
Temporally Continuous vs. Clocked Networks

Barak A. Pearlmutter
Yale University

Department of Psychology
11A Yale Station

New Haven, CT 06520-7447
Pearlmutter-Barak@YALE.EDU

Abstract

We discuss advantages and disadvantages of temporally continuous
neural networks in contrast to clocked ones, and continue with some
“tricks of the trade” of continuous time and recurrent neural networks.

Introduction

Other papers in this volume discuss systems incorporating as subcomponents
black boxes whose job is to learn to behave so as to minimize some error mea-
sure. Typically these black boxes are filled with some sort of neural network.
Here we advocate consideration of temporally continuous networks, and even
temporally continuous recurrent networks, to go inside these boxes.

We will restrict our attention to networks with hidden units, and learning al-
gorithms that operate upon them, because networks without hidden units are
well treated in the control theory literature, sometimes under more traditional
names.

Consider a neural network governed by the equations

dy

dt
= f(y(t), w, I(t)) (1)

where y is the time-varying state vector, w the parameters to be modified by
the learning, and I a time-varying external input. Given some error metric
E(y, t), our task is to modify w to reduce

∫
E(y, t)dt. Our strategy will be

gradient descent, so the main portion of our work will be finding algorithms to
calculate dE/dw.

The above formulation is for a continuous time system. The alternative to
this is a clocked system, which obeys an equation of the form y(t + ∆t) =
f(y(t), w, I(t)). Without loss of generality, for clocked systems we will always
assume ∆t = 1, giving

y(t + 1) = f(y(t), w, I(t)), (2)

with t an integer.

Certainly the behavior of (1) can be precisely duplicated by (2) with suitable
choice of f in the latter. For this reason, in order to determine the practical
tradeoffs of one against the other, we must consider particular functional forms
for f. We will consider the most common neural network formulation,

dyi

dt
= −yi + σ(xi) + Ii (3)

where
xi =

∑
j

wjiyj (4)

is the total input to unit i, wij is the strength of the connection from unit
i to unit j, and σ is a differentiable function (typically σ(ξ) = (1 + e−ξ)−1,
in which case σ′(ξ) = σ(ξ)(1 − σ(ξ)), or the scaled σ(ξ) = tanh(ξ), in which
case σ′(ξ) = (1 + σ(ξ))(1 − σ(ξ)) = 1 − σ2(ξ). Although the latter symmetric
squashing function is usually preferable, as it has a number of computational
advantages, in particular leading to a better conditioned Hessian, which speeds
gradient descent [3], the former was used in all the simulations presented below.)
The initial conditions yi(t0) and driving functions Ii(t) are the inputs to the
system.

For the clocked alternative, we consider the analogous

yi(t + 1) = σ(xi(t)) + Ii(t). (5)

Both (3) and (5) define rather general dynamic systems. Even assuming that
the external input terms Ii(t) are held constant, it is possible for them to exhibit
wide ranges of asymptotic behavior. The simplest is a stable fixpoint, but limit
cycles and chaos are also possible.

Special learning algorithms are available for various restrictions. There are
fixpoint learning algorithms (surveyed in [29], see [31, 1, 13] for more detail

or [2] for recent developments) that take advantage of the special relationships
holding at a fixpoint to reduce the storage requirements to O(m), the number
of weights, and the time requirements to the time required for the network
to settle down. There are continuous-time feed-forward learning algorithms
that are as efficient in both time and space as algorithms for pure feedforward
networks, but are applicable only when w is upper-triangular (surveyed in [30],
or see [12, 18, 38, 7] for more detail.)

Later, we will describe a number of training procedures that, for a price in
space or time, do not rely on such restrictions and can be applied to training
networks to exhibit desired limit cycles, or particular detailed temporal behav-
ior. Although in this paper we are concerning ourselves with the general case,
it should be noted that for many problems recurrent networks are overkill. For
instance, Crutchfield et al. [6] and Lapedes and Farber [20] have had success at
the identification of chaotic systems using models without temporally hidden
units.

Continuous vs. Discrete Time

Continuous time networks have a number of potential advantages over clocked
networks:

• Continuous time has advantages for expository purposes, in that the deriva-
tive of the state of a unit with respect to time is well defined, allowing
calculus to be used instead of tedious explicit temporal indexing, making
for simpler derivations and exposition.

• When a continuous time system is simulated on a digital computer, it is
usually converted into a set a simple first order difference equations, which
is formally identical to a discrete time network. However, regarding the
discrete time network running on the computer as a simulation of a contin-
uous time network has a number of advantages. First, more sophisticated
and faster simulation techniques than simple first order difference equations
can be used, such as higher order forward-backward techniques. Second,
even if simple first order equations are used, the size of the time step can be
varied to suit changing circumstances; for instance, if the network is being
used for a signal processing application and faster sensors and computers
become available, the size of the time step could be decreased without
retraining the network.

• Continuous time units tend to maintain their values through time, particu-
larly at the start of training. Another way of putting this is that their bias
in the learning theory sense is towards temporally continuous tasks, which
is certainly advantageous if the task being performed is also temporally
continuous.

Another way of phrasing this is that, although (1) and (2) can describe the
same system in general, when we fix f , and the dimensionality of w, only
a tiny fraction of this function space, a small manifold, remains available
to us. There are two contradictory influences: we would like to be able to

perform the task well after much training, so we sould like the best possible
solution to be close to something in our manifold; and we would like the
manifold itself to be as small as possible, to ease the estimation of w. This
means that we are better off whenever we discard from the manifold things
that can not possibly be close to the right solution, as this decreases that
accessible space without hurting potential performance. Thus, if we know
the task to be learned is temporally continuous, we are better off discarding
all discontinuous candidates. This is what using a temporally continuous
architecture ammounts to.

• A somewhat more subtle advantage is that even for tasks which themselves
have no temporal content, such as constraint satisfaction, the best way for
a recurrent network to perform the required computation is for each unit to
represent nearly the same thing at nearby points in time. Using continuous
time units makes this the default behavior; in the absence other forces,
units will tend to retain their state through time. In contrast, in discrete
time networks, there is no a-priori reason for a unit’s state at one point in
time to have any special relationship to its state at the next point in time.

• A pleasant benefit of units tending to maintain their state through time is
that it helps make information about the past decay more slowly, speeding
up learning about the relationship between temporally distant events.

• Embelishments we discuss that are applicable only to continuous time sys-
tems, such as mutable time constants and delays, are equally applicable
to recurrent and non-recurrent systems, although we discuss them in the
former context here.

• It is easier to do stability analysis with a continuous time system.

• Allow error functionals that involve derivatives of the states y to be used.
This is important for applications like control, where one might wish to
find minimum jerk trajectories. Similarly, error functionals like the elastic
network error measure [9, 4] can be used without the inner loop involv-
ing sliding the beads along the trajectory, by considering the limit of a
continous string of beads.

Algorithms for Computing dE/dw

Now we get to the heart of the matter–the computation of the necessary deriva-
tives. We will consider two major techniques, and then a few more derived
from them. The first is the obvious extension of backpropagation through time
(BPTT) to continuous time.

Backpropagation Through Time or BPTT

Adjoint equations to (1) are

dz

dt
=

df(y, w, I)

dy
z +

δE

δy
(6)

dE

dw
=

∫ t1

t0

y
df(y, w, I)

dw
zdt. (7)

with boundary condition z(t1) = 0. This is similar to the clocked backwards
error equations

z(t − 1) =
df(y, w, I)

dy
z +

∂E

∂y(t)

dE

dw
=

∑
t

y
df(y, w, I)

dw
z.

where the error to be minimized is E. If this error is of the usual form of an
integral E =

∫
g(y(t), t)dt then we get the simple form δE/δy = dg/dy. For

the particular form of (3), this comes to

dzi

dt
= zi − ei −

∑
j

wijσ
′(xj)zj . (8)

∂E

∂wij

=

∫ t1

t0

yiσ
′(xj)zjdt. (9)

There are two ways to go about finding such derivations. One is direct, using
the calculus of variations [17]. The other is to take the continuous time equa-
tions, approximate them by difference equations, precisely calculate the adjoint
equations for this discrete time system, and then approximate back to get the
continuous time adjoint equations, as in [29]. An advantage of the latter ap-
proach is that, when simulating on a digital computer, one actually simulates
the difference equations. The derivation ensures that the simulated adjoint dif-
ference equations are the precise adjoints to the simulated forward difference
equations, so the computed derivatives contain no approximation errors.

Forward Propagation or RTRL

An online, exact, and stable, but computationally expensive, procedure for
determining the derivatives of functions of the states of a dynamic system with
respect to that system’s internal parameters was known in the physics and
controls literature, and discovered and applied to recurrent neural networks
by Robinson and Fallside [32], and later rediscovered independently by others
([11, 45], for reviews see also [30, 29].) It is called by various researchers forward
propagation or RTRL for real time recurrent learning. In the general case of (1)
it is

dE

dw
=

∫ t1

t0

γ
δE

δy
dt (10)

where γ(t0) = 0 and

dγ

dt
=

df(y, w, I)

dw
+

df(y, w, I)

dy
γ. (11)

The γ matrix is the sensitivity of the states y(t) to a change of the weights w.
Under the assumption that the weights are changing slowly, this can be made
an online algorithm by updating the weights continuously instead of actually
integrating (10),

dw

dt
= −ηγ

δE

δy
, (12)

where η is the learning rate, or, if a momentum term 0 < α < 1 is also desired,

α
d2w

dt2
+ (1 − α)

dw

dt
+ ηγ

δE

δy
= 0. (13)

Regretably, the computation of γ is very expensive, and also non-local. The
γ array has nm elements, where n is the number of states and m the number
of weights, which is typically on the order of n2. Updating γ requires O(n3m)
operations in the general case, but the particular structure of a neural network
causes some of the matrices to be sparse, which reduces the burden to O(n2m).
Nevertheless, this is too high to make the technique practical.

Faster Online Techniques

One way to reduce the complexity of the algorithm is to simply leave out ele-
ments of γ that one has reason to believe will remain approximately zero. This
approach, in particular ignoring the coupling terms which relate the states of
units in one module to weights in another, has been explored by Zipser [46].

Another is to use BPTT with a history cutoff of k units of time, termed
BPTT(k) by Williams and Peng [43], and make a small weight change each
timestep. This obviates the need for epochs, resulting in a purely online tech-
nique, and is probably the best technique for most practical problems.

A third is to take blocks of s timesteps using BPTT, but use RTRL to encapsu-
late the history before the start of each block. This requires O(s−1n2m + nm)
time per step, on average, and O(nm + sm) space. Choosing s = n makes this
O(nm) time and O(nm) space, which dominates RTRL. This technique has
been discovered independently a number of times [41, 33].

Finally, one can note that, although the forward equations for y are nonlinear,
and therefore require numeric integration, the backwards equations for z in
BPTT are linear. Since the dE/dw terms are linear integrations of the z, this
means that they are linear functions of the external inputs, namely the ei terms.
As shown by Sun et al [35], this allows one, during the forward pass, to compute
a matrix relating the external inputs to the dE/dw terms, allowing a fully online
algorithm with O(nm) time and space complexity.

A number of researchers have recently pointed out that RTRL bears a close
relationship to the Extended Kalmann Filter [26, 42]. One advantage of the
Extended Kalmann Filter approach is that it rationalizes teacher forcing, in
that it modifies both the weights and the states on an equal basis. This solves
the dilema of teacher forcing that, if the “true output” units are extra added

units whose values are directly copied from those of the old output units, teacher
forcing fails to maintain synchronization between the network and its teacher.

Another way of attempting to rationalize teacher forcing is to note that gradient
descent itself generates dE/dy in addition to dE/dw terms. One might think
this would make it natural to use ∆y = ηdE/dy, thus treating the states on an
equal basis with the weights. The problem with this, as pointed out by Ron
Williams (personal communication) is that it is difficult to determine exactly
what this means. Should the derivative be taken just with respect to the current
states, or to their histories too?

One way alleviate this dilema is to note that, when we change the weights, we
wish we had changed them earlier. To this end, it would be natural to change
the states to what they would have been had we changed the weights earlier.
This gives

∆y =
dy

dw
∆w. (14)

The involved matrix, dy/dw, is already available as γ in RTRL.

Time Constants

A major advantage of temporally continuous networks is that one can add
additional parameters that control the temporal bahavior in ways known to
relate to natural tasks. An example of this is time constants. If we add a time
constant Ti to each unit i, modifying (3) to

Ti

dyi

dt
= −yi + σ(xi) + Ii, (15)

and carry these terms through the derivation of section , equations (8) and (9)
become

dzi

dt
=

1

Ti

zi − ei −

∑
j

1

Tj

wijσ
′(xj)zj . (16)

and

∂E

∂wij

=
1

Tj

∫ t1

t0

yiσ
′(xj)zjdt. (17)

In order to learn these time constants rather than just set them by hand, we
need to compute ∂E(y)/∂Ti. This is easily calculated by

∂E

∂Ti

= −
1

Ti

∫ t1

t0

zi

dyi

dt
dt. (18)

Time Delays

Consider a network in which signals take time to travel over each link, so that
(4) is modified to

xi(t) =
∑

j

wjiyj(t − τji), (19)

τji being the time delay along the connection from unit j to unit i. Let us
include the variable time constants of section as well. Such time delays merely
add analogous time delays to the adjoint error equations, giving

dzi

dt
(t) =

1

Ti

zi(t) − ei(t) −
∑

j

wijσ
′(xj(t + τij))

1

Tj

zj(t + τij), (20)

∂E

∂wij

=
1

Tj

∫ t1

t0

yi(t)σ
′(xj(t + τij))zj(t + τij)dt, (21)

while (18) remains unchanged.

Instead of regarding the time delays as a fixed part of the architecture, we can
imagine modifiable time delays. Given modifiable time delays, we would like to
be able to learn appropriate values for them, which can be accomplished using
gradient descent by

∂E

∂τij

=

∫ t1

t0

zj(t)σ
′(xj(t))wij

dyi

dt
(t − τij)dt. (22)

Watrous et al applied recurrent networks with immutable time delays in the
domain of speech [39]. Feedforward networks with immutable time delays
(TDNNs) have been applied with great success in the same domain by Lang et
al [19]. A variant of TDNNs which learn the time delays was explored by Boden-
hausen et al [5]. The synapses in their networks, rather than having point taps,
have gaussian envelopes whose widths and centers were both learned. Similar
synaptic architectures using alpha function envelopes (which obviate the need
for a history buffer) whose parameters were learned were proposed and used in
systems without hidden units [36, 8]. Day and Davenport successfully applied
a continuous time feedforward network with learned time delays to a difficult
time-series prediction task [7].

In the sections on time constants and delays, we have carried out the derivative
derivations for BPTT. All the other techniques also remain applicable to this
case, with straightforward derivations. The analogous derivations for RTRL are
carried out in [29].

Some Simulations

In the following simulations, we used networks without time delays, but with
mutable time constants. An extra unit whose value was held at 1 by a constant
external input, and which had outgoing connections to all other units, was used
to implement biases.

Figure 1: The output of the rotated figure eight network at all the trained
angles (left) and some untrained angles (right).

Using first order finite difference approximations, we integrated the system y
forward from t0 to t1, set the boundary conditions zi(t1) = 0, and integrated
the system z backwards from t1 to t0 while numerically integrating zj σ′(xj) yi

and zi dyi/dt, thus computing ∂E/∂wij and ∂E/∂Ti. Since computing dzi/dt
requires σ′(xi), we stored it and replayed it backwards as well. We also stored
and replayed yi as it is used in expressions being numerically integrated.

We used the error functional E = 1

2

∑
i

∫ t1

t0
si(yi − di)

2dt where di(t) is the

desired state of unit i at time t and si(t) is the importance of unit i achieving
that state at that time, in this case 1 when i was an output unit and 0 otherwise.
Throughout, we used σ(ξ) = (1 + e−ξ)−1. Time constants were initialized to 1,
weights were initialized to uniformly distributed random values between 1 and
−1, and the initial values yi(t0) were set to Ii(t0) + σ(0). The simulator used
first order difference equations with ∆t = 0.1.

A Rotated Figure Eight

In this simulation a network was trained to generate a figure eight shaped
trajectory in two of its units, designated output units. The figure eight was
to be rotated about its center by an angle θ which was input to the network
through two input units which held the coordinates of a unit vector in the
appropriate direction. Eight different values of θ, equally spaced about the
circle, were used to generate the training data. In experiments with 20 hidden
units, the network was unable to learn the task. Increasing the number of
hidden units to 30 allowed the network to learn the task, as shown on the left
in figure 1. But when the network is run with the eight input angles furthest
the training angles, as shown on the right in figure 1, generalization is poor.

The task would be simple to solve using second order connections, as they would

Figure 2: The output states y1 and y2 plotted against each other for a 1000
time unit run, with all the units in the network perturbed by a random amount
about every 40 units of time. The perturbations in the circle network (left)
were uniform in ±0.1, and in the eight network (right) in ±0.05.

allow the problem to be decoupled. A few units could be devoted to each of the
orthogonal oscillations, and the connections could form a rotation matrix. The
poor generalization of the network shows that it is not solving the problem in
such a straightforward fashion, and suggests that for tasks of this sort it might
be better to use slightly higher order units.

Stability and Perturbation Experiments

In an attempt to judge the stability of the limit cycles exhibited by networks
of this sort trained in this fashion, we introduced random perturbations and
observed the effects of these perturbations upon the evolution of two networks:
one trained to trace out of circular trajectory, and the other trained to trace
out a figure eight. The results are shown in figure 2.

The limit cycle on the right is symmetric without disturbances, but when per-
turbations are introduced, symmetry is broken. The portion of the limit cycle
moving from the upper left hand corner towards the lower right hand corner
has diverging lines, but we do not believe that they indicate high eigenvalues
and instability. The lines converge rapidly in the upward stroke on the right
hand side of the figure, and analogous unstable behavior is not present in the
symmetric downward stroke from the upper right hand corner towards the lower
left. Analysis shows that the instability is caused by the initialization circuitry
being inappropriately activated; since the initialization circuitry is adapted for
controlling just the initial behavior of the network, when the net must delay at
(0.5, 0.5) for a time before beginning the cycle by moving towards the lower left
corner, this circuitry is explicitly not symmetric. The diverging lines seem to
be caused by this circuitry being activated and exerting a strong influence on
the output units while the circuitry itself deactivates.

In fact, Simard, Rayzs and Victorri have developed a technique for learning the
local maximum eigenvalue of the transfer function [34], optionally projecting

out directions whose eigenvalues are not of interest. Their technique explicitly
modulates the behavior we only measured above.

Leech Simulations

Lockery et al. used BPTT in continuous time to fit a low level neurophysiologi-
cal model of the leech local bending reflex to data on sensory and motor neuron
activity [22, 23, 24, 25]. They modified the dynamic equations substantially in
order to model their system at a low level, using activity levels to represent cur-
rents rather than voltages. Their trained model disagreed with human intuition
concerning what the synaptic strengths, and in fact signs, would be, but quali-
tatively matched empirical measurements of interneuron synaptic strengths in
the leech Hirudo medicinalis.

Teacher Forcing

Teacher forcing [44] consists of jamming the desired output values into units as
the network runs; thus, the teacher forces the output units to have the correct
states, even as the network runs, and hence the name. This technique is applied
to discrete time, clocked networks, as only then does the concept of changing
the state of an output unit each time step make sense.

The error is as usual, with the caveat that errors are to be measured before
output units are forced, not after. Williams and Zipser report that their teacher
forcing technique radically reduced training time for their recurrent networks
[44], although when this author used teacher forcing on networks with a larger
number of hidden units he had difficulties[29].

However, by taking the limit as the step size goes to zero, it is possible to show
that the continuous time analogue of teacher forcing is to force the output states
to follow desired trajectories, with the error being the difference between the
derivative that the network attempts to apply to these units and the derivative
of the desired trajectory. This casts light on teacher forcing in the descrete time
case, which can be seen as nearly the same thing.

Regretably it also shows that teacher forcing can result in a network with a
systematic bias, or a network which, although when being forced has little
error, when running free rapidly drifts far from the desired trajectory, in a
qualitative sense, as reported by Williams and Zipser for some cases where
oscillations trained with teacher forcing exhibited radically and systematically
lower frequency and amplitude when running free [44].

We also note that “Jordan Nets” [16] can be regarded as networks in which the
teacher-forced output units cut all recurrent pathways.

Learning with Scale Parameters

The parameters usually modified neural network learning algorithms are the
weights. There are no a-priori restrictions on these values; they can be positive,
negative, or zero, and the behavior of a network is continuous with respect to
changes in its weights. These factors, along with other, make simple gradient
descent algorithms, ∆w = −ηdE/dw, surprisingly effective.

The error term E being used generally contains one term which has to do with
how well the network’s outputs match some criteria. Frequently another term
is added as an expression of some a-priori on the weights. For instance, adding∑

i w2

i is equivalent to assuming that the weights are Gaussian distributed. Not
adding such a term is equivalent to assuming that the a-priori distribution on
what the weights will turn out to be is flat–not a totally unreasonable prior
[40, 28].

However, we have added some new sorts of parameters, namely time constants
and time delays, here represented generically by T . These are scale parameters,
which are different in a number of ways. For instance, they must not become
negative. As they approach zero, the dynamics of the associated network be-
comes more and more sensitive to small changes. This means that we must add
machinery to enforce the constraint, and that our gradient descent may become
unstable as they approach zero. Also, the flat zero-knowledge prior no longer
seems appropriate.

All these problems can be solved in a single stroke by noting that the correct
null hypothesis for scale parameters is not flat in their values, but rather flat
in their log values. This corresponds to doing gradient descent in LT = log T
rather than in T itself. Doing this also solves our other problems, as it makes
the parameters more stiff near zero, compensating for the network’s increased
sensitivity; and it enforces T > 0 since T = expLT > 0 for real LT , enforcing
the constraint for free.

In addition, weight decay of scale parameters becomes more natural, as decaying
LT towards 0 corresponds to decaying T towards 1, which is a reasonable target.
Of course, a constant factor can be put in to make the decay towards some other
a-priori most likely scale.

Speeding the Optimization

Experience has shown that learning in these networks tends to be “stiff” in
the sense that the Hessian of the error with respect to the weights (the matrix
of second derivatives) tends to have a wide eigenvalue spread. One technique
that has apparently proven useful in this particular situation is that of Robert
Jacobs [15] which was applied by Fang and Sejnowski to the single figure eight
problem with great success [10]. It was also used in the leech simulations of
Lockery et al. described in section , again leading to much faster training.

Conclusions

Certainly there is no reason to use a recurrent network when a layered architec-
ture suffices; but on the other hand, if recurrence is needed, there are a plethora
of learning algorithms available across the spectrum of quiescence vs. dynamics
and across the spectrum of accuracy vs. complexity and across the spectrum of
space vs. time. These new learning algorithms, and experience with recurrent
and temporally continuous networks, has made them much more tractable and
practicle than they seemed only a few years ago.

References

[1] L. B. Almeida. A learning rule for asynchronous perceptrons with feed-
back in a combinatorial environment. In Maureen Caudill and Charles
Butler, editors, IEEE First International Conference on Neural Networks,
volume 2, pages 609–618, San Diego, CA, June 21–24 1987.

[2] Pierre Baldi and Fernando Pineda. Contrastive learning and neural oscil-
lations. Neural Computation, 3(4):526–545, 1991.

[3] Sue Becker and Yann le Cun. Improving the convergence of back-
propagation learning with second order methods. In David S. Touretzky,
Geoffrey E. Hinton, and Terrence J. Sejnowski, editors, Proceedings of the
1988 Connectionist Models Summer School. Morgan Kaufmann, 1989. Also
published as Technical Report CRG-TR-88-5, Department of Computer
Science, University of Toronto.

[4] Hugues Bersini, Luis Gonzalez Sotelino, and Eric Decossaux. Hopfield net
generation of trajectories in constrained environment. In this volume.

[5] U. Bodenhausen. Learning internal representations of pattern sequences in
a neural network with adaptive time-delays. In International Joint Con-
ference on Neural Networks, San Diego, CA, June 1990. IEEE.

[6] J. P. Crutchfield and B. S. McNamara. Equations of motion from a data
series. Complex Systems, 1:417–452, 1987.

[7] Shawn P. Day and Michael R. Davenport. Continuous-time temporal back-
propagation with adaptable time delays. Available by ftp, archive.cis.ohio-
state.edu, pub/neuroprose/day.temporal.ps.Z, August 1991.

[8] Bert de Vries and Jose C. Principe. A theory for neural networks with
time delays. In Lippmann et al. [21], pages 162–168.

[9] R. Durbin and D. Willshaw. An analogue approach to the travelling sales-
man problem using an elastic net method. Nature, 326:689–691, 1987.

[10] Yan Fang and Terrence J. Sejnowski. Faster learning for dynamic recurrent
backpropagation. Neural Computation, 2(3):270–273, 1990.

[11] Michael Gherrity. A learning algorithm for analog, fully recurrent neural
networks. In IJCNN89 [14], pages 643–644.

[12] Marco Gori, Yoshua Bengio, and Renato De Mori. Bps: A learning algo-
rithm for capturing the dynamic nature of speech. In IJCNN89 [14], pages
417–423.

[13] Geoffrey E. Hinton. Deterministic Boltzmann learning performs steepest
descent in weight-space. Neural Computation, 1(1):143–150, 1989.

[14] International Joint Conference on Neural Networks, Washington DC,
June 18–22 1989. IEEE.

[15] Robert Jacobs. Increased rates of convergence through learning rate adap-
tation. Technical Report COINS 87-117, University of Massachusetts,
Amherst, MA 01003, 1987.

[16] Michael I. Jordan. Attractor dynamics and parallelism in a connectionist
sequential machine. In Proceedings of the 1986 Cognitive Science Confer-
ence, pages 531–546. Lawrence Erlbaum Associates, 1986.

[17] Arthur E. Bryson Jr. A steepest ascent method for solving optimum pro-
gramming problems. Journal of Applied Mechanics, 29(2):247, 1962.

[18] Gary Kuhn. A first look at phonetic discrimination using connectionist
models with recurrent links. SCIMP working paper 82018, Institute for
Defense Analysis, Princeton, New Jersey, April 1987.

[19] Kevin J. Lang, Geoffrey E. Hinton, and Alex Waibel. A time-delay neu-
ral network architecture for isolated word recognition. Neural Networks,
3(1):23–43, 1990.

[20] Alan Lapedes and Robert Farber. Nonlinear signal processing using neural
networks: Prediction and system modelling. Technical report, Theoretical
Division, Los Alamos National Laboratory, 1987.

[21] Richard P. Lippmann, John E. Moody, and David S. Touretzky, editors.
Advances in Neural Information Processing Systems 3. Morgan Kaufmann,
1991.

[22] Shawn R. Lockery, Yan Fang, and Terrence J. Sejnowski. A dynamic
neural network model of sensorimotor transformations in the leech. Neural
Computation, 2(3):274–282, 1990.

[23] Shawn R. Lockery and W. B. Kristan Jr. Distributed processing of sensory
information in the leech i: Input-output relations of the local bending relex.
Journal of Neuroscience, 1990.

[24] Shawn R. Lockery and W. B. Kristan Jr. Distributed processing of sensory
information in the leech ii: Identification of interneurons contributing to
the local bending reflex. Journal of Neuroscience, 1990.

[25] Shawn R. Lockery, G. Wittenberg, W. B. Kristan Jr., N. Qian, and T. J.
Sejnowski. Neural network analysis of distributed representations of sen-
sory information in the leech. In Touretzky [37], pages 28–35.

[26] M. B. Matthews. Neural network nonlinear adaptive filtering using the ex-
tended kalman filter algorithm. In Proceedings of the International Neural
Networks Conference, volume 1, pages 115–119, Paris, France, July 1990.

[27] John E. Moody, Steve J. Hanson, and Richard P. Lippmann, editors. Ad-
vances in Neural Information Processing Systems 4. Morgan Kaufmann,
1992.

[28] S. J. Nowlan and G. E. Hinton. Adaptive soft weight tying using gaussian
mixtures. In Moody et al. [27].

[29] Barak A. Pearlmutter. Dynamic recurrent neural networks. Technical
Report CMU-CS-90-196, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, December 1990.

[30] Barak A. Pearlmutter. Two new learning procedures for recurrent net-
works. Neural Network Review, 3(3):99–101, 1990.

[31] Fernando Pineda. Generalization of back-propagation to recurrent neural
networks. Physical Review Letters, 19(59):2229–2232, 1987.

[32] A. J. Robinson and F. Fallside. Static and dynamic error propagation
networks with application to speech coding. In Dana Z. Anderson, editor,
Neural Information Processing Systems, pages 632–641, New York, New
York, 1987. American Institute of Physics.

[33] Juergen Schmidhuber. An O(n3) learning algorithm for fully recur-
rent networks. Technical Report FKI-151-91, Institut fuer Informatik,
Muenchen, Germany, May 1991. Or ftp flop.informatik.tu-muenchen.de
pub/fki/fki151.ps.Z.

[34] Patrice Y. Simard, Jean Pierre Rayzs, and Bernard Victorri. Shaping the
state space landscape in recurrent networks. In Lippmann et al. [21], pages
105–112.

[35] G.Z. Sun, H.H. Chen, and Y.C. Lee. Green’s function method for fast
on-line learning algorithm of recurrent method for fast on-line learning
algorithm of recurrent nn. In Moody et al. [27].

[36] D.W. Tank and J.J. Hopfield. Neural computation by time compression.
Proceedings of the National Academy of Sciences, 84:1896–1900, 1987.

[37] David S. Touretzky, editor. Advances in Neural Information Processing
Systems II. Morgan Kaufmann, 1990.

[38] Tadasu Uchiyama, Katsunori Shimohara, and Yukio Tokunaga. A modified
leaky integrator network for temporal pattern recognition. In IJCNN89
[14], pages 469–475.

[39] R. L. Watrous, B. Laedendorf, and G. Kuhn. Complete gradient optimiza-
tion of a recurrent network applied to bdg descrimination. Journal of the
Acoustic Society, 1989, in press.

[40] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman. Generalization
by weight-elimination with application to forecasting. In Lippmann et al.
[21], pages 875–882.

[41] R. J. Williams. Complexity of exact gradient computation algorithms for
recurrent neural networks. Technical Report NU-CCS-89-27, College of
Computer Science, Northeastern University, Boston, MA, 1989.

[42] R. J. Williams. Some observations on the use of the extended kalman filter
as a recurrent network learning algorithm. Technical Report NU-CCS-92-1,
College of Computer Science, Northeastern University, Boston, MA, 1992.

[43] Ronald J. WIlliams and Jing Peng. An efficient gradient-based algorithm
for on-line training of recurrent network trajectories. Neural Computation,
2(4):490–501, 1990.

[44] Ronald J. Williams and David Zipser. A learning algorithm for continually
running fully recurrent neural networks. Technical Report ICS Report
8805, UCSD, La Jolla, CA 92093, November 1988.

[45] Ronald J. Williams and David Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural Computation, 1(2):270–
280, 1989.

[46] David Zipser. Subgrouping reduces complexity and speeds up learning in
recurrent networks. In Touretzky [37], pages 638–641.

