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Abstract. We explore the use of sparse representations for separation of a monau-
ral mixture signal, where by a sparse representation we mean one where the number
of non-zero elements is smaller than might be expected. This is a surprisingly pow-
erful idea, as the ability to express a signal sparsely in some known, and potentially
overcomplete, basis constitutes a strong model, while also lending itself to efficient
algorithms. In the framework we explore, the representation of the signal is linear
in a vector of coefficients. However, because many coefficient values could represent
the same signal, the mapping from signal to coefficients is nonlinear, with the coeffi-
cients being chosen to simultaneously represent the signal and maximize a measure
of sparsity. This conversion of the signal into the coefficients using L1-optimization
is viewed not as a pre-processing step performed before the data reaches the heart
of the algorithm, but rather as itself the heart of the algorithm: after the coeffi-
cients have been found, only trivial processing remains to be done. We show how,
by suitable choice of overcomplete basis, this framework can use a variety of cues
(e.g., speaker identity, differential filtering, differential attenuation) to accomplish
monaural separation. We also discuss two radically different algorithms for finding
the required overcomplete dictionaries: one based on non-negative matrix factor-
ization of isolated sources, and the other based on end-to-end optimization using
automatic differentiation.

14.1 Introduction

This chapter reviews the concept of sparsity in the context of single-channel
signal separation. The key idea is to impose restrictions on the decomposi-
tions of data: while the codebooks/dictionaries are allowed to have a very
large number of components, the encodings are constrained to be sparse, i.e.,
to contain only a small number of non-zero values. Enforcing sparsity helps
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ensure a unique decomposition, and, more importantly, can be used to extract
the individual source signals from the mixture. In a learning phase, dictio-
naries are adapted for each source class. By concatenating such dictionaries
for all sources in a given mixture, separation can then be achieved in the
joint sparse encoding if the sources are exclusively distributed and thus dis-
criminable enough in the adapted dictionaries of each source class. Detailed
prior knowledge is sometimes available on the sources, in which case sparse
coding is sometimes able to isolate the sources even without going through
the learning phase. However, here we will give a special focus on full adaptive
methods, which includes learning from data a set of dictionaries that allows
for sparse representations.

The inclusion of sparsity objectives in a machine learning task is very
much biologically inspired. A striking feature of many sensory processing
problems in humans is that by far more neurons appear to be engaged in the
internal representations of the signal than in its transduction. The auditory
(or visual) cortex has in fact orders of magnitude more neurons than the
cochlear (or optic nerve), and thus the neural representation of an acoustic
(or visual) stimulus is overcomplete in the sense that many more neurons are
available than are needed to represent the stimulus with high fidelity. How
does the brain then choose a unique representation if many different patterns
of auditory (or visual) cortical activity could all faithfully represent any given
pattern of cochlear (or optic nerve) activity? It is biologically appealing to
sparsely encode the patterns because such representations are metabolically
efficient [1, 2], and the principle of sparse (or “efficient”) coding has been
used to predict receptive field properties of both auditory and visual neurons
[3–7].

In single-channel separation of musical and speech signals, mimicking the
sparsity of neural representations has yielded good results [8–11]. The meth-
ods fail, however, when the signals are too similar, e.g., in the cases of simi-
larly sounding voices or two trumpets in a duet. In such adverse conditions,
improved performance can be expected from exploiting grouping cues such
as time-continuity and common-onset known to be employed by the auditory
system [12]. For instance, Asari et al. [13] use the information provided by
the differential filtering imposed on a source by its path from its origin to the
cochlea (the head-related transfer function, or HRTF).

In section 14.2, we formulate a general framework for monaural source
separation using dictionary methods. We also discuss learning algorithms for
finding such dictionary elements suitable for sparse representations of given
sources [14]. In section 14.3, we describe methods to achieve a sparse represen-
tation for given signals in an overcomplete basis, i.e., L1-norm minimization
by linear programming. We then introduce one particular monaural segrega-
tion cue, the HRTF, and reformulate the model accordingly in section 14.5.
In section 14.6 it is demonstrated that the HRTF cues lead to improved sep-
aration when the source signals originate from different directions. Note that
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in contrast to much previous work, the HRTF is used here to separate audi-
tory streams rather than to localize them in space; the model assumes that
the locations of the sources have already been determined by other mecha-
nisms. Finally, we close with a brief comment on the perspectives of sparse
overcomplete representations in section 14.7.

14.2 Problem Formulation

We consider a situation, where the observable is the sum of the source signals.
For instance, this is a reasonable assumption in an acoustic setup, where
sound waves from various emitters superpose at the microphone. While it is
a common theme in techniques for blind source separation (BSS) to exploit
the strong information provided by multiple sensors, here, only a single sensor
is available for the estimation of the sources. Hence,

y(t) =

P∑

i=1

xi(t), (14.1)

where y(t) and xi(t) are the time-domain mixture and source signals, re-
spectively. While the problem cannot be solved in general for all classes of
sources, solutions may be obtained for certain types of source distributions.
For instance, humans at large possess the ability to isolate what is being said
by a single speaker in a cocktail party situation, whereas a special training
is required to listen out a single instrument from a musical piece, say, tran-
scribe the bass from a rock ’n roll track [15]. Hence, the key to achieve the
separation of the sources lies in learning features of the source distributions
that are sufficiently discriminative to achieve separation and invertible such
that the source signals can be reconstructed.

Inspired by the human auditory system, we will proceed to work in a
time-frequency representation, Y = TF{y(t)}, since a number of advantages
are associated with performing the computations in the transformed domain.
We restrict TF such that Y is a real-valued matrix with spectral vectors, y,
as columns. The result of such a mapping is that certain classes of sources will
become less overlapped in the transformed domain, which in turn facilitates
the separation of the signals. More generally, if the sources can be assumed
sparsely distributed in the frequency domain, additivity is approximately
preserved in the transformed mixture,

y =

P∑

i=1

xi (14.2)

where xi is the transformed source signal.
A class of algorithms, here denoted ‘dictionary methods,’ generally relies

on learning factorizations of xi from a training set of isolated source ensembles
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in terms of dictionaries dij and its encodings cij ,

xi =

Ni∑

j=1

dijcij = Dici (14.3)

where the j-th column of Di consists of dij , and the j-th element of ci holds
the corresponding coefficient cij . Combining models (14.2) and (14.3) results
in,

y =

P∑

i=1

Dici = Dc (14.4)

We allow the number of dictionary elements,
∑

i Ni, to be larger than the
dimensionality of y, meaning that D is potentially overcomplete, i.e., many
possible decompositions exist. This has been shown to result in more natural
and compact representations [4–7, 16–18].

The application of a factorization in terms of dictionaries to the problem
of signal separation fundamentally consists of two steps: first, a set of dictio-
naries, Di, is learned from a training set of unmixed xi. Second, the combined
encoding, c, is mapped onto the concatenation of the pre-learned source dic-
tionaries, D. Finally, the sources are estimated, re-synthesizing according to
Eq. (14.3). In section 14.4, we provide examples of applications.

The method relies on the premise that the dictionaries of the sources in
the mixture are sufficiently different such that D1 almost exclusively encode
x1 but not x2, etc. Alternatively, it has been shown that source signals from
identical distributions can be separated provided that information about the
signal path is available [13]. This is described in more detail in section 14.5.

Different matrix factorization methods can be conceived based on vari-
ous a priori assumptions of the dictionaries and encodings. Since computing c
(given D) from Eq. (14.4) is generally ill-posed, the model should at least im-
pose sufficient constraints for the inversion to produce a well-defined solution.
In section 14.2.1, we will proceed to describe criteria for learning dictionaries
from training data. An important tool in this regard is linear programming,
which can be employed to (i) learn the dictionaries, and (ii) compute the
sparse decomposition required in Eq. (14.4) for the separation of the sources.
The relevant aspects of linear programming are covered in section 14.3.

14.2.1 Dictionary Learning

We are concerned with devising a machine learning solution to acquire a
set of dictionaries that can be used for source separation as formalized in
Eq. (14.4). In order to be relevant in this regard, a dictionary should easily
encode its class of signal, but at the same time be discriminative, meaning
that encodings of other signals can be attributed with a low likelihood. In
the following, it is described how to exploit inherent properties of the source
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signals to derive a learning algorithm producing dictionaries of the mentioned
sort.

Non-negativity The particular choice of time-frequency representation de-
termines the set of algorithms that can be employed. In audio applications,
TF is often selected in a way so to mimic features of the early processing
performed by the human auditory system. A common choice is to use a com-
pressed version (e.g., cube-root) of the power spectrogram, as computed by
the short-time Fourier transform. This is often motivated by the fact that
loudness perception in hearing can be approximated by a power law model
[19]. An important feature of this representation is that it is non-negative,
reflecting a property of neuronal signaling in terms of spike rates, which by
definition are non-negative.

Lee and Seung [20] derived an efficient algorithm which minimizes the
Euclidean distance between the data and the factorization, subject to non-
negativity constraints. In terms of learning the dictionaries, Di, the objective
is to optimize the function,

ENMF = ‖Xi −DiCi‖
2
F for Di ≥ 0, Ci ≥ 0 (14.5)

where ‖·‖F is the Frobenius norm, and Xi and Ci are matrices with data
points and corresponding encodings as columns, respectively. From a proba-
bilistic point of view, we can interpret the optimizer of (14.5) as a maximum
posterior (MAP) estimator, assuming additive i.i.d. Gaussian noise and heav-
iside/uniform non-negative (improper) a priori distributions.

A closed-form solution is not available, but an effective gradient descent
method emerges when the step-size is associated with a certain function of
Xi, Di, and Ci. Starting from random non-negative matrices,

Ci ← Ci •
D⊤

i Xi

D⊤

i X̃i

, (14.6)

Di ← Di •
XiC

⊤

i

X̃iC⊤

i

, (14.7)

converges to a local minimum of (14.5), where X̃i = DiCi and the operators
• and ·

·
indicate elementwise multiplication and division, respectively.1 Non-

negativity constraints have been used to learn signal dictionaries for single-
channel separation of audio signals [9], and a convolutive extension of NMF
has been particularly effective in this regard [21, 22], a technique reviewed by

1 The NMF updates are derived from a steepest descend starting point, i.e.: Ci ←
Ci − ∆C • ∇E, where ∇E = −2D⊤

i (Xi − eXi) is the gradient with respect to

Ci and ∆C is a step-size matrix. Setting ∆C =
Ci

2D⊤

i
eXi

, we arrive at the stated

learning rule for Ci. The derivation for the rule regarding Di is similar.



6 Asari, Olsson, Pearlmutter & Zador

Smaragdis in Chap. 15 in this volume. Virtanen [23] provides a comprehensive
review of NMF and related methods in audio analysis.

Sparsity In the following we describe how to apply the principle of sparsity
to the learning of a decomposition in terms of a dictionary and its encoding
as formalized in Eq. (14.3). Insisting on the sparsity of the encodings can be
viewed as applying the principle of Occam’s razor to the model, which states
that the simplest explanation in some sense is to be preferred. The implication
in a factorization setup is that ci should be optimized as to contain as few
non-zero entries as possible. In mathematical terms, minimize the L0-norm,
‖u‖0 =

∑
i u0

i for all ui 6= 0.
Furthermore, sparseness is motivated from a perceptional, neural compu-

tational point of view. In neural terms, we could interpret cij as the neural
activities (e.g., spike rates) of the corresponding neurons characterized by
their features dij . The sparseness assumption then corresponds to repre-
senting the acoustic stimulus y in terms of the minimum number of spikes
(Figure 14.1), a biologically appealing constraint which leads to an energy-
efficient representation [1, 2]. Also note that the sparse coding is compatible
with the “efficient coding hypothesis” [24], according to which the goal of
sensory processing is to construct an efficient representation of the sensory
environment.

The problem of finding an overcomplete signal dictionary tuned to a given
stimulus ensemble, so that signals drawn from that ensemble will have sparse
representations in the constructed dictionary, has received increasing atten-
tion, due to applications in both neuroscience and in the construction of
efficient practical codes [25, 26]. Unfortunately, it is not computationally
tractable to optimize directly the L0-norm of the encoding. In fact, the prob-
lem is NP-complete [27]. As an alternative to the L0-norm, the L1-norm,
defined ‖u‖1 =

∑
i|ui|, can be applied. In many situations, the L1-norm so-

lution approximates the L0-norm solution, leading to equally sparse solutions
[28], particularly in the presence of a noise model. The objective function bal-
ances the norm of the encoding with the accuracy of the fit,

EL1 = ‖ci‖1 for ‖xi −Dici‖p ≤ β. (14.8)

where β is proportional to the noise level and with p = 1, 2, or ∞. The
optimization of (14.8) with respect to ci can be viewed as a MAP estimator
where an i.i.d. exponential a priori distribution is assumed for ci, and additive
i.i.d. noise whose distribution is specified by β and p. Letting β → 0 is
equivalent to assuming that the noise is very small, and the solution converges
to the zero-noise solution. The Gaussian noise case, p = 2, can be solved by
semidefinite programming methods [29]. Both p = 1 and p =∞ can be solved
using linear programming, the details of which are covered in section 14.3.

When the objective is to learn dictionaries, i.e., learning D from training
data, one option is to optimize Eq. (14.8) with respect to c and D [14]. This
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Fig. 14.1. Overcomplete representation in two dimensions. (A) Three non-
orthogonal basis vectors (neural features) dij in two dimensions constitute an over-
complete representation, offering many possible ways to represent a data point y
with no error. (B) The conventional solution is given by the pseudoinverse, yield-
ing a dense neural representation where the squared sum of the coefficients (neural
activities), ‖c‖22 =

P
ij

c2

ij , is minimized. This representation invokes all neural fea-
tures about evenly. (C) The sparse solution invokes at most two neural features
because it minimizes ‖c‖1 =

P
ij
|cij |. (D) Comparison of neural activity for the

two cases. For the dense representation, all three neurons participate about equally,
whereas for the sparse representation activity is concentrated in neuron 2. [From
13, with permission.]

is likewise described in section 14.3. Benaroya et al. [9] combined sparsity
and non-negativity constraints in order to learn audio dictionaries, whereas
Jang and Lee [11] applied independent component analysis (ICA) which can
also be seen as sparsity-inducing, depending on the source prior distribution.

14.3 Sparse Representation by Linear Programming

Linear programming solvers (LP) are often used as subroutines within larger
systems, in both operations research and machine learning [30, 31]. One very
simple example of this is in sparse signal processing, where it is common to
represent a vector as sparsely as possible in an overcomplete basis; this repre-
sentation can be found using LP, and the sparse representation is then used
in further processing [25, 32–37]. In this section we explain how to use linear
programming for two related tasks, namely (i) performing a sparse decompo-
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sition, as defined by the L1-norm, of Eq. (14.8), and (ii) learning dictionaries
by optimizing on a training set the L1 sparsity of the decomposition.

In order to do so, we develop in section 14.3.1 a useful notation and
formulate the sparse decomposition in terms of linear programming. Then, in
section 14.3.2, we describe how to efficiently compute derivatives of functions
where linear program solution is used as inputs. Finally, these theoretical
foundations allow us to formulate a learning rule for obtaining dictionaries
optimized for sparsity in section 14.3.3.

14.3.1 Basics

In order to develop a notation for LP, consider the general LP problem

arg min
z

w⊤z s.t. Az ≤ a and Bz = b (14.9)

We will denote the linear program solver lp, and write the solution as
z = lp(w,A,a,B,b). It is important to see that lp(·) can be regarded as
either a mathematical function which maps LP problems to their solutions,
or as a computer program which actually solves LP problems. Our notation
deliberately does not distinguish between these two closely related notions.

Assuming feasibility, boundedness, and uniqueness, the solution to this
LP problem will satisfy a set of linear equalities consisting of a subset of the
constraints: the active constraints [38–40]. An LP solver calculates two pieces
of information: the solution itself, and the identity of the active constraints.
We will find it convenient to refer to the active constraints by defining some
very sparse matrices that extract the active constraints from the constraint
matrices. Let α1 < · · · < αn be the indices of the rows of A corresponding to
active constraints, and β1 < · · · < βm index the active rows of B. Without
loss of generality, we assume that the total number of active constraints is
equal to the dimensionality of the solution, n + m = dim z. We let Pα be a
matrix with n rows, where the i-th row is all zeros except for a one in the
αi-th column, and Pβ similarly have m rows, with its i-th row all zeros except
for a one in the βi-th column. So PαA and PβB hold the active rows of A
and B, respectively. These can be combined into a single matrix,

P ≡

[
Pα 0
0 Pβ

]

Using these definitions, the solution z to (14.9), which presumably is already
available having been computed by the algorithm that identified the active
constraints, must be the unique solution of the system of linear constraints

P

[
A
B

]
z = P

[
a
b

]

or

lp(w,A,a,B,b) = lq(P

[
A
B

]
,P

[
a
b

]
) (14.10)
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where lq is a routine that efficiently solves a system of linear equations,
lq(M,m) = M−1m. For notational convenience we suppress the identity of
the active constraints as an output of the lp routine. Instead we assume that
it is available where necessary, so any function with access to the solution z
found by the LP solver is also assumed to have access to the corresponding
P.

14.3.2 Automatic Differentiation

Automatic differentiation (AD) is a process by which a numeric calculation
specified in a computer programming language can be mechanically trans-
formed so as to calculate derivatives (in the differential calculus sense) of
the function originally calculated [41]. There are two sorts of AD transfor-
mations: forward accumulation [42] and reverse accumulation [43]. (A special
case of reverse accumulation AD is referred to as backpropagation in the ma-
chine learning literature [44].) If the entire calculation is denoted y = h(x),
then forward accumulation AD arises because a perturbation dx/dr induces
a perturbation dy/dr, and reverse accumulation AD arises because a gradient
dE/dy induces a gradient dE/dx. The Jacobian matrix J whose i, j-th entry
is dhi/dxj plays a dominant role in reasoning about this process: forward AD

calculates ý = Jx́ =
−⇀
h (x, x́), and reverse AD calculates x̀ = J⊤ỳ =

↼−
h (x, ỳ).

The difficulty is that, in high dimensional systems, the matrix J is too large to
actually calculate. In AD the above matrix-vector products are found directly
and efficiently, without actually calculating the Jacobian.

The central insight is that calculations can be broken down into a chained
series of assignments v := g(u), and transformed versions of these chained
together. The transformed version of the above internal assignment statement
would be v́ := −⇀g (u, ú, v) in forward mode [42], or ù := ↼−g (u, v, v̀) in reverse
mode [43]. The most interesting property of AD, which results from this
insight, is that the time consumed by the adjoint calculations can be the
same as that consumed by the original calculation, up to a small constant
factor. (This naturally assumes that the transformations of the primitives
invoked also obey this property, which is in general true.)

We will refer to the adjoints of original variables introduced in forward
accumulation (perturbations) using a forward-leaning accent v 7→ v́; to the
adjoint variables introduced in the reverse mode transformation (sensitivities)
using a reverse-leaning accent v 7→ v̀; and to the forward- and reverse-mode

transformations of functions using forward and reverse arrows, h 7→
−⇀
h and

h 7→
↼−
h , respectively. A detailed introduction to AD is beyond the scope

of this chapter, but one form appears repeatedly in our derivations, i.e.,
V := AUB where A and B are constant matrices and U and V are matrices
as well. This transforms to

V́ := AÚB (14.11)

Ù := A⊤ V̀B⊤. (14.12)
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AD of a Linear Equation Solver We first derive AD equations for a simple
implicit function, namely a linear equation solver. We consider a subroutine
lq which finds the solution z of Mz = m, written as z = lq(M,m). This
assumes that M is square and full-rank, just as a division operation z = x/y
assumes that y 6= 0. We will derive formulae for both forward mode AD (the

ź induced by Ḿ and ḿ) and reverse mode AD (the M̀ and m̀ induced by z̀).
For forward propagation of perturbations, we will write ź =

−⇀
lq (M, Ḿ,m, ḿ, z). Using Eq. (14.11), we have that (M+Ḿ)(z+ź) = m+ḿ

which reduces to Mź = ḿ− Ḿz. Hence, we conclude that

−⇀
lq (M, Ḿ,m, ḿ, z) = lq(M, ḿ− Ḿz).

Note that lq is linear in its second argument, where the perturbations enter
linearly. For reverse propagation of sensitivities, we will write

[
M̀ m̀

]
=

↼−
lq (M,m, z, z̀). (14.13)

First observe that z = M−1m and hence m̀ = M−⊤z̀ so

m̀ = lq(M⊤, z̀).

For the remaining term we start with our previous forward perturbation
Ḿ 7→ ź, namely ź = −M−1Ḿz, and note that the reverse must be the
transpose of this linear relationship (i.e., using Eq. (14.11) and Eq. (14.12)),

M̀ = −M−⊤z̀z⊤, which is the outer product

M̀ = −m̀z⊤.

AD of Linear Programming We apply Eq. (14.13) followed by some
bookkeeping, yields

[
À à

B̀ b̀

]
=

↼−
lp (w,A,a,B,b, z, z̀)

= P⊤
↼−
lq (P

[
A
B

]
,P

[
a
b

]
, z, z̀)

ẁ = 0

Forward accumulation is similar, but is left out for brevity.

Constrained L1 Optimization We can find AD equations for linearly
constrained L1-norm optimization via reduction to LP. Consider

arg min
c
‖c‖1 s.t. Dc = y.



14 Sparsification for Monaural Source Separation 11

Although ‖c‖1 =
∑

i|ci| is a nonlinear objective function, a change in
parametrization allows optimization via LP. We name the solution c =
L1opt(y,D) where

L1opt(y,D) =
[
I −I

]
lp(1,−I,0,D

[
I −I

]
,y)

in which 0 and 1 denote column vectors whose elements all contain the in-
dicated number, and each I is an appropriately sized identity matrix. The
reverse-mode AD transformation follows immediately,

↼−−
L1opt(y,D, c, c̀) =

[
D̀ ỳ

]
=

[
0′ I

]↼−
lp (1,−I,0,D

[
I −I

]
,y, z,

[
I
−I

]
c̀)




I 0
−I 0
0⊤ 1




where z is the solution of the internal LP problem and 0′ is an appropriately
sized matrix of zeros.

14.3.3 Dictionaries Optimized for Sparsity

A major advantage of the LP differentiation framework, and more specifi-
cally the reverse accumulation of the constrained L1-norm optimization, is
that it provides directly a learning rule for finding sparse representations in
overcomplete dictionaries.

We assume an overcomplete dictionary in the columns of D, which is
used to encode a signal represented in the column vector y using the col-
umn vector of coefficients c = L1opt(y,D) where each dictionary element has
unit L2 length. We will update D so as to minimize E = 〈‖L1opt(y,D)‖1〉
while keeping the columns of D at unit length. This can be regarded a spe-
cial case of ICA [45], where measures of independence across coefficients are
optimized. We wish to use a gradient method so we calculate ∇DEy where
Ey = ‖L1opt(y,D)‖1 making E = 〈Ey〉. Invoking AD,

∇DEy = D̀ =
[
D̀ ỳ

] [
I
0⊤

]

=
↼−−
L1opt(y,D, c, sign(c))

[
I
0⊤

] (14.14)

where sign(x) = +1/0/−1 for x positive/zero/negative, and applies elemen-
twise to vectors.

We are now in a position to perform stochastic gradient optimization [46],
modified by the inclusion of a normalization step to maintain the columns of
D at unit length and non-negative.
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1: Draw y from signal distribution.
2: Calculate Ey.
3: Calculate ∇DEy by (14.14).
4: Step D := D− η∇DEy.
5: Set any negative element of D to zero.
6: Normalize the columns di of D to unit L2-norm.
7: Repeat to convergence of D.

This procedure can be regarded as an efficient exact maximum likelihood
treatment of the posterior calculated by Lewicki and Sejnowski [25] using a
Gaussian approximation. It is interesting to note that the formulation here
can be easily and mechanically generalized to other objectives.

14.4 Source Separation Example

We will now demonstrate an application of the framework laid out in sections
14.2 and 14.3. More specifically, we will attempt to separate two speech signals
of equal power from a single mixture as was proposed in Pearlmutter and
Olsson [14]. This is a relevant task in hearing aids, as a speech recognition
pre-processor, and in other applications which might benefit from better noise
reduction. For this reason, there has been a flurry of interest in the problem.

A common trait of many approaches is that speaker-dependent models
have been learned from a training set of isolated recordings and subsequently
a combination of these have been applied to the mixture. Roweis [47] learned
hidden Markov models (HMM) of individual speakers and combined them in
a factorial HMM, separating a mixture. The high dimensionality of the com-
bined state space prohibited direct inference, but an approximate solution
was obtained. A Bayesian solution to inference in the factorial HMM, ap-
plying a set of milder assumptions, was provided by Kristjansson et al. [48],
achieving a very good (super-human) performance on a word recognition
task. Bach and Jordan [49] devised a clustering algorithm based on specific
features of speech, which does not learn models for each speaker. Dictionary
methods, which do not require combinatorial searches, have been based on a
priori assumptions of sparsity and/or non-negativity (see section 14.2).

In the following, we will twice evoke the assumption of L1 sparsity: first in
order to learn the dictionaries, i.e., inverting Eq. (14.3); second, to compute
the separating decomposition of Eq. (14.4).



14 Sparsification for Monaural Source Separation 13

Fig. 14.2. A sample of learnt dictionary entries for male (left) and female (right)
speech in the Mel spectrum domain. Harmonic features have clearly been found
from the data, but broad and narrow noise spectra are also visible.

14.4.1 Dictionary Learning

A set of personalized speech dictionaries was learned by sparsity optimiza-
tion using the method described in section 14.3.2 Defining the time-frequency
transformation (TF), the speech was preprocessed and represented to (essen-
tially) transform the audio signals into an amplitude Mel time-frequency
representation [51]. The stochastic gradient optimization of the linearly con-
strained L1-norm was run for 40,000 iterations. The step-size η was decreased
throughout the training. The N = 256 columns of the dictionaries were ini-
tialized with narrow pulses distributed evenly across the spectrum and non-
negativity was enforced following each iteration. In figure 14.2 is displayed a
randomly selected sample of learnt dictionary elements of one male and one
female speaker. The dictionaries clearly capture a number of characteristics
of speech, such as quasi-periodicity and dependencies across frequency bands.

14.4.2 Source Separation

In order to separate the sources, we assume the additive mixture model of
Eq. (14.4) and perform a sparse decomposition by minimizing the L1-norm.
Thus, a linear program is used to compute c = L1opt(y,D), where y is the

mixture, D = [D1 D2] is the concatenated dictionary, and c =

[
c1

c2

]
is the

joint source encoding. Assuming that the D1 and D2 are different in some
sense, it can be expected that a sparse representation in the basis D coincides
with the separation of the sources. The degree of success depends on the level
to which the signals (and dictionaries) are different. The source estimates in
the Mel spectrum domain are then re-synthesized according as Eq. (14.3):

2 The GRID corpus was used [50]. It contains 1000 short sentences recorded for
each of 34 speakers.
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Genders SNR (dB)

M/M 4.9±1.2
M/F 7.8±1.3
F/F 5.1±1.4

Table 14.1. Monaural two-speaker signal-to-noise separation performance
(mean±stderr of SNR), by speaker gender. The simulated test data consisted of
all possible combinations, T = 6 s, of the 34 speakers. Clearly, it is an easier task to
separate the speech signals in the case of opposite-gender speakers. This indicates
the required level of contrast between the source signals for the method to work.

x̂1 = D1c1 and x̂2 = D2c2. The conversion back to the time-domain consists
of mapping to the amplitude spectrogram and subsequently reconstructing
the time-domain signal using the noisy phase of the mixture. Due to the
sparsity of speech in the transformed domain, the degree of overlap of the
sources is small, which causes the approximation to be fairly accurate.

The quality of the source estimates was evaluated in the time-domain sim-
ply as the ratio of powers of the target to reconstruction error, here termed the
signal-to-noise ratio (SNR). Table 14.1 lists the performance of the method
on the GRID database.

14.5 Convolutional Mixing and Head-Related Transfer

Function

One limitation of the BSS model as described in Eqs. (14.1)–(14.4) is that
source signals from identical distributions (or from different distributions
with the same statistics) can hardly be separated because the performance
depends on the “personalized” dictionaries that exclusively encode one source
signal but not the others. In this section, we will then describe how we could
extend the model to exploit additional separation cues that “tag” the dic-
tionaries so they can be assigned to the appropriate sources in the frame-
work of sparse overcomplete representations. Specifically, we will consider
the monaural source separation of convolutive sources, i.e., separating multi-
ple pre-filtered signals combined at a single sensor, using biologically inspired
spectral cues that segregate the auditory scene based on the source locations
[13].

14.5.1 Head-Related Transfer Function

The auditory system uses a wide variety of psychophysical cues to segregate
auditory streams [12], including both binaural and monaural cues. Many
monaural cues have been identified, such as common onset time or comodu-
lation of stimulus power in different parts of the spectrum.
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For simplicity, here we focus on just one set of cues: those provided by
the differential filtering imposed on a source by its path from its origin in
space to the cochlea. This filtering or ‘spectral coloring’ is caused both by the
head and the detailed shape of the ear (the head-related transfer function, or
HRTF), and by the environment on sources at different positions in space.
The HRTF depends on the spatial position—both the relative azimuth and
elevation—of the source. At some frequencies, the HRTF can attenuate sound
from one location by as much as 40 dB more than from another, and such
HRTF cues, when present, help in source separation [52].

The HRTF is also important for generating a three-dimensional experience
of sound, so that acoustic sources that bypass the HRTF (e.g., those presented
with headphones) are typically perceived unnaturally, as though arising inside
the head [53, 54]. Note however that the HRTF is used here to separate
auditory streams rather than to localize them in space, in contrast to much
previous work on the role of the HRTF in sound localization [53, 55–57].

It is often reasonable to assume that sound arriving from different loca-
tions should be treated as arising from distinct sources. We thus assume that
all sounds from a given position are defined to belong to the same source,
and any sounds from a different position are defined to belong to differ-
ent sources. We emphasize that although sound localization (the process by
which an animal determines where in space a source is located) is related to
source separation (the process by which an animal extracts different auditory
streams from a single waveform), the two computations are distinct; neither
is necessary nor sufficient for the other. Here we focus on the separation
problem, and assume that source localization occurs by other mechanisms.

14.5.2 Reformulation

Here we will reformulate the BSS model in Eqs. (14.1)–(14.4) for the monau-
ral source separation problem of convolutive sources. Suppose there are P
acoustic sources located at known distinct positions in space, with xi(t) be-
ing the time course of the stimulus sound pressure of the i-th source at its
point of origin. Associated with each position is a known filter given by hi(t).
In what follows we will refer to hi(t) as the HRTF, but in general hi(t) will
include not just the filtering of the head and external ear, but also the filter
function of the acoustic environment (reverberation, etc.)

The signal y(t) at the ear is then the sum of the filtered signals,

y(t) =
P∑

i=1

hi(t) ∗ xi(t) =
P∑

i=1

x̃i(t) (14.1’)

where ∗ indicates convolution and x̃i(t) = hi(t) ∗ xi(t) is the i-th source in
isolation following filtering. (We can say that xi(t) is the i-th source measured
in source space, while x̃i(t) is the same source measured in sensor space.)
The goal is then to recover the underlying sources xi(t) from the signal y(t),
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using knowledge of the directional filters hi(t). Note that the actual spatial
locations of the sources are not computed during the separation in this model
but we assume the locations (and thus associated directional filters hi(t)) have
already been identified by other mechanisms.

In the TF domain, we have

y =

P∑

i=1

hi • xi =

P∑

i=1

x̃i (14.2’)

where • indicates elementwise multiplication. As in Eq. (14.3), we then as-
sume that each source xi can be expressed as a linear combination of dictio-
nary elements dj :

xi =

Ni∑

j=1

djcij = Dci (14.3’)

Note that we no longer have to use “personalized” dictionaries for each source
but we could use any dictionary set D that captures the spectral correlations
in the sources and permits sparse representations, i.e., where only a small
number of coefficients cij are significantly non-zero. By further assuming

that the dictionaries in sensor space, d̃ij , are related to the dictionaries in
source space, dj , by convolution with each filter hi:

d̃ij = hi • dj , (14.15)

the signal y received at the ear can be expressed as a linear combination of
the dictionary elements in sensor space:

y =

P∑

i=1

hi • xi by (14.2’)

=
P∑

i=1

hi •




Ni∑

j=1

djcij


 by (14.3’)

=
∑

i,j

d̃ijcij by (14.15)

= D̃c. (14.4’)

As before, the BSS model in Eqs. (14.1’)–(14.4’) consists of two steps: first, a
set of dictionary in source space D is learned from a training set of unmixed
signals xi. Second, given a convolutional mixture y and position-dependent
filters hi, appropriate coefficients cij are obtained for Eq. (14.4’) under a

sparseness prior (i.e., by computing c = L1opt(y, D̃)), and a given source
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Fig. 14.3. Separation of three musical sources. Three musical instruments
at three distinct spatial locations were filtered (by h1, . . . , h3, corresponding to
the HRTFs for azimuth −90◦, 0◦ and 90◦ with zero elevation, respectively) and
summed to produce the input y, and then separated using a sparse overcomplete
representation to produce the output. Note that two of the sources (a harp playing
the note “D”, center and bottom) were chosen to be identical; this example is thus
particularly challenging, since the only cue for separating the sources is the filtering
imposed by the HRTF. Nevertheless, separation was good as seen by comparing the
left (Original) and right (Output) columns. [From 13, with permission.]

i can be reconstructed by summing over all dictionary elements associated
with position i using Eq. (14.3’). Note that separation and deconvolution are
simultaneously achieved here by estimating the coefficients by using a post-
HRTF (sensor space) dictionary D̃ but reconstructing the signals by using a
pre-HRTF (source space) dictionary D (Figure 14.3).

14.6 Separation of Convolutive Sources

Successful source separation for the BSS models described in section 14.5
requires that two conditions are satisfied. First, the sources must be sparsely
representable, as is the case with natural auditory stimuli [4, 5, 18, 58]. Sec-
ond, the sources must have spectral correlations matched to the HRTF. In
the following, we will demonstrate that the model is able to separate acoustic
sources consisting of mixtures of music, natural sounds, and speech.3

3 Sound data were taken from commercially available audio CDs, and the
HRTF data for a representative left human pinna were downloaded from
http://www.itakura.nuee.nagoya-u.ac.jp/HRTF/ [59].
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14.6.1 Dictionary Learning

Here we used non-negative matrix factorization (NMF; see also section 14.2.1)
to generate a set of complete dictionaries from spectrograms obtained from
unmixed samples of solo instrumental music, natural sounds, and speech
(Dms, Dns, and Dsp, respectively), and concatenated them to form an over-
complete source space dictionary: D = [Dms Dns Dsp] .

The ability of the NMF dictionaries to represent sounds in a sparse model
can be quantified in terms of the “sparseness index,” defined as ‖ci‖0/ dimxi

in the presence of a single (unmixed) source xi (see Eq. (14.3’)). The distribu-
tion of the index was 0.61±0.27, 0.64±0.17, 0.49±0.13 (mean±SD) for Dms,
Dns, and Dsp, respectively, over 10,000 test samples. This suggests that the
NMF dictionaries generally led to sparse representations of the ensembles,
satisfying the first condition for the model to work.

When applied to music, NMF typically yielded elements suggestive of mu-
sical notes, each with a strong fundamental frequency and weaker harmonics
at higher frequencies. In many cases, listeners could easily use timbre to
identify the instrument from which a particular element was derived. When
applied to sounds from other ensembles (natural sounds and speech), NMF
yielded elements that had rich harmonic structure, but it was not in general
easy to “interpret” the elements (e.g., as vowels). Nonetheless these elements
captured aspects of the statistical structure of the underlying ensemble of
sounds, and thus satisfied the second condition as well.

It should be mentioned that the choice of NMF was merely a matter of
convenience; we could have used any basis that satisfies the two conditions.
Finding good overcomplete dictionaries from samples of a stimulus ensemble
is a subject of ongoing research [26, see also section 14.3.3]. NMF is then not
necessarily the best algorithm in this context, but is simply good enough for
our monaural BSS model.

14.6.2 Separation with HRTF

To demonstrate the model’s ability to separate sources, we generated digital
mixtures of three sources positioned at three distinct positions in space (Fig-
ure 14.3). On the left column are the spectrograms of the sources at their
origin. Two of the sources (a harp playing the note “D”, center and bottom)
were chosen to be identical; this example is thus particularly challenging,
since the only cue for separating the sources is the filtering imposed by the
HRTF.

Separation was nevertheless quite successful (compare left and right
columns). These results were typical: whenever the underlying assumptions
about the sparseness of the stimulus were satisfied, sources consisting of mix-
tures of music, natural sounds or speech were separated well (Figure 14.4A).
Separation worked particularly well for mixtures of sparsely representable
sources (i.e., smaller sparseness index values), whereas it did not work for
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sources that were not sparsely represented (i.e., larger sparseness index val-
ues.) Figure 14.4B shows that separation without differential pre-filtering by
the HRTF was unsuccessful, as was separation using the Gaussian prior in-
stead of the sparseness prior (dense representation: L2-norm minimization).

The procedure for source separation in the BSS model conceptually con-
sists of two distinct steps (although in practice the two steps occur simulta-
neously). In the first step, the stimuli are decomposed into the appropriate
dictionary elements. In the second step, the dictionary elements are tagged
and bundled together with other elements from the same source. It is for this
bundling or “tagging” step that the HRTF along with the prior knowledge
of source locations is essential.

The failure of the dense representation to separate sources (Figure 14.4)
results from a failure of the first step. Instead of decomposing the sources
into a small number of dictionary elements, the dense representation assumes
that each element contributed about equally to the received signal, and so
finds a representation in which a large fraction of dictionary elements are
involved. That is, instead of “explaining” the sources in terms two harps and
a trumpet, the dense representations also finds some clarinet, some cello,
etc. at all positions. This is intrinsic to the dense solution, since it finds
the “minimum power” solution in which neural activity is spread among the
population (Figure 14.1B).

The failure of even the sparse approach when the spectral cues induced by
the HRTF are absent (Figure 14.4B, leftmost point showing 0-degree separa-
tion) results from a failure at the second step. That is, the sparse approach
finds a useful decomposition at the first step even without the HRTF, but in
the absence of HRTF cues the active elements are not tagged, and so the dic-
tionary elements cannot be assigned appropriately to distinct sources. Other
psychophysical cues relevant for source separation, such as common onset
time, might provide alternative or additional tags in this same framework. A
more general formulation of source separation might allow tagging on longer
time scales, so that a set of dictionaries active at one moment might be more
(or less) likely to be active the next, reflecting the fact that sources tend to
persist, but we do not pursue that approach further here.

14.7 Conclusion

Sparse overcomplete representations can monaurally separate a mixture of
sound sources into its constituent auditory streams. In our framework it is
critical to use an appropriate overcomplete basis in order to achieve accept-
able separation performance, and we described one way to exploit inherent
properties of source signals for finding discriminative or “personalized” dic-
tionaries that allow sparse representations of particular sound ensembles. We
also modified the separation model to instead exploit one type of monaural
separation cues that animals use, the HRTF, to “tag” dictionary elements so
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Fig. 14.4. Separation performance with three sources. (A) The separation
performance (SNR in the TF domain averaged across the sources) is shown as a
function of the sum of the “sparseness index” of the three sources (average over
20,000 sets of test sample mixtures). The sparse prior (black) always outperforms
the dense prior (gray), and excellent separation was achieved especially when the
sources are sparsely representable. The source locations were randomly chosen but
90◦ apart from each other with zero elevation. (B) Using a typical example of three
novel stimuli (trumpet and two same harp), separation performance (y-axis) was
examined with all the possible combinations of the three sources (from 0 to 120
degrees apart; x-axis). The average performance is shown here under either the
sparse (black) or the dense (gray) prior. Note that separation was unsuccessful at
angle zero since we cannot exploit differential filtering, whereas the performance
gets better as the sources get further apart. [From 13, with permission.]

they can be assigned to the appropriate sources. We expect that other psy-
chophysical cues important for acoustic stream segregation, such as common
onset time, could be used in a similar way.

Recent advances in ICA have emphasized the utility of sparse overcom-
plete representations for source separation problems in acoustic, visual and
other domains [25, 28, 35, 36, 60–62]. Our formulation of the source sepa-
ration problem has been built on these ideas, generalizing the framework to
allow cues other than differential attenuation. (It does not, however, sacrifice
the ability to use binaural cues like differential attenuation, since such cues
can also be incorporated by simply replacing the single-input-single-output
HRTF filters by single-input-two-output filters, doubling the size of the dic-
tionary elements by leaving the algorithm otherwise unchanged.) We have
demonstrated the power and flexibility of the framework by applying it to
two difficult monaural separation problems, one using as its sole cue differ-
ential low-level source models for the speakers, the other using as its sole cue
the differential filtering of different sources by the HRTF.

Sparseness provides a powerful and useful constraint for choosing a unique
representation in an overcomplete basis. We think that sparse representations
can be a generic model for signal processing even in control theory or statistics
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as well as in neuroscience, and further advances in optimization and learning
algorithms will find out its practical usages in many aspects, including the
cocktail party problem in more general settings.
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