To appear in POPL 2007

Lazy Multivariate Higher-Order Forward-Mode AD

Barak A. Pearlmutter

Hamilton Institute
NUI Maynooth, Ireland

barak@cs.nuim.ie

Abstract

A method is presented for computing all higher-order partial

derivatives of a multivariate functidR™ — R. This method works

by evaluating the function under a nonstandard interpretation, lift-
ing reals to multivariate power series. Multivariate power series,
with potentially an infinite number of terms with nonzero coef-

ficients, are represented using a lazy data structure constructe
out of linear terms. A complete implementation of this method

in SCHEME is presented, along with a straightforward exposition,

based on Taylor expansions, of the method'’s correctness.

Categories and Subject Descriptors G.1.4 [Quadrature and Nu-
merical Differentiatio: Automatic differentiation; D.3.2L[an-
guage ClassificatiojsApplicative (functional) languages

General Terms Algorithms, Languages

Keywords Power series, Nonstandard interpretation

1. Introduction
Forward-Mode Automatic Differentiation, or forward AD, [1] is a

Jeffrey Mark Siskind

School of Electrical and Computer Engineering
Purdue University, USA

qobi@purdue.edu

2. Univariate First-Order Forward AD
The Taylor expansion [7] of (¢ + £) with respect ta is

1dif(x)

il dxt

[ee]

flete)=3

=0

i

T=c

dfThis implies that one can compute thth derivative of a univariate

unction f at a scalar point by evaluating by evaluating(c + <)
under a nonstandard interpretation replacing real numbers with uni-
variate power series i, extracting the coefficient of' in the re-

sult, and multiplying this byi!. Traditional forward AD [1] trun-
cates the Taylor expansionsiat- 1, thus computing a representa-
tion that contains only the first derivative.

Such truncated Taylor expansions dteal number$8]. We de-
note a dual numbep asx + 2’¢, by analogy with the standard
notationa + bi for complex numbers. Just as arithmetic on com-
plex numbers: + bi can be defined by taking 1, arithmetic
on dual numbers: + z’¢ can be defined by taking? = 0 but
e # 0. Furthermore, just as implementations of complex arithmetic
typically represent complex numberst bi as Argand pairga, b),
implementations of forward AD typically represent dual numbers
x+x'e as tangent-bundle paits, z’). Finally, just as implementa-
tions of complex arithmetic typically overload the arithmetic prim-
itives to manipulate complex numbers, implementations of forward

method for adapting a program that computes a function to yield ap typically overload the arithmetic primitives to manipulate dual
one that computes its derivatives. Karczmarczuk [2-5] presented , ;mpers.

an implementation of forward AD in BSKELL. This implementa-

tion had a novel characteristic: it adapted a program that computed

a univariate functiory : R — R to yield one that produced an in-
finite stream of higher-order derivativég(z), f'(z), f" (z), . ..).
However, Karczmarczuk provided the details for his method only
for univariate functions. Karczmarczuk [4] hinted at a generaliza-
tion to multivariate functions but did not provide the details. Here,
we present the details of a novel generalization of Karczmarczuk'’s

method to the multivariate case. In part, we use methods previously

developed for implementing nestable first-order forward AD in a
functional framework [6]. The crucial additional insight here, both

for developing the extension and for demonstrating its correctness,

involves reformulating Karczmarczuk’'s method using Taylor ex-
pansions instead of the chain rule. This requires dealing with the
requisite factorial factors.

Permission to make digital or hard copies of all or part of this work for personal
classroom use is granted without fee provided that copies are not made outbstrib
for profit or commercial advantage and that copies bear this notice and the fubiitati
on the first page. To copy otherwise, to republish, to post on servers or ttritedes

to lists, requires prior specific permission and/or a fee.

POPL'07 January 17-19, 2007, Nice, France.
Copyright(© 2007 ACM 1-59593-575-4/07/0001. . . $5.00

We usef e p to denote the coefficient afin the dual numbep
Selw+ae)2a)}

andD f cto denote the value of the first derivative of a univariate
function f at a scalar point. Forward AD compute® f c¢ by
evaluatingf (c + ¢) under a nonstandard interpretation replacing
real numbers with dual numbers and extracting the coefficient of
in the result.

Dfc2Ee(f(c+e) @)
Thees introduced by nested invocationsBfmust be distinct [6].
To see how this works, let us manually apply the mechanismto a
simple example: computing the first derivativeff:) = 2* + 223
atz = 3. To do this, we first evaluatg(3 + ¢).
fB+e)=0B+e)* +2(3+¢)
= (81 + 108¢) + 2(27 + 27¢)

= 135 + 162¢
From this we can extract the derivativez (135 + 162¢) = 162.
df (=) 3 2
i =da’+62"| _,=162=CE¢ (f (3+¢))

x=3

Note that the above makes use of the restriction¢hat 0 when
evaluating(34-¢)® = 27+27¢ and(34¢)* = 81+108¢, dropping

thee?, €%, ande* terms. This is the essence of traditional forward assin, yield a result entity with an infinite number of terms with

AD when limited to the case of univariate derivatives. nonzero coefficients, i.e., a power series, even when applied to
an input polynomial. Karczmarczuk addressed this by representing
3. Univariate Higher-Order Forward AD univariate power series as lazy unidimensional streams. We refer to

.)] o) this as atower method. Karczmarczuk presented the details of his
While the above nominally computes only first derivatives, straight- tower method only for univariate functions. The remainder of this

forward repeated application @ allows computation of higher- paper presents the details of a novel tower method that generalizes
order derivatives. We usP f to denote partial application @p, to the multivariate case.

ie, e . (D f ¢), andD! f ¢ to denote the value of theth
derivative of a univariate functiofi at a scalar point.

D'f = f @3) S
D' f £ DU (D f) wheni> 0 @) 5. Multivariate Higher-Order Forward AD
(i15eeeyin)
We refer to the above method for computing higher-order deriva- V& USED™"! f (e1,...., cn) to denote the value of
tives as thaepetitionmethod. ‘)
Karczmarczuk [2-5] presented an alternate method for comput- ot i fpy L x)
ing higher-order univariate derivatives. His method can be viewed Ox1i1 -+ Oy in
T1=C1,...,Tp=Cnp

as computing non-truncated Taylor expansibmemoving the re-
striction that=> = 0, and generalizing dual numbers to univariate
power series im. To accomplish this, we first extend the definition
of £ from (1) so thai€ * p yieldss! times the coefficient of in
the power serieg.

i.e., the value of a higher-order partial derivative of a multivariate
function f at a multidimensional pointcs, . . ., ¢»). One can gen-
eralize the repetition method to the multivariate case.

£%p = Rep) pO-0 p 2 ®)
£e'p £ ixEc T (Qep) wheni>0 ® plieinp 2 ©)
In the above and throughout this pap@re p andR ¢ p destruc- DLt ie—1yig=Ligg 1, in)
ture a power seriegt = (R € p) + (Q ¢ p)e. Given the above, Aty -ooven) D (u. f(c1yeeyCom1,U, Cox1y- -5 Cn)) Ce
Karczmarczuk’s method can be viewed as compufigf c by wheni, > 0

evaluatingf (c + €) under a nonstandard interpretation replacing

real numbers with univariate power seriegjrextracting the coef- Again, each nested invocation Bf must use a distinet [6].

ficient ofe” in the result, and multiplying this bj. One can formulate a multivariate tower method by generaliz-
i AP ing univariate power series to multivariate power series. To accom-
Dife=¢&c (flete) Q) plish this, we first note that the multivariate Taylor expansion of
To see how this works, let us manually apply the mechanismto f((c1 +¢€1),. .., (cn + €,)) With respecttdey, ..., en) is
a simple example: computing all of the higher-order derivatives of
f(z) = 2* 4+ 223 atz = 3. To do this, we first evaluatg(3 + ¢).

fB+e) = B+e) +2(3+¢)°

= (814 108¢ + 54e* + 1263 + &%)
+2(27 4 27 + 9 4 £%)
135 + 162¢ + 722 4 14¢> 4 &*

5”11 coegm

L1=C1l,...,Tp=Cp

i": > Y L | (T
i1=0

— il 011 - - Oxyin

n=

We therefore extend the definition 6ffrom (5-6) to the multi-
variate case so that 't ---¢,'" pyieldsii!---i,! times the

From this we can extract all of the higher-order derivatives. coefficient ofgi1 -.-gln in the power series.
flz)|= z*+22°| =135=0'x 135=E £° (f (3+¢)) A
r=3 x=3 &1 p = D (10)
df(z) el et p B € e (Eap) (11)
5 |= 43 + 622 =162=1!x 162=E ' (f (3+¢))

e o=s Given the above, one can compu&’ i) f (¢cy,... ¢,) by
evaluatingf ((c1 + €1),...,(cn + €n)) under a nonstandard in-
terpretation replacing real numbers with multivariate power series

4 in distinctey, . .., en, extracting the coefficient af;** - - - £,* in
de;(f) _ 24— 2U=—a1x1 =E(f(3+2)) the result, and multiplying this by ! - - - 4,,!.
=3 =3

1>

Pty vin) fer,. . cn)
Ear’ e (f ((c1+e1),-.. (en +en)))

4, Lazy Univariate Higher-Order Forward AD (12)
The input to the nonstandard interpretation will always be a poly-
nomialc + ¢, an entity with a finite number of terms with nonzero
coefficients. In the above example, the output of the nonstandard in- In the above, the, must be distinct from each other and from any
terpretation was also a polynomial. However some functions, such othere used by nested invocations of any formf6].

To see how this works, let us manually apply the mechanism

1As discussed in section 7, this is a reformulation of Karczmakis to a simple example: computing all of the higher-order partial
method which was originally formulated using the chain rule. derivatives ofg(z,y) = z°y + z?y? atz = 2 andy = 3. To

do this, we first evaluate((2 + £2), (3 + &y)). Figure 1 contains a GHEME implementation of an API for
9(2+¢2),(3+¢,)) manipulating multivariate power series represented as lazy linear
— (2 _~_z57)3(3 +y€)+ (24 €0)2(3 + £,)? terms. Central to this APl are mechanis@se p andR ¢ p
_ (8 + 196, 4+ 62 4+ 3)(3 te) v for computing the quotient and remainder when dividing the power
- T x x Y

seriesp by the variable:.
+ (4 +4es +£2)(9+ 62y +€5)

= (24+ 36, + 8¢y + 1822 + 12e,¢, + 3¢2 + 6e2¢, Rer 2 r whenreR (13)
+g‘x€y) ’ 1 AN ’ /

+ (36 + 366, + 24, + 92 + 2e,e, + 42 + 6e2¢, Re(x+a'e) = z+a'c whene <¢ (14)

+ degey +2e) ,) . Re(z+2'e) 2 2 (15)
= (60 + T2e4 + 32e, + 27e; + 36,6y + 45, + 3¢5 A
1+ 1262¢, + degel + ede, + e262) Y Re(z+a'e) = (Rex)+ (Rea')e’ whene £¢ (16)
A
From this we can extract all of the higher-order partial derivatives. Qer = 0 whenr eR 17
/1 A ’
= 0 whene < 18
g(z,y)| = 2Py+a*y?| =60=0!x0!x 60 Qe (v+ae) N °0F (18)
r=2,y=3 =2,y=3 Qe(z+2e) = 2 19)
_ 0.0
= Eeagy (9(2+e2),B3+¢y))) Qe (z+2'¢) £ (Qezx)+ (Qea')e’ whene #¢" (20)
0g(z,y) — 302y + 2097 =T2=11x0! x 72 Cases '(14) and (18) and_the §|mpllf|cat|0ns in cases (15) and (19)
ox | _, 4 T are valid because of the invariants. Note that, unlike an analogous
L v earlier API [6], the above correctly handles linear terms- z'c
= Eezey (9 ((2+62), (B+¢y))) wherez’ may itself be a linear term in the sameAlso note that,
because of laziness, unlike that earlier API, there is no easy way to
implement the simplification rule + Og ~~ .

. To perform the nonstandard interpretation, we need to extend
og(z,y)| _ _ a_ o) ' the numeric primitives to apply to power series. For simplicity, we
——| = 6] = 6=3Ix1Ix1 . L g

0x30y |,y s w=2.y=3 do this only for univariate and bivariate primitives. We can assume

’ 31 ’ that the power series arguments to such primitives take the form
= Eeagy (9(2+ex),B+¢y)) of a linear terme + z’¢. The extension of a univariate primitive
Py applied to a linear termr + z’e can be derived via a univariate
9g9(z,y) | _ 4] = 4=91x2x1 Taylor expansion about in terms ofz’e.
0x20y? |,y s =2,y=3 ,
r o : D@
= £222 (9 ((2422), (3+2,)) flatale) = 3 ()
Two difficulties arise when attempting to implement the above. =0) i
First, there is the need to maintain the distinction between the = f@+Y) [@)a”
differentes, addressed in previous work [6]. Second, there is a need 7!

. 1=1
to generalize lazy unidimensional streams to the multidimensional ’

0 i i—1
case to represent multivariate power series. We address this in the = flx)+ < 1)(x)x’ S e
next section. Z il

i=1

i i i el (i4+1) 1
6. Lazy Multivariate Higher-Order Forward AD = flz)+ (Z %E?x/e (1)
, P !
A univariate polynomiako+zie+ 26’4+ -+ 16" 42" =0
can be evaluated using Horner's method [9] as In the above) denotes thé-th derivative off. Note that
zo+ (w14 (24 + (Tno1 + Tne)e -)e)e o p(i41) "o

o o . f’(w—&—m's)zzw : (22)

This indicates that univariate polynomials can be represented as — 7!

nested dual numbers. Multivariate polynomials can be represented)] o o

as nestedaggeddual numbers, i.e., triples of the forfa, z, z'), Also note that the right hand side of (22) is similar to the coefficient

with potentially distinctes, to represent + «’c. We assume that ~ 0f ¢ in (21), differing only in that the derivatives in the power

there is a total orde over thees and refer to such tagged dual ~ series are divided byi + 1)! instead ofi!. The coefficient of

numbers aginear termsPower series can be represented as binary '¢ in (21) can be derived from the right hand side of (22) by

trees whose nodes are linear terms with a lelzsiot. As illustrated postulating an operatdt.o to adjust the coefficients.

in Fhe code a_cco_mpanying this paper, we constrain such represen- oo f(i+1)(x):c/i , 0o f(i+1)(x)w,i _

tations to maintain the following invariants: Waz =C.o Z e (23)
; i ! ; il

I-1 In any linear termz + ¢, thex slot is either real, or a linear =0 =0

term overs’ wheree’ < ¢. (As aformal power series operat6ry f(c) = %fog f(e)de.) This

I-2 In any linear termz + z'¢, thez’ slot is either real, a linear ~ Operator can be defined as follows:
term overs’ wheree’ < ¢, or a linear term over.

AN T
- . L C.ir = —— whenreR (24)
These ensure that the coefficient of each term in a multivariate i+ 1
series is stored in at most one leaf. They also simplify proofs of C.. ’ 2 (., C.i ’ 25
termination of the derivative-taking code and lower the time bound et (@ +a'e) N (Cov @) + (Cerrr 2)e (25)

on access to a multivariate power series. C.i (x+2'e) (C.i) + (C.i ')’ whene # £’ (26)

(define <_e <)
(define =_e =)

(define linear-term? (let ((pair? pair?)) (lambda (p) (and

(pair? p) (eq? (car p) ’linear-term)))))

(define-syntax linear-term (syntax-rules () ((linear-term e x x-prime) (list ’linear-term e x (delay x-prime)))))

(define epsilon cadr)

(define (r e p)

(cond ;; Equation (13)
((not (linear-term? p)) p)
;5 Equation (14)
((<_e (epsilon p) e) p)
HH Equatlon 15§
((=_e (epsilon
;5 Equation (16
(else (linear-term (epsilon p) (r e (caddr p)) (r e

g) e) (caddr p))

(define (q e p)

(cond ;; Equation (17)
((not (linear-term? p)) 0)
;; Equation (18)
((<_e (epsilon p) e) 0)
;5 Equation (19?
((=_e (epsilon
;5 Equation (20
(else (linear-term (epsilon p) (q e (caddr p)) (q e

g) e) (force (cadddr p)))

(force (cadddr p)))))))

(force (cadddr p)))))))

(define generate-epsilon (let ((e 0)) (lambda () (set! e (+ e 1)) e)))

(define (univariate-e e i p)
(cond ;; Equation (5)
((zero? i) (r e p))
;3 Equation (6)
(else (* i (univariate-e e (- i 1) (q e p))))))

(define (multivariate-e e i p)
(cond ;; Equation (10)
((null? i) p)
;; Equation (11)
(else (multivariate-e (cdr e) (cdr i) (univariate-e

(car e) (car i) p)))))

Figure 1. A ScHEME implementation of an API for manipulating multivariate power series reptes as lazy linear terms. Note that to
support nested invocation @, the x in (6) must be the lifted variant that works on power-series argumblot® that generatess never
escape any equations in which they are generated, i.e., (2, 7, 134)3Thus one can improve upon the above implementation by allocating

and reclaiming:s in a LIFO fashion.

Note thatz’ in (23) can contaire. This is a problem becausk:
operates by counting instancessgfand has no way to distinguish
thees inz’ that should not be counted. We solve this by renaming
to a freshe’ prior to callingC.: and renaming’ back toe in the
result. For the cases that arise in this p&psich renaming can be
accomplished with the following:

ple — €] 2 D (27

rler — e2] 2 whenreR (28)

(z +2'¢")[e1 > &2 2 z+4a'c whene < e (29)

(x4 2'e1)[e1 — e2] 2 (30)
(Rez)+ ((Qez) +a'[e1 + £2])e2

This yields the following method for extending univariate primi-
tives:

f@+ale) & (31)
(f 2) + ((Coo (f (z+a'e)[e = eT))[e' = €] x 2)e

This requires supplying’, the first derivative of each univariate
primitive f.

Bivariate primitives can be extended when the first argument is
a linear term over and the second argument is either a real or a
linear term over’ wheree’ < ¢ by performing a univariate Taylor

2Renaming is only applied in equations (31-34) and thereip iontases
wheree < ¢’ for any existings. Furthermore, (29) is valid only because of
the invariants.

expansion around the first argument.

f((x+2'e),y) (32)

(f (2,9) + ((Coo (f1 ((z +a'e)fe = €], 9)))[e" = €] x 2')e
Analogously, bivariate primitives can be extended when the second
argument is a linear term overand the first argument is either a

real or a linear term over wheres’ < ¢ by performing a univariate
Taylor expansion around the second argument.

f(z,(y+y'e) (33)
(f (@,9)) + ((Coo (f2 (z, (y +y'e)le = €N’ = €] x y')e

This requires supplying; and fs, the partial first derivatives of
each bivariate primitivef with respect to its first and second argu-
ments respectively.

To handle the case when both arguments are linear terms over
the same we rename the in one argument to a fresf, reducing
this case to either (32) or (33), and then renafmeack toe in the
result.

f (@ +2'e), (y +y'e))
(f (@ +2a'e), (y +y'e)e — €]))e" — €]

These techniques are implemented in figure 2 and used to over-
load some SHEME primitives in figure 3. Figure 4 completes the
implementation. Note that the computational efficiency of this im-
plementation relies on the fact that standacdiSME memoizes the
results of forcing promises. The code from figures 1-4 is available
fromhttp://www.bcl.hamilton.ie/~qobi/tower/.

(34)

(define (c e i p)
(cond ;; Equation (24)
((not (linear-term? p)) (/ p (+ i 1)))
;3 Equation (25)
((=_e (epsilon p) e) (linear-term (epsilon p) (c e i (r (epsilon p) p)) (c e (+ i 1) (q (epsilon p) p))))
;3 Equation (26§
(else (linear-term (epsilon p) (c e i (r (epsilon p) p)) (c e i (q (epsilon p) p))))))

(define (rename el e2 p)
(cond ;; Equation (27§

((=_e el e2) p)

;; Equation (28)

((not (linear-term? p)) p)

;5 Equation (29)

((<_e (epsilon p) el) p)

;; Equation (30§

((=_e (epsilon p) el) (linear-term e2 (r e2 (r el p)) (+ (q e2 (r el p)) (rename el e2 (q el p)))))

(else (error "This case should never occur in this program."))))

(define (lift-real->real f df/dx)
(letrec ((self (lambda (p)
(cond ;; Equation (31)
((linear-term? p)
(let ((e (epsilon p)))
(linear-term e
(self (r e p))
(x (let ((e-prime (generate-epsilon)))
((rena?i)igprime e (c e-prime O (df/dx (linear-term e-prime (r e p) (q e p))))))
qep
(else (£ p))))))
self))

(define (lift-real*real->real f df/dx1 df/dx2)
(letrec ((self
(lambda (p1 p2)
(cond
;5 Equation (32)
((and (linear-term? pl) (or (mot (linear-term? p2)) (<_e (epsilon p2) (epsilon p1))))
(let ((el (epsilon p1)))
(linear-term el
(self (r el pl) p2)
(* (let ((e-prime (generate-epsilomn)))
(rename e-prime el (c e-prime O (df/dx1 (linear-term e-prime (r el pl) (q el pl)) p2))))
(q el pl)))g)
;5 Equation (33)
((and (linear-term? p2) (or (mot (linear-term? pl)) (<_e (epsilon pl) (epsilon p2))))
(let ((e2 (epsilon p2)))
(linear-term e2
(self p1 (r e2 p2))
(* (let ((e-prime (generate-epsilon)))
((rename)s; §ime e2 (c e-prime 0 (df/dx2 pl (linear-term e-prime (r e2 p2) (q e2 p2))))))
q e2 p2
;5 Equation (34)
((and (linear-term? pl) (linear-term? p2) (=_e (epsilon pl) (epsilon p2)))
(let ((e (epsilon pl)) (e-prime (generate-epsilon))) (rename e-prime e (self pl (rename e e-prime p2)))))
169 (else (f pl p2)))))
se

(define (r* p) (if (linear-term? p) (r* (r (epsilon p) p)) p))
(define (lift-real\symbol{94}n->boolean f) (lambda ps (apply f (map r* ps))))

Figure2. A mechanism for extendingcHEME procedures of typ® — R, R x R — R, andR™ — boolean to support multivariate power
series. Note that the in (30) and thex in (31-33) must be the lifted variant that works on power-series aggtsnFurthermoref’ in (31),
f1in (32), andfs in (33) must internally use the lifted variants of operations that work orep@eries arguments.

(define pair? (let ((pair? pair?)) (lambda (x) (and (pair? x) (not (linear-term? x))))))
(define + (lift-real*real->real + (lambda (x1 x2) 1) (lambda (x1 x2) 1)))
(define - (lift-real*real->real - (lambda (x1 x2) 1) (lambda (x1 x2) -1)))
(define * (lift-real*real->real * (lambda (x1 x2) x2) (lambda (x1 x2) x1)))
(define / (lift-real*real->real / (lambda (x1 x2) (/ 1 x2)) (lambda (x1 x2) (- 0 (/ x1 (* x2 x2))))))
(define sqrt (lift-real->real sqrt (lambda (x) (/ 1 (* 2 (sqrt x))))))
(define exp (lift-real->real exp (lambda (x) (exp x))))
(define log (lift-real->real log (lambda (x) (/ 1 x))))
(define sin (lift-real->real sin (lambda (x) (cos x))))
(define cos (lift-real->real cos (lambda (x) (- 0 (sin x)))))
(define atan (lift-real*real->real
atan (lambda (x1 x2) (/ (- 0 x2) (+ (* x1 x1) (¥ x2 x2)))) (lambda (x1 x2) (/ x1 (+ (* x1 x1) (* x2 x2))))))
(define = (lift-real"n->boolean =))
(define < (lift-real"n->boolean <))
(define > (lift-real"n->boolean >))
(define <= (lift-real”n->boolean <=))
(define >= (lift-real”n->boolean >=))
(define zero? (lift-real"n->boolean zero?))
(define positive? (lift-real”n->boolean positive?))
(define negative? (lift-real n->boolean negative?))
(define real? (lift-real"n->boolean real?)%

Figure 3. Overloading some &HEME procedures that operate on reals with extensions that support malvpower series. Note that the
overloaded, -, *, /, andatan procedures are restricted to accept precisely two arguments.

;55 Equation (2)
(define (derivative f) (lambda (c) (let ((e (generate-epsilon))) (univariate-e e 1 (f (linear-term e c 1))))))

(define (ith-derivative-by-repetition i f)
(cond ;; Equation (3)
((zero? i) f)
;3 Equation (4)
(else (ith-derivative-by-repetition (- i 1) (derivative £)))))

;33 Equation (7)
(define (ith-derivative-by-tower i f)
(lambda (c) (let ((e (generate-epsilon))) (univariate-e e i (f (linear-term e c¢ 1))))))

(define (position-of-nonzero i)

(cond ((null? i) #£f)
((zero? (car i)) (let ((position (position-of-nonzero (cdr i)))) (if position (+ position 1) #£f)))
(else 0)))

(define (decrement-1th i 1) (if (zero? 1) (coms (- (car i) 1) (cdr i)) (coms (car i) (decrement-1lth (cdr i) (- 1 1)))))
(define (list-replace-1lth ¢ 1 u) (if (zero? 1) (cons u (cdr c)) (coms (car c) (list-replace-1lth (cdr c) (- 1 1) u))))

(define (partial-derivative-by-repetition i f)
(let ((1 (position-of-nonzero i)?)
(cond ;; Equation (8)
((not 1) £)
;3 Equation (9)
(else (partial-derivative-by-repetition
(decrement-1th i 1) (lambda (c) ((derivative (lambda (u) (f (list-replace-lth c¢ 1 u)))) (list-ref c 1))))))))

;33 Equation (12)
(define (partial-derivative-by-tower i f)
(lambda (c)
(let ((e (map (lambda (cl) (generate-epsilon)) c)))
(multivariate-e e i (£ (map (lambda (el cl) (linear-term el cl 1)) e c))))))

Figure4. A ScHEME implementation ofD, the repetition and tower methods fBf, and the repetition and tower methods 1),

7. Discussion Acknowledgments

Forward AD is typically formulated using very different machin- This work was supported, in part, by NSF grant CCF-0438806,
ery than that used above. The univariate first-order case is usuallyScience Foundation Ireland grant 00/P1.1/C067, and a grant from
formulated as a transformation of a program whose program points the Higher Education Authority of Ireland. Any opinions, findings,
compute values'(x) of the program input: to one whose pro- and conclusions or recommendations expressed in this material are
gram points compute valuég (z), f'(x)). Since the programis a those of the author(s) and do not necessarily reflect the views of the
composition of primitives, the program transformation, as well as National Science Foundation.

the transformation of the primitives, are formulated as applications

of the chain rule. Karczmarczuk formulated the univariate higher- References

order case as a similar transformation to a program whose pro- o . o i

gram points compute stream valug&z), f'(z), f”(z), . ..) via [1] R. E. Wengert, “A simple automatic derivative evaluation pro-

the chain rule, though he did not present a derivation of the trans- gram,”Comm. of the ACMvol. 7, no. 8, pp. 463-4, 1964.

formations of the primitives. [2] J. Karczmarczuk, “Functional differentiation of computer pro-
The streams we have used are similar, but contain factorial grams,” in Proceedings of the Il ACM SIGPLAN Interna-

factors:(f(z)/0!, f'(z)/1!, f"(x)/2!, ..., fP(x)/i!,...). These tional Conference on Functional ProgramminBaltimore,
Taylor series streams simplify some bookkeeping, in particular MD, Sept. 1998, pp. 195-203.
allowing the use of Taylor expansions instead of the chain rule [3] —, “Lazy differential algebra and its applications,"\ork-
in the derivations. This makes the multivariate higher-order case shop, Il International Summer School on Advanced Func-
more straightforward to derive and justify. However, since each tional ProgrammingBraga, Portugal, Sept. 1998.
representation can be converted to the other (using operators that [4] ——, “Functional coding of differential forms,” irScottish
are similar taC), we do not consider this a fundamental difference. Workshop on FPSept. 1999.

. Karczmarczuk [4].h|nted at a formulation of the mqltlvarlz;te 5] ——, “Functional differentiation of computer programs,’
higher-order case using the chain rule, where lazy unidimensional Journal of Higher-Order and Symbolic Computatjol. 14,

streams are replaced with lazy trees, but did not present a derivation pp. 35-57, 2001.
or justification of the method’s correctness. That method redun-
dgntly represents identical cross derivatives, 88 /0x;0x; =

0° f/0x;0x,;. Our method avoids that inefficiency. Moreover, al- .
thou/gh ;lesting is not our topic, the code presented does allow the [/1 B- Taylor, Methodus Incrementorum Directa et Inversaon-
derivative-taking constructs to nest correctly. don, 171_5' o)]

Laziness is particularly useful when representing and manipu- [8] W. K. Clifford, “Preliminary sketch of bi-quaternionsPro-
lating power series, in contexts beyond those considered here [10]. ¢eedings of the London Mathematical Societ}. 4, pp. 381
For instance it can be used to define a power series with a recur- 395, 1873.
rence relation. Such power series arise naturally in related con- [9] W. G. Horner, “A new method of solving numerical equations
texts, such as differential equations that cannot be solved in closed ~ of all orders, by continuous approximatiorPhilos. Trans.
form. Formulating nestable multivariate higher-order forward AD Roy. Soc. Londarvol. 109, pp. 308-335, July 1819.
in terms of lazy power-series representations can allow forward AD [10] J. Karczmarczuk, “Generating power of lazy semanti€hg-
to inter-operate with such other applications of power series. oretical Computer Scienceol. 187, 1997.

[6] J. M. Siskind and B. A. Pearimutter, “Nesting forward-mode
AD in a functional framework,” to appear.

