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Abstract
A method is presented for computing all higher-order partial
derivatives of a multivariate functionRn → R. This method works
by evaluating the function under a nonstandard interpretation, lift-
ing reals to multivariate power series. Multivariate power series,
with potentially an infinite number of terms with nonzero coef-
ficients, are represented using a lazy data structure constructed
out of linear terms. A complete implementation of this method
in SCHEME is presented, along with a straightforward exposition,
based on Taylor expansions, of the method’s correctness.

Categories and Subject Descriptors G.1.4 [Quadrature and Nu-
merical Differentiation]: Automatic differentiation; D.3.2 [Lan-
guage Classifications]: Applicative (functional) languages

General Terms Algorithms, Languages

Keywords Power series, Nonstandard interpretation

1. Introduction
Forward-Mode Automatic Differentiation, or forward AD, [1] is a
method for adapting a program that computes a function to yield
one that computes its derivatives. Karczmarczuk [2–5] presented
an implementation of forward AD in HASKELL. This implementa-
tion had a novel characteristic: it adapted a program that computed
a univariate functionf : R → R to yield one that produced an in-
finite stream of higher-order derivatives(f(x), f ′(x), f ′′(x), . . .).
However, Karczmarczuk provided the details for his method only
for univariate functions. Karczmarczuk [4] hinted at a generaliza-
tion to multivariate functions but did not provide the details. Here,
we present the details of a novel generalization of Karczmarczuk’s
method to the multivariate case. In part, we use methods previously
developed for implementing nestable first-order forward AD in a
functional framework [6]. The crucial additional insight here, both
for developing the extension and for demonstrating its correctness,
involves reformulating Karczmarczuk’s method using Taylor ex-
pansions instead of the chain rule. This requires dealing with the
requisite factorial factors.
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2. Univariate First-Order Forward AD
The Taylor expansion [7] off(c + ε) with respect toε is

f(c + ε) =
∞

X

i=0

1

i!

dif(x)

dxi

˛

˛

˛

˛

x=c

εi

This implies that one can compute thei-th derivative of a univariate
functionf at a scalar pointc by evaluating by evaluatingf(c + ε)
under a nonstandard interpretation replacing real numbers with uni-
variate power series inε, extracting the coefficient ofεi in the re-
sult, and multiplying this byi!. Traditional forward AD [1] trun-
cates the Taylor expansions ati > 1, thus computing a representa-
tion that contains only the first derivative.

Such truncated Taylor expansions aredual numbers[8]. We de-
note a dual numberp as x + x′ε, by analogy with the standard
notationa + bi for complex numbers. Just as arithmetic on com-
plex numbersa + bi can be defined by takingi2 = −1, arithmetic
on dual numbersx + x′ε can be defined by takingε2 = 0 but
ε 6= 0. Furthermore, just as implementations of complex arithmetic
typically represent complex numbersa + bi as Argand pairs〈a, b〉,
implementations of forward AD typically represent dual numbers
x+x′ε as tangent-bundle pairs〈x, x′〉. Finally, just as implementa-
tions of complex arithmetic typically overload the arithmetic prim-
itives to manipulate complex numbers, implementations of forward
AD typically overload the arithmetic primitives to manipulate dual
numbers.

We useE ε p to denote the coefficient ofε in the dual numberp

E ε (x + x′ε)
△

= x′ (1)

andD f c to denote the value of the first derivative of a univariate
function f at a scalar pointc. Forward AD computesD f c by
evaluatingf (c + ε) under a nonstandard interpretation replacing
real numbers with dual numbers and extracting the coefficient ofε
in the result.

D f c
△

= E ε (f (c + ε)) (2)

Theεs introduced by nested invocations ofD must be distinct [6].
To see how this works, let us manually apply the mechanism to a

simple example: computing the first derivative off(x) = x4 +2x3

atx = 3. To do this, we first evaluatef(3 + ε).

f(3 + ε) = (3 + ε)4 + 2(3 + ε)3

= (81 + 108ε) + 2(27 + 27ε)

= 135 + 162ε

From this we can extract the derivative:E ε (135 + 162ε) = 162.

df(x)

dx

˛

˛

˛

˛

x=3

= 4x3 + 6x2
˛

˛

x=3
= 162 = E ε (f (3 + ε))

Note that the above makes use of the restriction thatε2 = 0 when
evaluating(3+ε)3 = 27+27ε and(3+ε)4 = 81+108ε, dropping



theε2, ε3, andε4 terms. This is the essence of traditional forward
AD when limited to the case of univariate derivatives.

3. Univariate Higher-Order Forward AD
While the above nominally computes only first derivatives, straight-
forward repeated application ofD allows computation of higher-
order derivatives. We useD f to denote partial application ofD,
i.e., λc . (D f c), andDi f c to denote the value of thei-th
derivative of a univariate functionf at a scalar pointc.

D0 f
△

= f (3)

Di f
△

= Di−1 (D f) wheni > 0 (4)

We refer to the above method for computing higher-order deriva-
tives as therepetitionmethod.

Karczmarczuk [2–5] presented an alternate method for comput-
ing higher-order univariate derivatives. His method can be viewed
as computing non-truncated Taylor expansions,1 removing the re-
striction thatε2 = 0, and generalizing dual numbers to univariate
power series inε. To accomplish this, we first extend the definition
of E from (1) so thatE εi p yields i! times the coefficient ofεi in
the power seriesp.

E ε0 p
△

= R ε p (5)

E εi p
△

= i × E εi−1 (Q ε p) wheni > 0 (6)

In the above and throughout this paper,Q ε p andR ε p destruc-
ture a power series:p = (R ε p) + (Q ε p)ε. Given the above,
Karczmarczuk’s method can be viewed as computingDi f c by
evaluatingf (c + ε) under a nonstandard interpretation replacing
real numbers with univariate power series inε, extracting the coef-
ficient ofεi in the result, and multiplying this byi!.

Di f c
△

= E εi (f (c + ε)) (7)

To see how this works, let us manually apply the mechanism to
a simple example: computing all of the higher-order derivatives of
f(x) = x4 + 2x3 atx = 3. To do this, we first evaluatef(3 + ε).

f(3 + ε) = (3 + ε)4 + 2(3 + ε)3

= (81 + 108ε + 54ε2 + 12ε3 + ε4)
+ 2(27 + 27ε + 9ε2 + ε3)

= 135 + 162ε + 72ε2 + 14ε3 + ε4

From this we can extract all of the higher-order derivatives.

f(x)

˛

˛

˛

˛

x=3

= x4 + 2x3

˛

˛

˛

˛

x=3

= 135 = 0! × 135 = E ε0 (f (3 + ε))

df(x)

dx

˛

˛

˛

˛

x=3

= 4x3 + 6x2

˛

˛

˛

˛

x=3

= 162 = 1! × 162 = E ε1 (f (3 + ε))

...

d4f(x)

dx4

˛

˛

˛

˛

x=3

= 24

˛

˛

˛

˛

x=3

= 24 = 4! × 1 = E ε4 (f (3 + ε))

4. Lazy Univariate Higher-Order Forward AD
The input to the nonstandard interpretation will always be a poly-
nomialc + ε, an entity with a finite number of terms with nonzero
coefficients. In the above example, the output of the nonstandard in-
terpretation was also a polynomial. However some functions, such

1 As discussed in section 7, this is a reformulation of Karczmarczuk’s
method which was originally formulated using the chain rule.

assin, yield a result entity with an infinite number of terms with
nonzero coefficients, i.e., a power series, even when applied to
an input polynomial. Karczmarczuk addressed this by representing
univariate power series as lazy unidimensional streams. We refer to
this as atower method. Karczmarczuk presented the details of his
tower method only for univariate functions. The remainder of this
paper presents the details of a novel tower method that generalizes
to the multivariate case.

5. Multivariate Higher-Order Forward AD
We useD(i1,...,in) f (c1, . . . , cn) to denote the value of

∂i1+···+inf(x1, . . . , xn)

∂x1
i1 · · · ∂xn

in

˛

˛

˛

˛

x1=c1,...,xn=cn

i.e., the value of a higher-order partial derivative of a multivariate
functionf at a multidimensional point(c1, . . . , cn). One can gen-
eralize the repetition method to the multivariate case.

D(0,...,0) f
△

= f (8)

D(i1,...,in) f
△

= (9)

D(i1,...,iℓ−1,iℓ−1,iℓ+1,...,in)

λ(c1, . . . , cn) . D (λu . f (c1, . . . , cℓ−1, u, cℓ+1, . . . , cn)) cℓ

wheniℓ > 0

Again, each nested invocation ofD must use a distinctε [6].
One can formulate a multivariate tower method by generaliz-

ing univariate power series to multivariate power series. To accom-
plish this, we first note that the multivariate Taylor expansion of
f((c1 + ε1), . . . , (cn + εn)) with respect to(ε1, . . . , εn) is

∞
X

i1=0

· · ·

∞
X

in=0

1

i1! · · · in!

∂i1+···+inf(x1, . . . , xn)

∂x1
i1 · · · ∂xn

in

˛

˛

˛

˛

x1=c1,...,xn=cn

εi1
1 · · · εin

n

We therefore extend the definition ofE from (5–6) to the multi-
variate case so thatE ε1

i1 · · · εn
in p yields i1! · · · in! times the

coefficient ofεi1
1 · · · εin

n in the power seriesp.

E 1 p
△

= p (10)

E ε1
i1 · · · εn

in p
△

= E ε2
i2 · · · εn

in (E ε1
i1 p) (11)

Given the above, one can computeD(i1,...,in) f (c1, . . . , cn) by
evaluatingf ((c1 + ε1), . . . , (cn + εn)) under a nonstandard in-
terpretation replacing real numbers with multivariate power series
in distinctε1, . . . , εn, extracting the coefficient ofε1

i1 · · · εn
in in

the result, and multiplying this byi1! · · · in!.

D(i1,...,in) f (c1, . . . , cn)
△

= (12)

E ε1
i1 · · · εn

in (f ((c1 + ε1), . . . , (cn + εn)))

In the above, theεℓ must be distinct from each other and from any
otherε used by nested invocations of any form ofD [6].

To see how this works, let us manually apply the mechanism
to a simple example: computing all of the higher-order partial
derivatives ofg(x, y) = x3y + x2y2 at x = 2 andy = 3. To



do this, we first evaluateg((2 + εx), (3 + εy)).

g((2 + εx), (3 + εy))
= (2 + εx)3(3 + εy) + (2 + εx)2(3 + εy)2

= (8 + 12εx + 6ε2
x + ε3

x)(3 + εy)
+ (4 + 4εx + ε2

x)(9 + 6εy + ε2
y)

= (24 + 36εx + 8εy + 18ε2
x + 12εxεy + 3ε3

x + 6ε2
xεy

+ ε3
xεy)

+ (36 + 36εx + 24εy + 9ε2
x + 24εxεy + 4ε2

y + 6ε2
xεy

+ 4εxε2
y + ε2

xε2
y)

= (60 + 72εx + 32εy + 27ε2
x + 36εxεy + 4ε2

y + 3ε3
x

+ 12ε2
xεy + 4εxε2

y + ε3
xεy + ε2

xε2
y)

From this we can extract all of the higher-order partial derivatives.

g(x, y)

˛

˛

˛

˛

x=2,y=3

= x3y + x2y2

˛

˛

˛

˛

x=2,y=3

= 60 = 0! × 0! × 60

= E ε0
xε0

y (g ((2 + εx), (3 + εy)))

∂g(x, y)

∂x

˛

˛

˛

˛

x=2,y=3

= 3x2y + 2xy2

˛

˛

˛

˛

x=2,y=3

= 72 = 1! × 0! × 72

= E ε1
xε0

y (g ((2 + εx), (3 + εy)))

...

∂4g(x, y)

∂x3∂y

˛

˛

˛

˛

x=2,y=3

= 6

˛

˛

˛

˛

x=2,y=3

= 6 = 3! × 1! × 1

= E ε3
xε1

y (g ((2 + εx), (3 + εy)))

∂4g(x, y)

∂x2∂y2

˛

˛

˛

˛

x=2,y=3

= 4

˛

˛

˛

˛

x=2,y=3

= 4 = 2! × 2! × 1

= E ε2
xε2

y (g ((2 + εx), (3 + εy)))

Two difficulties arise when attempting to implement the above.
First, there is the need to maintain the distinction between the
differentεs, addressed in previous work [6]. Second, there is a need
to generalize lazy unidimensional streams to the multidimensional
case to represent multivariate power series. We address this in the
next section.

6. Lazy Multivariate Higher-Order Forward AD
A univariate polynomialx0+x1ε+x2ε

2+· · ·+xn−1ε
n−1+xnεn

can be evaluated using Horner’s method [9] as

x0 + (x1 + (x2 + · · · + (xn−1 + xnε)ε · · · )ε)ε

This indicates that univariate polynomials can be represented as
nested dual numbers. Multivariate polynomials can be represented
as nestedtaggeddual numbers, i.e., triples of the form〈ε, x, x′〉,
with potentially distinctεs, to representx + x′ε. We assume that
there is a total order≺ over theεs and refer to such tagged dual
numbers aslinear terms. Power series can be represented as binary
trees whose nodes are linear terms with a lazyx′ slot. As illustrated
in the code accompanying this paper, we constrain such represen-
tations to maintain the following invariants:

I-1 In any linear termx + x′ε, thex slot is either real, or a linear
term overε′ whereε′ ≺ ε.

I-2 In any linear termx + x′ε, thex′ slot is either real, a linear
term overε′ whereε′ ≺ ε, or a linear term overε.

These ensure that the coefficient of each term in a multivariate
series is stored in at most one leaf. They also simplify proofs of
termination of the derivative-taking code and lower the time bound
on access to a multivariate power series.

Figure 1 contains a SCHEME implementation of an API for
manipulating multivariate power series represented as lazy linear
terms. Central to this API are mechanismsQ ε p andR ε p
for computing the quotient and remainder when dividing the power
seriesp by the variableε.

R ε r
△

= r whenr ∈ R (13)

R ε (x + x′ε′)
△

= x + x′ε′ whenε′ ≺ ε (14)

R ε (x + x′ε)
△

= x (15)

R ε (x + x′ε′)
△

= (R ε x) + (R ε x′)ε′ whenε 6= ε′ (16)

Q ε r
△

= 0 whenr ∈ R (17)

Q ε (x + x′ε′)
△

= 0 whenε′ ≺ ε (18)

Q ε (x + x′ε)
△

= x′ (19)

Q ε (x + x′ε′)
△

= (Q ε x) + (Q ε x′)ε′ whenε 6= ε′ (20)

Cases (14) and (18) and the simplifications in cases (15) and (19)
are valid because of the invariants. Note that, unlike an analogous
earlier API [6], the above correctly handles linear termsx + x′ε
wherex′ may itself be a linear term in the sameε. Also note that,
because of laziness, unlike that earlier API, there is no easy way to
implement the simplification rulex + 0ε x.

To perform the nonstandard interpretation, we need to extend
the numeric primitives to apply to power series. For simplicity, we
do this only for univariate and bivariate primitives. We can assume
that the power series arguments to such primitives take the form
of a linear termx + x′ε. The extension of a univariate primitivef
applied to a linear termx + x′ε can be derived via a univariate
Taylor expansion aboutx in terms ofx′ε.

f(x + x′ε) =
∞

X

i=0

f (i)(x)

i!
(x′ε)i

= f(x) +

∞
X

i=1

f (i)(x)x′i

i!
εi

= f(x) +

„ ∞
X

i=1

f (i)(x)x′i−1

i!
εi−1

«

x′ε

= f(x) +

„ ∞
X

i=0

f (i+1)(x)x′i

(i + 1)!
εi

«

x′ε (21)

In the above,f (i) denotes thei-th derivative off . Note that

f ′(x + x′ε) =

∞
X

i=0

f (i+1)(x)x′i

i!
εi (22)

Also note that the right hand side of (22) is similar to the coefficient
of x′ε in (21), differing only in that the derivatives in the power
series are divided by(i + 1)! instead ofi!. The coefficient of
x′ε in (21) can be derived from the right hand side of (22) by
postulating an operatorCε0 to adjust the coefficients.

∞
X

i=0

f (i+1)(x)x′i

(i + 1)!
εi = Cε0

∞
X

i=0

f (i+1)(x)x′i

i!
εi (23)

(As a formal power series operator,Cε0 f(ε) = 1
ε

R ε

0
f(ε) dε.) This

operator can be defined as follows:

Cεi r
△

=
r

i + 1
whenr ∈ R (24)

Cεi (x + x′ε)
△

= (Cεi x) + (Cεi+1 x′)ε (25)

Cεi (x + x′ε′)
△

= (Cεi x) + (Cεi x′)ε′ whenε 6= ε′ (26)



(define <_e <)

(define =_e =)

(define linear-term? (let ((pair? pair?)) (lambda (p) (and (pair? p) (eq? (car p) ’linear-term)))))

(define-syntax linear-term (syntax-rules () ((linear-term e x x-prime) (list ’linear-term e x (delay x-prime)))))

(define epsilon cadr)

(define (r e p)
(cond ;; Equation (13)

((not (linear-term? p)) p)
;; Equation (14)
((<_e (epsilon p) e) p)
;; Equation (15)
((=_e (epsilon p) e) (caddr p))
;; Equation (16)
(else (linear-term (epsilon p) (r e (caddr p)) (r e (force (cadddr p)))))))

(define (q e p)
(cond ;; Equation (17)

((not (linear-term? p)) 0)
;; Equation (18)
((<_e (epsilon p) e) 0)
;; Equation (19)
((=_e (epsilon p) e) (force (cadddr p)))
;; Equation (20)
(else (linear-term (epsilon p) (q e (caddr p)) (q e (force (cadddr p)))))))

(define generate-epsilon (let ((e 0)) (lambda () (set! e (+ e 1)) e)))

(define (univariate-e e i p)
(cond ;; Equation (5)

((zero? i) (r e p))
;; Equation (6)
(else (* i (univariate-e e (- i 1) (q e p))))))

(define (multivariate-e e i p)
(cond ;; Equation (10)

((null? i) p)
;; Equation (11)
(else (multivariate-e (cdr e) (cdr i) (univariate-e (car e) (car i) p)))))

Figure 1. A SCHEME implementation of an API for manipulating multivariate power series represented as lazy linear terms. Note that to
support nested invocation ofD, the× in (6) must be the lifted variant that works on power-series arguments.Note that generatedεs never
escape any equations in which they are generated, i.e., (2, 7, 12, 31–34). Thus one can improve upon the above implementation by allocating
and reclaimingεs in a LIFO fashion.

Note thatx′ in (23) can containε. This is a problem becauseCεi

operates by counting instances ofε, and has no way to distinguish
theεs inx′ that should not be counted. We solve this by renamingε
to a freshε′ prior to callingCεi and renamingε′ back toε in the
result. For the cases that arise in this paper,2 such renaming can be
accomplished with the following:

p[ε 7→ ε]
△

= p (27)

r[ε1 7→ ε2]
△

= r whenr ∈ R (28)

(x + x′ε′)[ε1 7→ ε2]
△

= x + x′ε′ whenε′ ≺ ε1 (29)

(x + x′ε1)[ε1 7→ ε2]
△

= (30)

(R ε2 x) + ((Q ε2 x) + x′[ε1 7→ ε2])ε2

This yields the following method for extending univariate primi-
tives:

f (x + x′ε)
△

= (31)

(f x) + ((Cε0 (f ′ (x + x′ε)[ε 7→ ε′]))[ε′ 7→ ε] × x′)ε

This requires supplyingf ′, the first derivative of each univariate
primitive f .

Bivariate primitives can be extended when the first argument is
a linear term overε and the second argument is either a real or a
linear term overε′ whereε′ ≺ ε by performing a univariate Taylor

2 Renaming is only applied in equations (31–34) and therein only in cases
whereε ≺ ε

′ for any existingε. Furthermore, (29) is valid only because of
the invariants.

expansion around the first argument.

f ((x + x′ε), y)
△

= (32)

(f (x, y)) + ((Cε0 (f1 ((x + x′ε)[ε 7→ ε′], y)))[ε′ 7→ ε] × x′)ε

Analogously, bivariate primitives can be extended when the second
argument is a linear term overε and the first argument is either a
real or a linear term overε′ whereε′ ≺ ε by performing a univariate
Taylor expansion around the second argument.

f (x, (y + y′ε))
△

= (33)

(f (x, y)) + ((Cε0 (f2 (x, (y + y′ε)[ε 7→ ε′])))[ε′ 7→ ε] × y′)ε

This requires supplyingf1 andf2, the partial first derivatives of
each bivariate primitivef with respect to its first and second argu-
ments respectively.

To handle the case when both arguments are linear terms over
the sameε we rename theε in one argument to a freshε′, reducing
this case to either (32) or (33), and then renameε′ back toε in the
result.

f ((x + x′ε), (y + y′ε))
△

= (34)

(f ((x + x′ε), (y + y′ε)[ε 7→ ε′]))[ε′ 7→ ε]

These techniques are implemented in figure 2 and used to over-
load some SCHEME primitives in figure 3. Figure 4 completes the
implementation. Note that the computational efficiency of this im-
plementation relies on the fact that standard SCHEME memoizes the
results of forcing promises. The code from figures 1–4 is available
from http://www.bcl.hamilton.ie/~qobi/tower/.



(define (c e i p)
(cond ;; Equation (24)

((not (linear-term? p)) (/ p (+ i 1)))
;; Equation (25)
((=_e (epsilon p) e) (linear-term (epsilon p) (c e i (r (epsilon p) p)) (c e (+ i 1) (q (epsilon p) p))))
;; Equation (26)
(else (linear-term (epsilon p) (c e i (r (epsilon p) p)) (c e i (q (epsilon p) p))))))

(define (rename e1 e2 p)
(cond ;; Equation (27)

((=_e e1 e2) p)
;; Equation (28)
((not (linear-term? p)) p)
;; Equation (29)
((<_e (epsilon p) e1) p)
;; Equation (30)
((=_e (epsilon p) e1) (linear-term e2 (r e2 (r e1 p)) (+ (q e2 (r e1 p)) (rename e1 e2 (q e1 p)))))
(else (error "This case should never occur in this program."))))

(define (lift-real->real f df/dx)
(letrec ((self (lambda (p)

(cond ;; Equation (31)
((linear-term? p)
(let ((e (epsilon p)))
(linear-term e

(self (r e p))
(* (let ((e-prime (generate-epsilon)))

(rename e-prime e (c e-prime 0 (df/dx (linear-term e-prime (r e p) (q e p))))))
(q e p)))))

(else (f p))))))
self))

(define (lift-real*real->real f df/dx1 df/dx2)
(letrec ((self

(lambda (p1 p2)
(cond
;; Equation (32)
((and (linear-term? p1) (or (not (linear-term? p2)) (<_e (epsilon p2) (epsilon p1))))
(let ((e1 (epsilon p1)))
(linear-term e1

(self (r e1 p1) p2)
(* (let ((e-prime (generate-epsilon)))

(rename e-prime e1 (c e-prime 0 (df/dx1 (linear-term e-prime (r e1 p1) (q e1 p1)) p2))))
(q e1 p1)))))

;; Equation (33)
((and (linear-term? p2) (or (not (linear-term? p1)) (<_e (epsilon p1) (epsilon p2))))
(let ((e2 (epsilon p2)))
(linear-term e2

(self p1 (r e2 p2))
(* (let ((e-prime (generate-epsilon)))

(rename e-prime e2 (c e-prime 0 (df/dx2 p1 (linear-term e-prime (r e2 p2) (q e2 p2))))))
(q e2 p2)))))

;; Equation (34)
((and (linear-term? p1) (linear-term? p2) (=_e (epsilon p1) (epsilon p2)))
(let ((e (epsilon p1)) (e-prime (generate-epsilon))) (rename e-prime e (self p1 (rename e e-prime p2)))))
(else (f p1 p2))))))

self))

(define (r* p) (if (linear-term? p) (r* (r (epsilon p) p)) p))

(define (lift-real\symbol{94}n->boolean f) (lambda ps (apply f (map r* ps))))

Figure 2. A mechanism for extending SCHEME procedures of typeR → R, R×R → R, andR
n → boolean to support multivariate power

series. Note that the+ in (30) and the× in (31–33) must be the lifted variant that works on power-series arguments. Furthermore,f ′ in (31),
f1 in (32), andf2 in (33) must internally use the lifted variants of operations that work on power-series arguments.

(define pair? (let ((pair? pair?)) (lambda (x) (and (pair? x) (not (linear-term? x))))))
(define + (lift-real*real->real + (lambda (x1 x2) 1) (lambda (x1 x2) 1)))
(define - (lift-real*real->real - (lambda (x1 x2) 1) (lambda (x1 x2) -1)))
(define * (lift-real*real->real * (lambda (x1 x2) x2) (lambda (x1 x2) x1)))
(define / (lift-real*real->real / (lambda (x1 x2) (/ 1 x2)) (lambda (x1 x2) (- 0 (/ x1 (* x2 x2))))))
(define sqrt (lift-real->real sqrt (lambda (x) (/ 1 (* 2 (sqrt x))))))
(define exp (lift-real->real exp (lambda (x) (exp x))))
(define log (lift-real->real log (lambda (x) (/ 1 x))))
(define sin (lift-real->real sin (lambda (x) (cos x))))
(define cos (lift-real->real cos (lambda (x) (- 0 (sin x)))))
(define atan (lift-real*real->real

atan (lambda (x1 x2) (/ (- 0 x2) (+ (* x1 x1) (* x2 x2)))) (lambda (x1 x2) (/ x1 (+ (* x1 x1) (* x2 x2))))))
(define = (lift-real^n->boolean =))
(define < (lift-real^n->boolean <))
(define > (lift-real^n->boolean >))
(define <= (lift-real^n->boolean <=))
(define >= (lift-real^n->boolean >=))
(define zero? (lift-real^n->boolean zero?))
(define positive? (lift-real^n->boolean positive?))
(define negative? (lift-real^n->boolean negative?))
(define real? (lift-real^n->boolean real?))

Figure 3. Overloading some SCHEME procedures that operate on reals with extensions that support multivariate power series. Note that the
overloaded+, -, *, /, andatan procedures are restricted to accept precisely two arguments.



;;; Equation (2)
(define (derivative f) (lambda (c) (let ((e (generate-epsilon))) (univariate-e e 1 (f (linear-term e c 1))))))

(define (ith-derivative-by-repetition i f)
(cond ;; Equation (3)

((zero? i) f)
;; Equation (4)
(else (ith-derivative-by-repetition (- i 1) (derivative f)))))

;;; Equation (7)
(define (ith-derivative-by-tower i f)
(lambda (c) (let ((e (generate-epsilon))) (univariate-e e i (f (linear-term e c 1))))))

(define (position-of-nonzero i)
(cond ((null? i) #f)

((zero? (car i)) (let ((position (position-of-nonzero (cdr i)))) (if position (+ position 1) #f)))
(else 0)))

(define (decrement-lth i l) (if (zero? l) (cons (- (car i) 1) (cdr i)) (cons (car i) (decrement-lth (cdr i) (- l 1)))))

(define (list-replace-lth c l u) (if (zero? l) (cons u (cdr c)) (cons (car c) (list-replace-lth (cdr c) (- l 1) u))))

(define (partial-derivative-by-repetition i f)
(let ((l (position-of-nonzero i)))
(cond ;; Equation (8)

((not l) f)
;; Equation (9)
(else (partial-derivative-by-repetition

(decrement-lth i l) (lambda (c) ((derivative (lambda (u) (f (list-replace-lth c l u)))) (list-ref c l))))))))

;;; Equation (12)
(define (partial-derivative-by-tower i f)
(lambda (c)
(let ((e (map (lambda (cl) (generate-epsilon)) c)))
(multivariate-e e i (f (map (lambda (el cl) (linear-term el cl 1)) e c))))))

Figure 4. A SCHEME implementation ofD, the repetition and tower methods forDi, and the repetition and tower methods forD(i1,...,in).

7. Discussion
Forward AD is typically formulated using very different machin-
ery than that used above. The univariate first-order case is usually
formulated as a transformation of a program whose program points
compute valuesf(x) of the program inputx to one whose pro-
gram points compute values〈f(x), f ′(x)〉. Since the program is a
composition of primitives, the program transformation, as well as
the transformation of the primitives, are formulated as applications
of the chain rule. Karczmarczuk formulated the univariate higher-
order case as a similar transformation to a program whose pro-
gram points compute stream values(f(x), f ′(x), f ′′(x), . . .) via
the chain rule, though he did not present a derivation of the trans-
formations of the primitives.

The streams we have used are similar, but contain factorial
factors:(f(x)/0!, f ′(x)/1!, f ′′(x)/2!, . . . , f (i)(x)/i!, . . .). These
Taylor series streams simplify some bookkeeping, in particular
allowing the use of Taylor expansions instead of the chain rule
in the derivations. This makes the multivariate higher-order case
more straightforward to derive and justify. However, since each
representation can be converted to the other (using operators that
are similar toC), we do not consider this a fundamental difference.

Karczmarczuk [4] hinted at a formulation of the multivariate
higher-order case using the chain rule, where lazy unidimensional
streams are replaced with lazy trees, but did not present a derivation
or justification of the method’s correctness. That method redun-
dantly represents identical cross derivatives, i.e.,∂2f/∂xi∂xj =
∂2f/∂xj∂xi. Our method avoids that inefficiency. Moreover, al-
though nesting is not our topic, the code presented does allow the
derivative-taking constructs to nest correctly.

Laziness is particularly useful when representing and manipu-
lating power series, in contexts beyond those considered here [10].
For instance it can be used to define a power series with a recur-
rence relation. Such power series arise naturally in related con-
texts, such as differential equations that cannot be solved in closed
form. Formulating nestable multivariate higher-order forward AD
in terms of lazy power-series representations can allow forward AD
to inter-operate with such other applications of power series.
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