
Assignment 2: Scheme Finger Exercises CS351—Fall 2008

Due 09:00 09-Oct-2008. Email text file of solutions to: barak+cs351-hw1@cs.nuim.ie.

1. Scan the R5RS manual and find a few functions that are generalized in interesting ways.

Explain why you think they were generalized in that way. (Examples are <= or -, which are

generalized to accept a number of arguments other than 2.)

2. Define list-sum-squares which takes a list of numbers and returns the sum of their

squares.

Example: (list-sum-squares (list 1 4 1)) ⇒ 18

3. Define list-product-sqrts which takes a list of non-negative numbers and returns the

product of their square roots.

Example: (list-product-sqrts (list 4 9)) ⇒ 6

4. Define set-union which takes two lists representing sets and returns a list representing

their union. (Ordering is unimportant.)

Example: (set-union (list 1 2 3 4) (list 6 4 8 2)) ⇒ (1 2 3 4 6 8) (or (3 1 8
4 2 6) or any other rearrangement of the elements.)

5. Define set-intersection which takes two lists representing sets and returns a list

representing their intersection.

Example: (set-intersection (list 3 1 2 4) (list 4 2 8 6)) ⇒ (2 4) (or (4 2))

6. Define set-disjoint? which takes two lists representing sets and returns true iff the sets

are disjoint.

7. Define filter-numbers which takes a list representing a set and returns a list

representing a set containing only those members that are numbers, i.e., that pass the

number? predicate.

Example: (filter-numbers ’(1 one 2 two foo zero 22/7 0)) ⇒ (1 2 22/7 0) (or a

permutation thereof.)

8. Define set-equal? which takes two lists representing sets and returns true iff they

represent the same set.

Example: (set-equal? ’(1 2 3) ’(2 1 3)) ⇒ #t

Example: (set-equal? ’(1 2 () 3) ’(2 1 3)) ⇒ #f

9. Define deep-member? which takes a symbol and an s-expression and returns true iff the

symbol occurs in the given s-expression, perhaps very deeply nested.

Example: (deep-member ’foo ’(a b (c (d e foo g)) h)) ⇒ #t

Example: (deep-member ’foo ’(a b (c (d e bar g)) h)) ⇒ #f

10. Optional: If you encountered any problems with the assignment, or have any comments on

it, or other comments or suggestions, I would appreciate hearing them. As practice for

working in industry, where weekly reports are not unusual, please embody these in a brief

(1–3 page) typed report.

Hint: use recursion and make you base cases as simple as possible.

Honor Code: You may discuss these with others, but please write your answers by yourself

and without reference to communal notes. In other words, your answers should be from

your own head.


