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Abstract

Blind separation of linearly mixed white Gaussian sources is impossible, due to rotational
symmetry. For this reason, all blind separation algorithmsare based on some assumption con-
cerning the fashion in which the situation departs from thatinsoluble case. Here we discuss
the assumption ofsparsenessand try to put various algorithms that make the sparseness as-
sumption in a common framework. The main objective of this paper is to give some rough
intuitions, and to provide suitable hooks into the literature.

Introduction

What is blind separation?

Given observations from sensors such as microphones or
MEG/EEG recordings, the process of extracting the un-
derlying sources is called source separation. Doing so
without strong additional information about the individual
sources (aside from the weak assumption that the sources
are independent and the mixing linear) or constraints on
the mixing matrix is calledblind separation.

Notationally, theN×T data matrixX has columnsx(t)
corresponding to the sensor readings at timet, soxi(t) is
the reading of sensori at timet. Blind separation (BSS)
has a restricted case where the number of sources is the
same as the number of sensors, noise is to be ignored, and
the mixing process is instantaneous, called ICA. These
ICA algorithms can be thought of as producingM com-
ponents (estimated recovered sources) where component
j has a spatial distribution, (the column vector)aj , and
time coursesj(t) (sometimes treated as a row vector) .
ICA methods are decomposition algorithms, like PCA, in
that they decompose the data into a sum of outer products

X =

M∑

j=1

aj sj = AS (1)

whereS has as its rows the time coursessj , and the matrix
Ã = W

−1 has the vectorsai as its columns. In blind sep-
aration theunmixing matrixW is estimated purely from
information in the signalsX. It is generally preferable,
for numeric reasons, to directly estimateW rather than to
attempt to estimateA as an intermediate computation.

An M -dimensional Gaussian distribution can, by
change of basis, be made spherical. This rotational sym-
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metry makes it impossible to perform blind separation on
white Gaussian sources. All BSS and ICA algorithms
make some assumption regarding the fashion in which the
sources differ from that impossible case. These can be
thought of as cues for separation taken advantage of by
various algorithms. It is important to note in passing that
truly Gaussian signals are in practice extremely rare in the
real world, except in sensor noise.

What is sparseness?

A signal is sparsewhen it is zero or nearly zero most
of the time, or at least more of the time than one might
expect from its variance. Another way of phrasing this
is that its marginal distribution has a peak at zero larger
than a Gaussian would, or has fatter tails than those of
a Gaussian. Sparseness occurs often in the real world:
sound comes from a small number of focal sources, rather
than being generated by a plethora of acoustic sources
evenly distributed in the environment; matter in the world
is clumped; the people on the surface of the Earth are dis-
tributed in focal clumps. These properties form the basis
of various inverse algorithms: methods by which proper-
ties of the world can be estimated from measurements.

Sites of neuronal activity are focal, as shown by FMRI
studies. A typical algorithm that takes advantage of such
sparseness is FOCUSS (Gorodnitsky and Rao, 1997),
which estimates maximally sparse locations of activation
and time courses to match EEG/MEG data to a forward
model of electromagnetic propagation through the head.

Sparse separation

If x(t) = As(t) where thesj are independent and sparse,
then the marginal density ofx(t) cannot be spherically



Figure 1: A mixture ofM = 3 sources as scatter plot in
N = 2 dimensional sensor space. Optimal complete basis
(left) results in non-sparse data, while optimal overcom-
plete basis (right) allows data to be represented as a sparse
subset of the coefficients.

symmetric. This can be exploited to find its preferred ba-
sis, i.e. to perform blind separation. Often sparseness is
the sole cue used for separation.

The highly influential Infomax algorithm of Bell and
Sejnowski (1995) can be viewed as making the sparseness
assumption in a subtle fashion, by performing a maxi-
mum likelihood fit (Pearlmutter and Parra, 1996; Cardoso,
1997) against a simple parametric model involving a lin-
ear mixture of fat-tailed distributions. From this perspec-
tive there are two interesting tricks to the BS-Infomax al-
gorithm. First, the model is parameterized not by the mix-
ing matrix, as is natural for a forward model, but rather by
its inverse. Although the inverse contains the same infor-
mation, it makes for a much simpler update rule and enor-
mously superior numeric conditioning. The second trick
is to take a naive stochastic gradient descent algorithm
and modify it by multiplying the gradient by a particu-
lar positive-definite matrix,WT

W, whereW is the cur-
rent estimate of the unmixing matrix. While Amari et al.
(1996) provides a theoretical derivation of this based on
information geometry, a naive perspective would be that
the multiplier chosen fortuitously happens to eliminate a
matrix inversion, making each step of the algorithm much
faster, and also makes the convergence rate independent
of the condition number of the unmixing matrix.

As shown schematically in Figures 1 and 2, when the
sources are sufficiently sparse it is possible to use clus-
tering to directly estimate the rows of the mixing matrix
A, which correspond to the coordinates of the cluster cen-
ters. This is due to the observation that with sufficiently
sparse1 This is due to the observation that with suffi-
ciently sparse sources at most one source will generally
be active at a time. When only one source is active the at-
tenuation between that source and the sensors corresponds
to the sensor reading vector, up to a constant factor.

Often sources, considered in the time domain, are only

1Actually line directions, since the clusters are lines through the ori-
gin. One can use conventional clustering algorithms by projecting onto
unit sphere, or use a special-purpose clustering algorithmwhich charac-
terizes each cluster by a line through the origin instead of acenter point.
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Figure 2: Diagrammatic scatter plot of data, in sensor
space, showing how sufficiently sparse sources allow di-
rect estimation of the mixing matrix using clustering, and
even direct assignment of coefficients to sources even
whenN < M . Coefficients can be classed into islands
depending on whether they result from no sources (near-
zero), a single source, or multiple sources. When few co-
efficients come from multiple sources correct separation
can be accomplished by simply reconstructing sources
from the coefficients assigned to them.

slightly sparse,i.e. have slightly fat tails, but (as shown
in Figure 3, doing a transform to another domain,e.g.a
short-time FFT or a wavelet transform, makes each source
extremely sparse in coefficients. This insight makes algo-
rithms of this class practical, but limits their applicability
to domains where this assumption is met. In particular,
there must be sufficiently little sensor noise so as to not
bring the background fluctuations up to the significant co-
efficients. Chen et al. (1999) noted the importance of spar-
sity in a transform domain constructed an algorithm which
finds a transform in which the data becomes sparse. In
their work sparsity of the data in the transformed domain
is explicitly modeled by minimizing theL1 norm of the
coefficients. This gives an analysis of the data in the over-
complete basis.

In theN = M case, once the mixing matrix is found
it can be inverted and the problem is solved. However
whenN < M it is not optimal to linearly map from sen-
sors back to sources even when A is known exactly. In-
stead some nonlinear process must be used, and there is
unavoidable error. This can be easily seen by noting that
the posterior, according to Bayes’ rule, broadens from a
single delta function into a range of possible reconstruc-
tions.

The ability to directly estimate the mixing matrix by



Figure 3: Scatter plot of the readings of two sensors re-
ceiving a synthetic instantaneous mixture of six voices.
In the time domain (left) the signals are not sparse, but
the coefficients resulting from a short-time FFT (right) are
sparse, allowing visual identification of the six sources.
Taken with permission from Zibulevsky et al. (2001).

clustering in some domain in which the sources be-
come extremely sparse was exploited by Zibulevsky et al.
(2001); Zibulevsky and Pearlmutter (2001), which to our
knowledge exhibited the first practical blind algorithm for
the case ofN < M . Strong sparseness can be consid-
ered minimization of theL0 norm, since that norm mea-
sures the number of non-zero coefficients and minimiz-
ing this number maximizes sparseness. It is known in the
optimization community that theL0 norm is often well
approximated by theL1 norm. Here this results in a lin-
ear programming formulation of the problem of partial as-
signment of coefficients to sources.

The algorithm of Roweis (2001) is similar, but can work
with N = 1, i.e. with only a single sensor. There the as-
sumption is unique assignment (each coefficient to one
source) and strong source models. The source models are
rich enough to give strong correlational structure to the
coefficients,i.e. to say which sets of coefficients belong
to the same source. In this case, HMMs of the sources
allowed separation of two people speaking using one mi-
crophone. Note that such strong source models mean the
algorithm was far from blind.

DUET

The DUET algorithm (Rickard and Dietrich, 2000) com-
bines these two ideas, in that it uses clustering in a two-
dimensional space to find “islands” belonging to each
source (Figure 4), and then does hard assignment of co-
efficients to sources. With DUET the two-dimensional
space is a time-frequency transform space, necessitated
by a more complex acoustic mixing process that includes
delays. The model in DUET is that of time delayed and
attenuated sources captured atN = 2 sensors through an
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Figure 4: DUET algorithm assigns the coefficients in each
island to separate sources. (From Rickard and Dietrich
(2000, Figure 1), with permission.)

anechoic mixing process,

x1(t) =

M∑

j=1

sj(t) + noise (2)

x2(t) =

M∑

j=1

aj sj(t − δj) + noise (3)

The mixing parameters here correspond to attenuation and
delay factors, given by the vectorsa andδ, respectively.
It is assumed that the distance between the sensors is
small enough to make the narrowband assumption as re-
ferred to in the array signal processing literature,i.e. the
delays must be less than some maximum tolerable de-
lay. Transforming the signals into a time-frequency do-
main and assuming sparsity (referred to in Rickard and
Dietrich (2000) as theW -disjoint orthogonal property),
DUET finds clusters of the sources as a histogram map-
ping of the attenuations vs delays. These in turn can be
used to find the mixing parameters and the sources. It can
be observed that there is no restriction on the number of
sources, which can be estimated from the number of dis-
tinct cluster centres. The only requirement is that they sat-
isfy theW -disjoint orthogonal property. For speech, the
DUET algorithm was able to separate five speakers using
just two sensors.

DUET was, to our knowledge, the first practical blind
algorithm that could operating in real time on real acoustic
data with more sources than sensors. Its primary limita-
tion is that the algorithm requires delays to manifest them-
selves as phase shifts in a time-frequency transform do-
main. In concrete terms, this means the two microphones
must be placed within a wavelength of each other,i.e. for



voice a maximum distance of a few centimeters.

Learning overcomplete representations

Lewicki and Sejnowski (2000) represent data in an over-
complete basis using an underlying sparse source assump-
tion. The sparsity is modelled by using maximum likeli-
hood estimation with a peaked prior distribution such as a
Laplacian, which corresponds to anL1 norm in the same
way that a Gaussian corresponds to anL2 norm. (Stan-
dard approaches like Fourier and wavelets do not need to
do this, as they are not over-complete and the representa-
tion of the signal is unique.)

With a Laplacian prior and no noise, the problem re-
duces to linear programming. The data vectors are as-
sumed to be independent (for simplicity) and the data like-
lihood is calculated. This turns out to be intractable in
the overcomplete case, and here it is approximated by fit-
ting a Gaussian distribution around the posterior mode of
the sources. Since the data is modelled by an overcom-
plete basis, we havea priori information about the spar-
sity. This makes for a better representation to extract the
underlying structure of the data, as shown in Figure 1.

Support Vector Machines

SVMs, a kind of classifier used in machine learning, are
sparse in another sense: the SVM training algorithm uses
only a small but carefully selected subset of the training
samples to define the classification boundaries. Hochre-
iter and Mozer (2001) show a surprising link between the
sparse separation algorithms of Zibulevsky and Pearlmut-
ter (2001) and SVM training. As sparse methods invade
more domains, we expect the sparseness prior to raise its
head often in machine learning, in various guises.

Conclusion

The sparseness assumption is surprisingly powerful, not
just for denoising and wavelets but also for inverse prob-
lems and source separation. It has been conjectured that
all useful statistical structure in signals can be represented
as sparseness in an appropriate domain. Although we cast
no light here on that strong conjecture, it is certainly the
case that the sparseness assumption has led to a large
number of important and practical algorithms. As this
path continues, it seems likely that sparse algorithms will
soon enjoy wide deployment in a variety of applications.
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