
Transformations of Gaussian Process Priors

Roderick Murray-Smith12 and Barak A. Pearlmutter2

1 Department of Computing Science, University of Glasgow, Scotland
2 Hamilton Institute, NUI Maynooth, Co. Kildare, Ireland

rod@dcs.gla.ac.uk
barak@cs.nuim.ie

Abstract. Gaussian process prior systems generally consist of noisy measure-
ments of samples of the putatively Gaussian process of interest, where the sam-
ples serve to constrain the posterior estimate. Here we consider the case where the
measurements are instead noisy weighted sums of samples. This framework in-
corporates measurements of derivative information and of filtered versions of the
process, thereby allowing GPs to perform sensor fusion and tomography; allows
certain group invariances (ie symmetries) to be weakly enforced; and under cer-
tain conditions suitable application allows the dataset to be dramatically reduced
in size. The method is applied to a sparsely sampled image, where each sample is
taken using a broad and non-monotonic point spread function. It is also applied to
nonlinear dynamic system identification applications where a nonlinear function
is followed by a known linear dynamic system, and where observed data can be
a mixture of irregularly sampled higher derivatives of the signal of interest.

1 Introduction

Gaussian process priors are increasingly used as a flexible nonparametric model in a
range of application areas (e.g. O’Hagan, 1978; Rasmussen, 1996; Williams, 1998b;
Murray-Smith and Sbarbaro, 2002). In (Solak et al., 2003) we used the fact that the
derivative of a Gaussian process is itself a Gaussian process to integrate function and
derivative observations. This is particularly useful when modeling nonlinear dynamic
systems. Here we generalise the results to arbitrary transformations of a Gaussian
process, which in discrete form can be summarised by a linear transformation. Like
the ‘generalised observations’ obtained from bounded linear functionals introduced in
(Wahba, 1990). We show four major practical advantages this can offer:

1. We can fuse information from multiple sensors, where the (potentially nonlinear)
transformation associated with the sensor can be approximated by a linear weight-
ing on discretisation. GP inference can then solve ill-posed inverse problems.

2. We can add ‘artificial’ data points which introduce prior knowledge by enforcing
certain chosen linear constraints, such as symmetry, or higher-order derivative op-
erators.

3. We can choose n × N linear transformations, where N is the number of points in
the original training set, which reduce the computational complexity to O(n3) +
O(N2). For n � N this can lead to a significant improvement in speed. We show
that such mappings can be derived from smooths of less refined models.

J. Winkler, N. Lawrence, M. Niranjan (Eds.): Machine Learning Workshop, LNAI 3635, pp. 110–123, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Transformations of Gaussian Process Priors 111

4. In many applications we can choose a series of linear transformations which com-
press the training set, as above, and correspond to multi-scale learning.

2 Transformations of Gaussian Process Priors

Consider N observations of inputs X and outputs Y , where we assume the Y are drawn
from an N -dimensional normal distribution,

Y ∼ N (0, Σ),

where Σ is the N ×N covariance matrix, the elements of which are functions of inputs
X , an N × d matrix. The covariance function is of the form

cov(xi, xj) = v0 exp
(
−

∑
k

wk(xi,k − xj,k)2
)

+ σ2
y ,

and reflects prior beliefs that the target function is smooth, so penalising high-frequency
components. The parameter wk reflects the length-scale of changes in input dimen-
sion k.

We will now assume that instead of observing y’s directly, we observe a transfor-
mation m of the latent variables y. In the continuous case

output =
∫

Ω

system × input dΩ,

m(t) =
∫

K(t, x) y(x) dx (1)

which in discrete form is

mk =
N∑

j=1

Kkj Yj , (2)

In other words, for the vector of latents Y we observe outputs M = KY , where K
is known. This could, for example, correspond to an inverse problem such as image
restoration, where the observable is the image, the system is the lens, and the scenery
is the input. Note that although the discretised form K is a linear transformation, the
original kernel K(t, x) could represent a nonlinear mapping.

The vector M is therefore drawn from an n-dimensional normal distribution:

M ∼ N (0, KΣKT + ΣM),

where ΣM is the diagonal matrix of observation variances. If we wish to predict some
M2 given X1, M1, K1, and X2, K2 then the conditional mean and variance are

µ2|1 = K2Σ12K
T
1 (K1ΣKT

1)−1M1

Σ2|1 = Σ2 − K2Σ12K
T
1 (K1ΣKT

1)−1K1Σ21K2
(3)

By selecting the transformation K2, associated with the mapping from the latent
space y to the outputs at the test points x2, we can perform inference to any of the
variables chosen. If K2 = I , then we are inferring y directly from observations of M1,
and implicitly solving the inverse problem of finding the conditional mean and variance
of the latent variable y.

112 R. Murray-Smith and B.A. Pearlmutter

2.1 Learning the Covariance Function Parameters

The log-likelihood, given the training data M1 is

L = − 1
2 log|K1Σ1K

T
1 | − 1

2MT
1 (K1Σ1K

T
1)−1M1 − 1

2N1 log 2π.

If we wish to maximise the likelihood, we use the derivative with respect to the hyper-
parameters θ,

∂L

∂θ
= − 1

2 tr
(
(K1Σ1K

T
1)−1 ∂(K1Σ1K

T
1)

∂θ

)

+ 1
2MT

1 (K1Σ1K
T
1)−1 ∂(K1Σ1K

T
1)

∂θ
(K1Σ1K

T
1)−1M1

= − 1
2 tr

(
K1

∂Σ1

∂θ

)
+ 1

2MT
1 (K1Σ1K

T
1)−1 ∂(K1Σ1K

T
1)

∂θ
(K1Σ1K

T
1)−1M1

(4)

and optimise the hyperparameters using an appropriate routine—we used a conjugate
gradient approach, or use a Markov-Chain Monte Carlo algorithm to implement a nu-
merical integration.

The ability to adapt the parameters of the covariance function means that the regu-
larising effect is automatically estimated from the data, reducing the wk of uninforma-
tive input dimensions (see discussion in Williams, 1998b)—this is important in learning
in general, but especially interesting for the inverse problem aspects of this paper.

If K is uncertain, then we can take a parametric model K(t, x; θ), and identify
θ, or potentially use a second Gaussian process as a prior for the mapping K(t, x).
The covariance function and mean function can be chosen appropriately, depending on
knowledge of the mapping from x, y to m.

2.2 Examples of Transformations

The linear transformation K can be used to perform a number of roles:

Filtering the Data. The K can represent filters applied to the latent variables before
observation, reflecting sensor characteristics or intervening transformation of the states
by other means. As noted above, the sensor characteristics described in K(t, x) could
be nonlinear, changing with state x, while retaining a linear transformation K on dis-
cretisation. Explicitly building the sensor characteristics into the model will tend to be
better conditioned than simply pre-filtering the data with an inverse model.

Enforcing Constraints. We can add new data points which enforce constraints, such
that a weighted sum of outputs equals some constant. For example, symmetry can be
achieved using matrices of the form

Keven =

⎡
⎣

1 −1
1 −1

1 −1

⎤
⎦ Kodd =

⎡
⎣
1 1

1 1
1 1

⎤
⎦

for

X =
[
x1 x2 x3 −x3 −x2 −x1

]T
M =

[
0 0 0 0 0 0

]T

Transformations of Gaussian Process Priors 113

which will produce an even or odd function depending on the matrix chosen. Examples
of inference with Gaussian process priors incorporating such symmetry constraints are
shown in Figure 1.

An alternative approach to enforce symmetry would be by appropriate design of the
covariance function, which would be more appropriate for fully symmetric functions.
The use of individual data points as constraints does have potential advantages where
prior knowledge of symmetry is restricted to localised regions.

Differentiation. An example of enforcing weighted constraints is to represent deriva-
tives. These can be approximated by finite differences, e.g. for first and second deriva-
tives,

K ′ =
1

∆x

⎡
⎢⎢⎢⎣

1 −1
1 −1

. . .
. . .
1 −1

⎤
⎥⎥⎥⎦ K ′′ =

1
∆x

⎡
⎢⎢⎢⎣

1 −2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

⎤
⎥⎥⎥⎦

where ∆x indicates the distance between points in x. We can continue in this manner to
be able to add arbitrary linear combinations of higher-order derivatives, i.e. differential
forms. We can therefore add prior knowledge of combinations of derivatives of any
order, by including fictive pairs of data points (x1, x2), and their known derivative m,
or include information from different sensors which measure different derivatives of y.

3 Fusion of Multiple Transformations of Latent Variables

In the case of an observation vector M composed of a number of vectors Mi = KiY ,
we have

M =

⎡
⎢⎢⎢⎣

M1
M2

...
Mk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

K1
K2

...
Kk

⎤
⎥⎥⎥⎦Y = KY.

We can now integrate multiple observations which might be a mixture of readings from
different physical sensors, artificial data points in the form of constraints on the func-
tion, or differential operators applied to the data, to derive a model based on a latent
variable y which is compatible with all of them. Such consistent integration of multi-
ple observations, constraints and derivatives is far from trivial, as can be observed in
the theoretical and practical problems associated with design and verification of gain
scheduled and fuzzy controllers (Leith and Leithead, 1999).

3.1 Relevance for Solving Inverse Problems

If the filters Ki are derived from the physics of the sensing mechanisms, does this
approach give us any advantages for solving inverse problems? Standard approaches
to inversion of ill-posed problems use regularisation where solution components cor-
responding to small singular values are filtered out. A common approach would use

114 R. Murray-Smith and B.A. Pearlmutter

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 1. Artificial data points used to locally enforce symmetry. Top: no symmetry constraints.
Centre: odd symmetry constraints. Bottom: even symmetry constraint. Circles are normal ob-
served outputs, crosses are points on x-axis where symmetry constraint has been added. Plots
show model mean ± 2σ as thin solid line and dashed contours. Note that due to the sparse en-
forcement of symmetry, the error region about the inferred symmetric portion of the curve is
looser than on the side with the data.

Transformations of Gaussian Process Priors 115

Y = K+M = (KT K)−1KT M , where the inversion would be based around SVD
or the Generalised SVD approach, including a filter matrix L would filter the singular
values of K . Specific examples of this include Tikhonov regularisation, where a reg-
ularisation operator Ω(Y), is added—minimising ‖KY − M‖ + Ω(Y). See Hansen
(1997) for a review.

In the GP case presented in this paper, the smoothness constraint is provided by
the covariance function. As shown in equation (3), Y = Σ12K

T (KΣKT)−1M . Nu-
merically, the inversion of KΣKT should be better conditioned. Via the covariance
function we effectively include estimated or prior knowledge about noise in Y and M ,
and correlation among elements of Y , which improve the condition number of the ma-
trix KΣKT and have a regularising effect on the solution.

3.2 Example: Reconstruction of Images from Ganglion Cell Signals

Tipping and Bishop (2002) presented a Gaussian process approach to super-resolution
in images, with uniform sampling from a series of low-resolution images. Here we
consider a k × k pixel image measured using noisy sensors, then linearly transformed
by a suite m � k2 of on-center off-surround receptive fields prior to transmission
through a noisy channel. Given the values received, along with a noise model of the
channel and knowledge of the receptive fields, we wish to estimate the original image.
This reconstruction problem, intended to be reminiscent of interpretation of signals
sent through the optic nerve, is shown in Figure 2, with varying levels of sparsity, k =
41, m = 625 and 1009 pixels in image (60% of the original pixels) available.

Inspection of natural images such as that shown in Figure 2 suggests that the use of
a stationary covariance function is inappropriate. Instead we use a nonstationary one,

cov(xi, xj) = v0 sin−1 xT
i Σxj�

(1 + 2xT
i Σxi)(1 + xT

j Σxj)
+ δi,jσ

2
y (5)

as described in Williams (1998a), using Rasmussen’s MATLAB implementation.1 This
covariance function corresponds to that of a GP describing a single hidden-layer neural
network of sigmoidal neurons with infinite neurons (Williams, 1998a). The Σ is a diag-
onal matrix with positive entries, weighting each input (and an additional constant one
acting as a bias term).

The idea can be extended to colour images. The ‘ganglion’ cells are now made to
be receptive to one colour only, with the allocation of cells to colours done randomly. A
further area of interest is that we can use the GP to learn covariances between colours
in a natural image, such that if we interpolate between observations we are less likely to
generate spurious artifacts. We added an identifier to the inputs, indicating whether the
pixel was red (1), green (0) or blue (−1). This was compared to the result of training
three independent Gaussian process prior models on the red, green and blue components
of the image, independently. Informal inspection of a number of test images showed
more frequent colour artefacts in the independent GPs model, than in the dependent
one.

1 http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/gp/

http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/gp/

116 R. Murray-Smith and B.A. Pearlmutter

(a) Source image (b) Sparsely presented available pixels

(c) Neuron receptive fields (d) Reconstructed image inferred by GP

Fig. 2. Inverse problem solved using a GP. Source image (top left) is sparsely presented, with
additive noise (top right) to neurons, and responses on output ‘neurons’ measured (bottom left).
Inference in GP model to training data gives inferred reconstructed image (bottom right).

4 Dynamic Systems Applications

In many applications we will have a learning task which involves identifying a nonlinear
subsystem f(x), where we do not have direct access to the outputs y of that subsystem,
but to a transformation of them through another dynamic system m = g(y, z), where
z is the internal state of g(). This transformation may be another subsystem or it could
represent the sensor dynamics. We assume that the dynamics of g(y, z) are known and
investigate identification of f(x) from observed m and x.

Transformations of Gaussian Process Priors 117

As an example we simulate a system with

y(t) = f(x(t)) = 0.3 x(t)3 + sin(5 x(t)) + N (0, 0.05)
m(t) = g(y, z)

(6)

where there is an unknown initial condition z(0) = z0. The simple discrete-time state-
space system g(y, z) has an output matrix C.

z(t + 1) = Az(t) + By(t)
m(t) = Cz(t)

(7)

M = C

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B
AB B
A2B AB B
A3B A2B AB B

. . .
AN−1B AN−2B · · · A2B AB B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Y +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A
A2

A3

A4

...
AN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

z0, (8)

where M =
[
m(1) · · · m(N)

]T
, Y =

[
y(1) · · · y(N)

]T
. If we subtract the contribu-

tion of the initial condition z0 from M , we have an effective filter matrix Kd

K = C

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B
AB B
A2B AB B
A3B A2B AB B

. . .
AN−1B AN−2B · · · A2B AB B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9)

and we can apply the filtered Gaussian process approach in a straightforward manner.

4.1 Observing Multiple Derivatives of Time-Series

In many practical engineering applications observations are made with multiple sen-
sors which measure, e.g. position, velocity and acceleration of state variables of inter-
est. These sensors will often have different noise characteristics and different sampling
rates. We would like to be able to combine these variables in a consistent manner. In
Solak et al. (2003) we presented methods which perform inference on derivatives with
respect to the inputs by analytically differentiating the covariance function. The ap-
proach described in this paper allows us to take derivatives with respect to variables not
used by the covariance function.

As a simple example, we can infer the distribution of position from observed higher
derivatives, and occasional noisy observations of position. Using the filters described in
section 2.2,

Kv =
1

∆tv

⎡
⎢⎢⎢⎣

−1 1
−1 1

. . .
. . .
−1 1

⎤
⎥⎥⎥⎦ , Ka =

1
∆ta

⎡
⎢⎢⎢⎣

1 −2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

⎤
⎥⎥⎥⎦ , (10)

118 R. Murray-Smith and B.A. Pearlmutter

where ∆tv and ∆ta are the sampling times of the velocity and acceleration signals.
Similarly using the transposes KT

v or KT
a would allow us to infer a Gaussian process

model of acceleration or velocity signals from position observations. This approach also
guarantees an internally consistent set of higher derivatives, and could therefore be used
as pre-processing technique for system identification and analysis tasks.

This can be combined with other filters associated with the system dynamics as
described in equation (9),

K = Kd

[
Ip Kv Ka

]
(11)

where Ip is the identify matrix of size p for p position observations. General differential
operators could be composed of weighted combinations of the basic matrices, K =
w1Kv + w2Ka. This lets us use Gaussian processes as an alternative to the Functional
Data Analysis methods suggested by Ramsay and Silverman (1997) for inferring higher
derivatives of a function without numerical problems.

4.2 Simulation of Dynamic System

Here we generate a time-series of N = 1000 points from a second order, discrete-
time, linear system, following a nonlinear transformation of the inputs x, as described

in equations (6) and (7), with A =
[

1 1−exp(−Ts)
0 exp(−Ts)

]
, B =

[
Ts−1+exp(−Ts)

1−exp(−Ts)

]
, z0 = 0,

and Ts = 0.1 s is the sample time. Furthermore, in the simulation we include a ve-
locity ‘sensor’, i.e. the observations also include observations of dz/dt. The observa-
tions were subsampled to every 20th position observation, and every fourth velocity
observation.

In Figure 3 we show the training data inputs x, the unobserved outputs y, and
the observed filtered outputs m. The observed outputs are corrupted by white noise
N (0, 0.001).

In Figure 4(b) we show the estimate of f(x) over the range of interest, along with
the true function, and in Figure 4(a) the estimate of the hidden states y, compared to
the actual values. To show the accuracy of the velocity predictions, Figure 5 compares
the inferred, observed and true velocities, and Figure 4(a) shows the estimate of the
hidden states y, compared to the actual values. To show the accuracy of the velocity
predictions, Figure 5 compares the inferred, observed, and true velocities.

5 Discussion

5.1 Learning with Large Data-Sets

A major limiting factor in the acceptance of GP-prior approaches in practice is the
computational effort associated with large training sets, as the complexity grows at
O(N3) for a training set with N points. Attempts to overcome this include the use of
the Nyström method (Williams and Seeger, 2001), selection mechanisms (Seeger et al.,
2003), mixtures of GPs (Shi et al., 2002), and Bayesian committee machine (Tresp,
2000).

A key feature of the filtering approach is that the Ki need not be square matri-
ces. In fact in many applications the filter can represent a significant reduction in the

Transformations of Gaussian Process Priors 119

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

time t

hi
dd

en
 y

(t
)

(a) Time-series of the hidden y time-series associated with the training data.

0 100 200 300 400 500 600 700 800 900 1000
−4

−2

0

2

4

6

8

10

time t

ob
se

rv
ed

 m
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1

1.5

2

time t

ob
se

rv
ed

 d
m

/d
t

(b) Time-series of observations used by the GP to infer the nonlinear function associated with
the hidden y time-series in (a).

Fig. 3. Time-series of observed and hidden states from the simulation used to generate the training
data

number of data points, so K will be n × N where n � N . Note that in the equa-
tions for the inference and likelihood calculations we needed to invert KΣKT , which
is the major computational hurdle for this method, scaling as O(N3). For nonsquare
K we now need only invert an n × n matrix, as opposed to an N × N . We still need
to calculate the covariance values of Σ for all N points, but this is O(N2). To fur-
ther increase the efficiency of the method we can eliminate points from the calculation
of the covariance matrix Σ which correspond to a column of entries in Ki,j yj which
are below some threshold ε. In such cases, the original observation yj associated with
this column has little impact on the model’s predictions at the chosen test points. In
(Shi et al., 2005) we used a Karhunen-Loeve expansion to choose a subset of points. In
(Solak et al., 2003) we compressed large amounts of observed data close to equilibria
into local linear models, and used these very few parameters as estimated derivative
observations.

120 R. Murray-Smith and B.A. Pearlmutter

760 780 800 820 840 860 880

−1

−0.5

0

0.5

1

1.5

2

2.5

t

actual y(t)
estimated y(t)
±2σ

(a) Comparison of hidden and inferred y as
time-series

−3 −2 −1 0 1 2 3
−10

−8

−6

−4

−2

0

2

4

6

8

10

x(t)

y(
t)

(b) Learned & true nonlinearities. (Thick line
is true function, thin line mean prediction, and
dashed lines ±2 std. deviation contours.)

Fig. 4. Learning the unknown nonlinearity. The identified nonlinear function, compared to the
ideal function y(t) = 0.3 x(t)3 + sin(5 x(t)), with ±2σ contours. The actual value of y at
training data is indicated by the points plotted in Figure 4(b), but the GP did not have access to
this information

760 780 800 820 840 860 880

−0.5

0

0.5

1

1.5
v

obs

v
est

v
±2σ

Fig. 5. The GP-inferred, observed (including effects of additive noise on the y’s, and true (noise-
free) velocities for a segment of the training time-series

To summarize, when n � N this method results in substantially decreased compu-
tational burden because

complexity =

invert︷ ︸︸ ︷
O(n3) +

covar︷ ︸︸ ︷
O(N2) �

naive︷ ︸︸ ︷
O(N3)

Transformations of Gaussian Process Priors 121

Bias and Variance. In most machine learning approaches to data-dependent control
of model complexity, the size of the model is reduced in order to trade off model bias
against model variance. For instance, it is common to fit a large neural network to a large
corpus of data, and then prune the network gradually removing weights. As weights are
removed, the computational burden is reduced; the variance decreases; and the bias in-
creases. This results in a tradeoff between bias and variance, meaning there is a point
of best generalisation after some amount of pruning. With less than this amount of
pruning, it is possible to both improve generalisation performance and reduce compu-
tational burden by further pruning. Below it, there is a tradeoff between generalisation
and efficiency.

Here we have a superficially similar situation, in which exemplars can be removed
from the data. As they are gradually removed, the computational burden is reduced, but
the bias and variance both increase. As a result, the tradeoff is solely between com-
putational burden and generalisation performance, with no need to find the point of
best generalisation. Furthermore, since we would expect the exemplars removed first to
contribute least to generalisation, we might expect dramatic computational savings at a
very modest cost in generalisation during the initial phases.

Reusing Effective Kernels from Earlier Models. A practical approach for finding a
suitable K , with n � N , is the use of prior knowledge of the problem to determine
appropriate filters. An alternative is to base the filter on existing approximate models,
which might be less computationally expensive to estimate. We now generalise this idea
to a broader class of model—we take an existing nonlinear representation of the input-
output relationship from any linear-in-the-parameters nonlinear empirical model, and at
any input point of interest, we can calculate the effective kernel of the model. For any
basis function model, such as an RBF network, spline model etc, with basis functions
φi(x), and weighting parameters θi, the estimated output ŷ∗ for a test input x∗ is ŷ∗ =∑

i φi(x∗)θ̂i = Φ(x∗)θ̂, where the parameters are identified using standard approaches,
e.g. θ̂ = Φ(X)+Y . We can now reinterpret the basis function model as smoothing the
training outputs, ŷ∗ = Φ(x∗)Φ(X)+Y , where the vector k∗ = Φ(x∗)Φ(X)+ is the
effective kernel, a weighting of the y’s in the training set for the model prediction at
test point x∗. Repeating this at all points in the training set gives us the smoothing
matrix S = Φ(X)Φ(X)+. The larger the value of the entries Si,j , the more leverage
observation yj has on the prediction of ŷi. We can use this effective kernel as a way of
generating rows of the linear transformation matrix K to create new, filtered training
data. The filter will be well-suited to the specific modelling task, and its application
creates ‘high-value’ data points from weighted combinations of the observed data. This
might provide a useful way to bring Gaussian Processes to the attention of a broader user
base, as modellers who currently use a linear-in-the-parameters model could ‘wrap’ a
Gaussian process around their current best model, getting potentially better lower model
bias, and the benefit of conditional variance estimates.

5.2 Differential Forms and Ease of Implementation

The above derivations assume that measurements correspond to the outputs of known
linear filters applied to the underlying function, and that these linear filters are sim-

122 R. Murray-Smith and B.A. Pearlmutter

ply weighted sums. The derivation is reasonably straightforward to extend to a broader
class of linear filters corresponding to weighted sums of not just the function itself but
also its derivatives, including potentially higher-order derivatives. This would combine
the derivation above with that of Solak et al. (2003) yielding a theory that treats both
as special cases. However in practice, as we have seen above, it is simple to approxi-
mate derivatives simple weighted sums of nearby points, which fits naturally into the
framework here. The main advantage of this arguably less elegant approach to handling
derivatives is three-fold. First, it avoids the cumbersome notational complexity required
for referring to derivatives as well as the corresponding additional matrices. Second, it
allows standard GP tools to be easily pressed into service for data of this type, making
the approach more accessible to the casual practitioner. And thirdly, it makes it easy for
the exploratory practitioner to constrain their models locally by introducing virtual data
points representing some constraint.

6 Conclusions

We have demonstrated how transformations of Gaussian process priors can, for known
transformations, allow us to use GPs to consistently fuse information from multiple
sensors, which is of immediate practical importance in many engineering applications.
We also demonstrate the use of GPs to solve ill-posed inverse problems. The amount
of noise on both latent variables and observed variables, and the amount of regular-
isation required in the inversion process are automatically optimised during adapta-
tion of the model covariance hyperparameters. More detailed comparison of these ben-
efits with the algorithms currently used in the inverse-problems community is
required.

The incorporation of ‘artificial’ data points is a novel way to introduce prior knowl-
edge by enforcing certain chosen linear constraints, such as symmetry, or higher-order
derivative operators, which is easy to use, and has application in a range of areas. The
reduction in the computational complexity to O(n3) + O(N2) for GP’s may also be
significant in broadening the application base of GP inference, and there is great scope
for extension of the methods to create interesting multi-scale learning algorithms, and
for stepwise optimisation or integration of covariance hyperparameters.

The application of the method to a toy dynamic system indicates the promise this
approach has to real-world system identification tasks where a number of different sen-
sors, each with its own dynamics and noise level, need to be integrated.

Acknowledgements

The authors gratefully acknowledge the support of the Multi-Agent Control Research
Training Network by EC TMR grant HPRN-CT-1999-00107, support from EPSRC
grant Modern statistical approaches to off-equilibrium modelling for nonlinear sys-
tem control GR/M76379/01, support from EPSRC grant GR/R15863/01, and Science
Foundation Ireland grant 00/PI.1/C067.

Transformations of Gaussian Process Priors 123

References

Hansen, P. C. (1997). Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of
Linear Inversion. SIAM. SIAM Monographs on Mathematical Modeling and Computation 4.

Leith, D. and Leithead, W. (1999). Analytic framework for blended multiple model systems using
linear local models. International Journal of Control, 72(7/8):605–619.

Murray-Smith, R. and Sbarbaro, D. (2002). Nonlinear adaptive control using non-parametric
Gaussian process prior models. In 15th IFAC World Congress on Automatic Control,
Barcelona.

O’Hagan, A. (1978). On curve fitting and optimal design for regression (with discussion). Journal
of the Royal Statistical Society B, 40:1–42.

Ramsay, J. O. and Silverman, B. W. (1997). Functional Data Analysis. Springer-Verlag.
Rasmussen, C. E. (1996). Evaluation of Gaussian Processes and other Methods for Non-Linear

Regression. PhD thesis, Graduate department of Computer Science, University of Toronto.
Seeger, M., Williams, C. K. I., and Lawrence, N. D. (2003). Fast forward selection to speed up

sparse Gaussian process regression. In Bishop, C. M. and Frey, B. J., editors, Proceedings of
the Ninth International Workshop on AI and Statistics.

Shi, J., Murray-Smith, R., Titterington, D., and Pearlmutter, B. (2005). Learning with large
data sets using filtered gaussian process priors. In Murray-Smith, R. and Shorten, R., editors,
Proceedings of the Hamilton Summer School on Switching and Learning in Feedback systems,
volume 3355 of Lecture Notes in Computing Science, pages 128–139. Springer-Verlag.

Shi, J. Q., Murray-Smith, R., and Titterington, D. M. (2002). Hierarchical Gaussian process
mixtures for regression. Technical Report TR-2002-107, University of Glasgow, Scotland,
UK.

Solak, E., Murray-Smith, R., Leithead, W. E., Leith, D. J., and Rasmussen, C. E. (2003). Deriv-
ative observations in Gaussian process models of dynamic systems. In S. Becker, S. T. and
Obermayer, K., editors, Advances in Neural Information Processing Systems 15, pages 1033–
1040. MIT Press, Cambridge, MA.

Tipping, M. and Bishop, C. M. (2002). Bayesian image super-resolution. In Becker, S., Thrun,
S., and Obermeyer, K., editors, Neural Information Processing Systems, volume 12, pages
1303–1310.

Tresp, V. (2000). A Bayesian committee machine. Neural Computation, 12:2719–2741.
Wahba, G. (1990). Spline models for observation data. In Regional Conference Series in Applied

Mathematics, Philadelphia, PA. SIAM.
Williams, C. K. I. (1998a). Computation with infinite neural networks. Neural Computation,

10:1203–1216.
Williams, C. K. I. (1998b). Prediction with Gaussian processes: From linear regression to linear

prediction and beyond. In Jordan, M. I., editor, Learning and Inference in Graphical Models,
pages 599–621. Kluwer.

Williams, C. K. I. and Seeger, M. (2001). Using the Nyström method to speed up kernel machines.
In T. K. Leen, T. G. Diettrich, V. T., editor, Advances in Neural Information Processing Systems
13, MIT Press.

	Introduction
	Transformations of Gaussian Process Priors
	Learning the Covariance Function Parameters
	Examples of Transformations

	Fusion of Multiple Transformations of Latent Variables
	Relevance for Solving Inverse Problems
	Example: Reconstruction of Images from Ganglion Cell Signals

	Dynamic Systems Applications
	Observing Multiple Derivatives of Time-Series
	Simulation of Dynamic System

	Discussion
	Learning with Large Data-Sets
	Differential Forms and Ease of Implementation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

