world

polyphonic music signals. A similar method that makes use of tem-

poral structure in a different way to that described above is pre-

sented by Smaragdis (2004).

Non-negative constraints have also found their way into a tradi-

tional ICA framework. Plumbley (2003) presents an algorithm that

places a constraint of non-negativity on the sources. It is assumed

that observations are noiseless and sources are well-grounded, i.e.

they have a non-vanishing probability density function in the neigh-

bourhood of zero. It is shown that the combination of pre-whitening

and calculation of an appropriate orthonormal rotation is both nec-

essary and sufficient for finding the set of underlying sources, pro-

vided that the sources are well-grounded. Two cost functions are

presented that can be used to determine the rotation matrix; these

cost functions can then be used by any suitable optimisation algo-

rithm. One interesting insight that emerges is that there is no

requirement for the unwhitened inputs and mixing matrix to be

non-negative in contrast with NMF. Although the discussion con-

centrates on sources with well-grounded distributions, it is expected

that the algorithm will work particularly well with sparse distribu-

tions. This method diverges from the joint estimation approach

because sources are estimated by a linear transformation, but illus-

trates how non-negative matrix constraints can be introduced into a

an ICA framework. Non-negativity constraints have also been

applied to ICA for hyperspectral image analysis (Parra et al., 2000).

VI. FURTHER READING

The authors would like to recommend the following books that they

have found useful in their research. For a detailed discussion on

ICA techniques and principles, consult Roberts and Everson (2001)

and Hyvärinen et al. (2001). For an introduction to blind deconvolu-

tion and associated algorithms including Bussgang techniques, con-

sult Haykin (1994). A modern overview of the different approaches

taken (including psychology, physiology, engineering and computer

science) for the cocktail party problem is presented in Divenyi

(2005). For background material on blind signal processing includ-

ing multipath blind deconvolution, refer to Cichocki and Amari

(2002). For a solid entry-level introduction to machine learning

principles and techniques, consult Duda et al. (2001).

VII. CONCLUSION

The problem of BSS is a challenging and interesting one, which has

enjoyed much attention over the last two decades. The complexity

of the problem is influenced by environmental considerations, the

number of sensor observations, and the number of underlying sour-

ces to be separated. This survey presented an overview of the tech-

niques used and the different approaches taken to solve the prob-

lem. The problem can be solved by a staged approach in which the

mixing process is estimated first and the sources are estimated sub-

sequently. Alternatively, the problem can be viewed as an optimisa-

tion problem in which the mixing process and source estimates are

estimated jointly. The adoption of an assumption of sparsity, by

way of a suitable basis transformation, ameliorates the problem

somewhat by enabling algorithms to efficiently exploit the structure

of the mixing process. The sparse assumption also provides for a

solution to the under-determined case. It is envisaged that the abil-

ity of sparse representations to efficiently represent useful statistical

structure in a signal will lead to an increased number of practical

signal processing algorithms in which sparse representations play a

key role.
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