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Abstract

A method is presented for computing all higher-order partial

derivatives of a multivariate functidR™ — R. This method works

by evaluating the function under a nonstandard interpretation, lift-
ing reals to multivariate power series. Multivariate power series,
with potentially an infinite number of terms with nonzero coef-

ficients, are represented using a lazy data structure constructe
out of linear terms. A complete implementation of this method

in SCHEME is presented, along with a straightforward exposition,

based on Taylor expansions, of the method'’s correctness.

Categories and Subject Descriptors  G.1.4 [Quadrature and Nu-
merical Differentiatio: Automatic differentiation; D.3.2L[an-
guage ClassificatiojsApplicative (functional) languages

General Terms  Algorithms, Languages

Keywords Power series, Nonstandard interpretation

1. Introduction
Forward-Mode Automatic Differentiation, or forward AD, [1] is a
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2. Univariate First-Order Forward AD
The Taylor expansion [7] of (¢ + £) with respect ta is
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dfThis implies that one can compute thth derivative of a univariate

unction f at a scalar point by evaluating by evaluating(c + <)
under a nonstandard interpretation replacing real numbers with uni-
variate power series i, extracting the coefficient of' in the re-

sult, and multiplying this byi!. Traditional forward AD [1] trun-
cates the Taylor expansionsiat- 1, thus computing a representa-
tion that contains only the first derivative.

Such truncated Taylor expansions dteal number$8]. We de-
note a dual numbep asx + 2’¢, by analogy with the standard
notationa + bi for complex numbers. Just as arithmetic on com-
plex numbers: + bi can be defined by taking 1, arithmetic
on dual numbers: + z’¢ can be defined by taking? = 0 but
e # 0. Furthermore, just as implementations of complex arithmetic
typically represent complex numberst bi as Argand pairga, b),
implementations of forward AD typically represent dual numbers
x+x'e as tangent-bundle paits, z’). Finally, just as implementa-
tions of complex arithmetic typically overload the arithmetic prim-
itives to manipulate complex numbers, implementations of forward

method for adapting a program that computes a function to yield ap typically overload the arithmetic primitives to manipulate dual
one that computes its derivatives. Karczmarczuk [2-5] presented , ;mpers.

an implementation of forward AD in BSKELL. This implementa-

tion had a novel characteristic: it adapted a program that computed

a univariate functiory : R — R to yield one that produced an in-
finite stream of higher-order derivativég(z), f'(z), f" (z), . ..).
However, Karczmarczuk provided the details for his method only
for univariate functions. Karczmarczuk [4] hinted at a generaliza-
tion to multivariate functions but did not provide the details. Here,
we present the details of a novel generalization of Karczmarczuk'’s

method to the multivariate case. In part, we use methods previously

developed for implementing nestable first-order forward AD in a
functional framework [6]. The crucial additional insight here, both

for developing the extension and for demonstrating its correctness,

involves reformulating Karczmarczuk’'s method using Taylor ex-
pansions instead of the chain rule. This requires dealing with the
requisite factorial factors.
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We usef e p to denote the coefficient afin the dual numbep
Selw+ae)2a )}

andD f cto denote the value of the first derivative of a univariate
function f at a scalar point. Forward AD compute® f c¢ by
evaluatingf (c + ¢) under a nonstandard interpretation replacing
real numbers with dual numbers and extracting the coefficient of
in the result.

Dfc2Ee(f(c+e) @)
Thees introduced by nested invocationsBfmust be distinct [6].
To see how this works, let us manually apply the mechanismto a
simple example: computing the first derivativeff:) = 2* + 223
atz = 3. To do this, we first evaluatg(3 + ¢).
fB+e)=0B+e)* +2(3+¢)
= (81 + 108¢) + 2(27 + 27¢)

= 135 + 162¢
From this we can extract the derivativez (135 + 162¢) = 162.
df (=) 3 2
i =da’+62"| _,=162=CE¢ (f (3+¢))

x=3

Note that the above makes use of the restriction¢hat 0 when
evaluating(34-¢)® = 27+27¢ and(34¢)* = 81+108¢, dropping



thee?, €%, ande* terms. This is the essence of traditional forward assin, yield a result entity with an infinite number of terms with

AD when limited to the case of univariate derivatives. nonzero coefficients, i.e., a power series, even when applied to
an input polynomial. Karczmarczuk addressed this by representing
3. Univariate Higher-Order Forward AD univariate power series as lazy unidimensional streams. We refer to

. ) ] o ) this as atower method. Karczmarczuk presented the details of his
While the above nominally computes only first derivatives, straight- tower method only for univariate functions. The remainder of this

forward repeated application @ allows computation of higher-  paper presents the details of a novel tower method that generalizes
order derivatives. We usP f to denote partial application @p, to the multivariate case.

ie, e . (D f ¢), andD! f ¢ to denote the value of theth
derivative of a univariate functiofi at a scalar point.

D'f = f @3) S
D' f £ DU (D f) wheni> 0 @) 5. Multivariate Higher-Order Forward AD
(i15eeeyin)
We refer to the above method for computing higher-order deriva- V& USED™"! f (e1,...., cn) to denote the value of
tives as thaepetitionmethod. ‘ )
Karczmarczuk [2-5] presented an alternate method for comput- ot i fpy L x)
ing higher-order univariate derivatives. His method can be viewed Ox1i1 -+ Oy in
T1=C1,...,Tp=Cnp

as computing non-truncated Taylor expansibmemoving the re-
striction that=> = 0, and generalizing dual numbers to univariate
power series im. To accomplish this, we first extend the definition
of £ from (1) so thai€ * p yieldss! times the coefficient of in
the power serieg.

i.e., the value of a higher-order partial derivative of a multivariate
function f at a multidimensional pointcs, . . ., ¢»). One can gen-
eralize the repetition method to the multivariate case.

£%p = Rep ) pO-0 p 2 ®)
£e'p £ ixEc T (Qep) wheni>0 ®  plieinp 2 ©)
In the above and throughout this pap@re p andR ¢ p destruc- DLt ie—1yig=Ligg 1, in)
ture a power seriegt = (R € p) + (Q ¢ p)e. Given the above, Aty -ooven) D (u. f(c1yeeyCom1,U, Cox1y- -5 Cn)) Ce
Karczmarczuk’s method can be viewed as compufigf c by wheni, > 0

evaluatingf (c + €) under a nonstandard interpretation replacing

real numbers with univariate power seriegjrextracting the coef- Again, each nested invocation Bf must use a distinet [6].

ficient ofe” in the result, and multiplying this bj. One can formulate a multivariate tower method by generaliz-
i AP ing univariate power series to multivariate power series. To accom-
Dife=¢&c (flete) Q) plish this, we first note that the multivariate Taylor expansion of
To see how this works, let us manually apply the mechanismto f((c1 +¢€1),. .., (cn + €,)) With respecttdey, ..., en) is
a simple example: computing all of the higher-order derivatives of
f(z) = 2* 4+ 223 atz = 3. To do this, we first evaluatg(3 + ¢).

fB+e) = B+e) +2(3+¢)°

= (814 108¢ + 54e* + 1263 + &%)
+2(27 4 27 + 9 4 £%)
135 + 162¢ + 722 4 14¢> 4 &*

5”11 coegm

L1=C1l,...,Tp=Cp

i": > Y L | (T
i1=0

— il 011 - - Oxyin

n=

We therefore extend the definition 6ffrom (5-6) to the multi-
variate case so that 't ---¢,'" pyieldsii!---i,! times the

From this we can extract all of the higher-order derivatives. coefficient ofgi1 -.-gln in the power series.
flz)|= z*+22°| =135=0'x 135=E £° (f (3+¢)) A
r=3 x=3 &1 p = D (10)
df(z) el et p B € e (Eap) (11)
5 |= 43 + 622 =162=1!x 162=E ' (f (3+¢))

e o=s Given the above, one can compu&’ i) f (¢cy,... ¢,) by
evaluatingf ((c1 + €1),...,(cn + €n)) under a nonstandard in-
terpretation replacing real numbers with multivariate power series

4 in distinctey, . .., en, extracting the coefficient af;** - - - £,* in
de;(f) _ 24— 2U=—a1x1 =E(f(3+2)) the result, and multiplying this by ! - - - 4,,!.
=3 =3

1>

Pty vin) fer,. . cn)
Ear’ e (f ((c1+e1),-.. (en +en)))

4, Lazy Univariate Higher-Order Forward AD (12)
The input to the nonstandard interpretation will always be a poly-
nomialc + ¢, an entity with a finite number of terms with nonzero
coefficients. In the above example, the output of the nonstandard in- In the above, the, must be distinct from each other and from any
terpretation was also a polynomial. However some functions, such othere used by nested invocations of any formf6].

To see how this works, let us manually apply the mechanism

1As discussed in section 7, this is a reformulation of Karczmakis to a simple example: computing all of the higher-order partial
method which was originally formulated using the chain rule. derivatives ofg(z,y) = z°y + z?y? atz = 2 andy = 3. To



do this, we first evaluate((2 + £2), (3 + &y)). Figure 1 contains a GHEME implementation of an API for
9(2+¢2),(3+¢,)) manipulating multivariate power series represented as lazy linear
— (2 _~_z57)3(3 +y€ )+ (24 €0)2(3 + £,)? terms. Central to this APl are mechanis@se p andR ¢ p
_ (8 + 196, 4+ 62 4+ 3)(3 te ) v for computing the quotient and remainder when dividing the power
- T x x Y

seriesp by the variable:.
+ (4 +4es +£2)(9+ 62y +€5)

= (24+ 36, + 8¢y + 1822 + 12e,¢, + 3¢2 + 6e2¢, Rer 2 r whenreR (13)
+g‘x€y) ’ 1 AN ’ /

+ (36 + 366, + 24, + 92 + 2e,e, + 42 + 6e2¢, Re(x+a'e) = z+a'c whene <¢ (14)

+ degey +2e) , ) . Re(z+2'e) 2 2 (15)
= (60 + T2e4 + 32e, + 27e; + 36,6y + 45, + 3¢5 A
1+ 1262¢, + degel + ede, + e262) Y Re(z+a'e) = (Rex)+ (Rea')e’ whene £¢ (16)
A
From this we can extract all of the higher-order partial derivatives. Qer = 0 whenr eR 17
/1 A ’
= 0 whene < 18
g(z,y)| = 2Py+a*y?| =60=0!x0!x 60 Qe (v+ae) N °0F (18)
r=2,y=3 =2,y=3 Qe(z+2e) = 2 19)
_ 0.0
= Eeagy (9(2+e2),B3+¢y))) Qe (z+2'¢) £ (Qezx)+ (Qea')e’ whene #¢" (20)
0g(z,y) — 302y + 2097 =T2=11x0! x 72 Cases '(14) and (18) and_the §|mpllf|cat|0ns in cases (15) and (19)
ox | _, 4 T are valid because of the invariants. Note that, unlike an analogous
L v earlier API [6], the above correctly handles linear terms- z'c
= Eezey (9 ((2+62), (B+¢y))) wherez’ may itself be a linear term in the sameAlso note that,
because of laziness, unlike that earlier API, there is no easy way to
implement the simplification rule + Og ~~ .

. To perform the nonstandard interpretation, we need to extend
og(z,y)| _ _ a_ o) ' the numeric primitives to apply to power series. For simplicity, we
——| = 6] = 6=3Ix1Ix1 . L g

0x30y |,y s w=2.y=3 do this only for univariate and bivariate primitives. We can assume

’ 31 ’ that the power series arguments to such primitives take the form
= Eeagy (9(2+ex),B+¢y)) of a linear terme + z’¢. The extension of a univariate primitive
Py applied to a linear termr + z’e can be derived via a univariate
9g9(z,y) | _ 4] = 4=91x2x1 Taylor expansion about in terms ofz’e.
0x20y? |,y s =2,y=3 ,
r o : D@
= £222 (9 ((2422), (3+2,)) flatale) = 3 ()
Two difficulties arise when attempting to implement the above. =0 ) i
First, there is the need to maintain the distinction between the = f@+Y) [ @)a”
differentes, addressed in previous work [6]. Second, there is a need 7!

. . . .. . 1=1
to generalize lazy unidimensional streams to the multidimensional ’

0 i i—1
case to represent multivariate power series. We address this in the = flx)+ < 1 )(x)x’ S e
next section. Z il

i=1

i i i el (i4+1) 1
6. Lazy Multivariate Higher-Order Forward AD = flz)+ (Z %E?x/e (1)
, P !
A univariate polynomiako+zie+ 26’4+ -+ 16" 42" =0
can be evaluated using Horner's method [9] as In the above ) denotes thé-th derivative off. Note that
zo+ (w14 (24 + (Tno1 + Tne)e - )e)e o p(i41) "o

o o . f’(w—&—m's)zzw : (22)

This indicates that univariate polynomials can be represented as — 7!

nested dual numbers. Multivariate polynomials can be represented ) ] o o

as nestedaggeddual numbers, i.e., triples of the forfa, z, z'), Also note that the right hand side of (22) is similar to the coefficient

with potentially distinctes, to represent + «’c. We assume that ~ 0f ¢ in (21), differing only in that the derivatives in the power

there is a total orde over thees and refer to such tagged dual ~ series are divided byi + 1)! instead ofi!. The coefficient of

numbers aginear termsPower series can be represented as binary '¢ in (21) can be derived from the right hand side of (22) by

trees whose nodes are linear terms with a lelzsiot. As illustrated postulating an operatdt.o to adjust the coefficients.

in Fhe code a_cco_mpanying this paper, we constrain such represen- oo f(i+1)(x):c/i , 0o f(i+1)(x)w,i _

tations to maintain the following invariants: Waz =C.o Z e (23)
; i ! ; il

I-1 In any linear termz + ¢, thex slot is either real, or a linear =0 =0

term overs’ wheree’ < ¢. (As aformal power series operat6ry f(c) = %fog f(e)de.) This

I-2 In any linear termz + z'¢, thez’ slot is either real, a linear ~ Operator can be defined as follows:
term overs’ wheree’ < ¢, or a linear term over.

AN T
- . L C.ir = —— whenreR (24)
These ensure that the coefficient of each term in a multivariate i+ 1
series is stored in at most one leaf. They also simplify proofs of C.. ’ 2 (., C.i ’ 25
termination of the derivative-taking code and lower the time bound et (@ +a'e) N (Cov @) + (Cerrr 2)e (25)

on access to a multivariate power series. C.i (x+2'e) (C.i ) + (C.i ')’ whene # £’ (26)



(define <_e <)
(define =_e =)

(define linear-term? (let ((pair? pair?)) (lambda (p) (and

(pair? p) (eq? (car p) ’linear-term)))))

(define-syntax linear-term (syntax-rules () ((linear-term e x x-prime) (list ’linear-term e x (delay x-prime)))))

(define epsilon cadr)

(define (r e p)

(cond ;; Equation (13)
((not (linear-term? p)) p)
;5 Equation (14)
((<_e (epsilon p) e) p)
HH Equatlon 15§
((=_e (epsilon
;5 Equation (16
(else (linear-term (epsilon p) (r e (caddr p)) (r e

g) e) (caddr p))

(define (q e p)

(cond ;; Equation (17)
((not (linear-term? p)) 0)
;; Equation (18)
((<_e (epsilon p) e) 0)
;5 Equation ( 19?
((=_e (epsilon
;5 Equation (20
(else (linear-term (epsilon p) (q e (caddr p)) (q e

g) e) (force (cadddr p)))

(force (cadddr p)))))))

(force (cadddr p)))))))

(define generate-epsilon (let ((e 0)) (lambda () (set! e (+ e 1)) e)))

(define (univariate-e e i p)
(cond ;; Equation (5)
((zero? i) (r e p))
;3 Equation (6)
(else (* i (univariate-e e (- i 1) (q e p))))))

(define (multivariate-e e i p)
(cond ;; Equation (10)
((null? i) p)
;; Equation (11)
(else (multivariate-e (cdr e) (cdr i) (univariate-e

(car e) (car i) p)))))

Figure 1. A ScHEME implementation of an API for manipulating multivariate power series reptes as lazy linear terms. Note that to
support nested invocation @, the x in (6) must be the lifted variant that works on power-series argumblot® that generatess never
escape any equations in which they are generated, i.e., (2, 7, 134)3Thus one can improve upon the above implementation by allocating

and reclaiming:s in a LIFO fashion.

Note thatz’ in (23) can contaire. This is a problem becausk:
operates by counting instancessgfand has no way to distinguish
thees inz’ that should not be counted. We solve this by renaming
to a freshe’ prior to callingC.: and renaming’ back toe in the
result. For the cases that arise in this p&psich renaming can be
accomplished with the following:

ple — €] 2 D (27

rler — e2] 2 whenreR (28)

(z +2'¢")[e1 > &2 2 z+4a'c whene < e (29)

(x4 2'e1)[e1 — e2] 2 (30)
(Rez )+ ((Qez ) +a'[e1 + £2])e2

This yields the following method for extending univariate primi-
tives:

f@+ale) & (31)
(f 2) + ((Coo (f (z+a'e)[e = eT))[e' = €] x 2)e

This requires supplying’, the first derivative of each univariate
primitive f.

Bivariate primitives can be extended when the first argument is
a linear term over and the second argument is either a real or a
linear term over’ wheree’ < ¢ by performing a univariate Taylor

2Renaming is only applied in equations (31-34) and thereip iontases
wheree < ¢’ for any existings. Furthermore, (29) is valid only because of
the invariants.

expansion around the first argument.

f((x+2'e),y) (32)

(f (2,9) + ((Coo (f1 ((z +a'e)fe = €], 9)))[e" = €] x 2')e
Analogously, bivariate primitives can be extended when the second
argument is a linear term overand the first argument is either a

real or a linear term over wheres’ < ¢ by performing a univariate
Taylor expansion around the second argument.

f(z,(y+y'e) (33)
(f (@,9)) + ((Coo (f2 (z, (y +y'e)le = €N’ = €] x y')e

This requires supplying; and fs, the partial first derivatives of
each bivariate primitivef with respect to its first and second argu-
ments respectively.

To handle the case when both arguments are linear terms over
the same we rename the in one argument to a fresf, reducing
this case to either (32) or (33), and then renafmeack toe in the
result.

f (@ +2'e), (y +y'e))
(f (@ +2a'e), (y +y'e)e — €]))e" — €]

These techniques are implemented in figure 2 and used to over-
load some SHEME primitives in figure 3. Figure 4 completes the
implementation. Note that the computational efficiency of this im-
plementation relies on the fact that standacdiSME memoizes the
results of forcing promises. The code from figures 1-4 is available
fromhttp://www.bcl.hamilton.ie/~qobi/tower/.

(34)



(define (c e i p)
(cond ;; Equation (24)
((not (linear-term? p)) (/ p (+ i 1)))
;3 Equation (25)
((=_e (epsilon p) e) (linear-term (epsilon p) (c e i (r (epsilon p) p)) (c e (+ i 1) (q (epsilon p) p))))
;3 Equation (26§
(else (linear-term (epsilon p) (c e i (r (epsilon p) p)) (c e i (q (epsilon p) p))))))

(define (rename el e2 p)
(cond ;; Equation (27§

((=_e el e2) p)

;; Equation (28)

((not (linear-term? p)) p)

;5 Equation (29)

((<_e (epsilon p) el) p)

;; Equation (30§

((=_e (epsilon p) el) (linear-term e2 (r e2 (r el p)) (+ (q e2 (r el p)) (rename el e2 (q el p)))))

(else (error "This case should never occur in this program."))))

(define (lift-real->real f df/dx)
(letrec ((self (lambda (p)
(cond ;; Equation (31)
((linear-term? p)
(let ((e (epsilon p)))
(linear-term e
(self (r e p))
(x (let ((e-prime (generate-epsilon)))
((rena?i)igprime e (c e-prime O (df/dx (linear-term e-prime (r e p) (q e p))))))
qep
(else (£ p))))))
self))

(define (lift-real*real->real f df/dx1 df/dx2)
(letrec ((self
(lambda (p1 p2)
(cond
;5 Equation (32)
((and (linear-term? pl) (or (mot (linear-term? p2)) (<_e (epsilon p2) (epsilon p1))))
(let ((el (epsilon p1)))
(linear-term el
(self (r el pl) p2)
(* (let ((e-prime (generate-epsilomn)))
(rename e-prime el (c e-prime O (df/dx1 (linear-term e-prime (r el pl) (q el pl)) p2))))
(q el pl)))g)
;5 Equation (33)
((and (linear-term? p2) (or (mot (linear-term? pl)) (<_e (epsilon pl) (epsilon p2))))
(let ((e2 (epsilon p2)))
(linear-term e2
(self p1 (r e2 p2))
(* (let ((e-prime (generate-epsilon)))
((rename)s; §ime e2 (c e-prime 0 (df/dx2 pl (linear-term e-prime (r e2 p2) (q e2 p2))))))
q e2 p2
;5 Equation (34)
((and (linear-term? pl) (linear-term? p2) (=_e (epsilon pl) (epsilon p2)))
(let ((e (epsilon pl)) (e-prime (generate-epsilon))) (rename e-prime e (self pl (rename e e-prime p2)))))
169 (else (f pl p2)))))
se

(define (r* p) (if (linear-term? p) (r* (r (epsilon p) p)) p))
(define (lift-real\symbol{94}n->boolean f) (lambda ps (apply f (map r* ps))))

Figure2. A mechanism for extendingcHEME procedures of typ® — R, R x R — R, andR™ — boolean to support multivariate power
series. Note that the in (30) and thex in (31-33) must be the lifted variant that works on power-series aggtsnFurthermoref’ in (31),
f1in (32), andfs in (33) must internally use the lifted variants of operations that work orep@eries arguments.

(define pair? (let ((pair? pair?)) (lambda (x) (and (pair? x) (not (linear-term? x))))))
(define + (lift-real*real->real + (lambda (x1 x2) 1) (lambda (x1 x2) 1)))
(define - (lift-real*real->real - (lambda (x1 x2) 1) (lambda (x1 x2) -1)))
(define * (lift-real*real->real * (lambda (x1 x2) x2) (lambda (x1 x2) x1)))
(define / (lift-real*real->real / (lambda (x1 x2) (/ 1 x2)) (lambda (x1 x2) (- 0 (/ x1 (* x2 x2))))))
(define sqrt (lift-real->real sqrt (lambda (x) (/ 1 (* 2 (sqrt x))))))
(define exp (lift-real->real exp (lambda (x) (exp x))))
(define log (lift-real->real log (lambda (x) (/ 1 x))))
(define sin (lift-real->real sin (lambda (x) (cos x))))
(define cos (lift-real->real cos (lambda (x) (- 0 (sin x)))))
(define atan (lift-real*real->real
atan (lambda (x1 x2) (/ (- 0 x2) (+ (* x1 x1) (¥ x2 x2)))) (lambda (x1 x2) (/ x1 (+ (* x1 x1) (* x2 x2))))))
(define = (lift-real"n->boolean =))
(define < (lift-real"n->boolean <))
(define > (lift-real"n->boolean >))
(define <= (lift-real”n->boolean <=))
(define >= (lift-real”n->boolean >=))
(define zero? (lift-real"n->boolean zero?))
(define positive? (lift-real”n->boolean positive?))
(define negative? (lift-real n->boolean negative?))
(define real? (lift-real"n->boolean real?)%

Figure 3. Overloading some &HEME procedures that operate on reals with extensions that support malvpower series. Note that the
overloaded, -, *, /, andatan procedures are restricted to accept precisely two arguments.



;55 Equation (2)
(define (derivative f) (lambda (c) (let ((e (generate-epsilon))) (univariate-e e 1 (f (linear-term e c 1))))))

(define (ith-derivative-by-repetition i f)
(cond ;; Equation (3)
((zero? i) f)
;3 Equation (4)
(else (ith-derivative-by-repetition (- i 1) (derivative £)))))

;33 Equation (7)
(define (ith-derivative-by-tower i f)
(lambda (c) (let ((e (generate-epsilon))) (univariate-e e i (f (linear-term e c¢ 1))))))

(define (position-of-nonzero i)

(cond ((null? i) #£f)
((zero? (car i)) (let ((position (position-of-nonzero (cdr i)))) (if position (+ position 1) #£f)))
(else 0)))

(define (decrement-1th i 1) (if (zero? 1) (coms (- (car i) 1) (cdr i)) (coms (car i) (decrement-1lth (cdr i) (- 1 1)))))
(define (list-replace-1lth ¢ 1 u) (if (zero? 1) (cons u (cdr c)) (coms (car c) (list-replace-1lth (cdr c) (- 1 1) u))))

(define (partial-derivative-by-repetition i f)
(let ((1 (position-of-nonzero i)?)
(cond ;; Equation (8)
((not 1) £)
;3 Equation (9)
(else (partial-derivative-by-repetition
(decrement-1th i 1) (lambda (c) ((derivative (lambda (u) (f (list-replace-lth c¢ 1 u)))) (list-ref c 1))))))))

;33 Equation (12)
(define (partial-derivative-by-tower i f)
(lambda (c)
(let ((e (map (lambda (cl) (generate-epsilon)) c)))
(multivariate-e e i (£ (map (lambda (el cl) (linear-term el cl 1)) e c))))))

Figure4. A ScHEME implementation ofD, the repetition and tower methods fBf, and the repetition and tower methods 1),
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