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ABSTRACT more than one player without having to look directly at any.
Good gazing strategies will presumably depend on the pre-
dictability and relevance of each of the targets being &eck
These ideas are also related to the concept of bit alloca-

This study evaluates various resource allocation straseor

simultaneous estimation of two independent signals froisyno

observations. We focus on strategies that make use of the up— . . . . ) L
ion for signal coding and compression, in which a limited

derlying dynamics of each signal, exploiting the differenc number of bits is distributed between different featureg.(

in estimation uncertainty between them. This evaluation is : : ;
o . ubbands) according to their perceptual relevance and-stat
done empirically, by exploring the parameter space throug s
ical characteristics [4].

computer simulations. Two cases are studied: one in whic . L
After presenting the general problem of allocation in par-

an initial allocation is maintained during estimation o&th . . .
. . . . . allel channels, we describe the simple setup that will be the
variables, and one in which allocation can be dynamically .
) : . core of this paper. We then evaluate the performance of the
changed at each time step according to the uncertainty of thaqlocator/estimator over different sets of parametergintyg
estimate from each channel. The results suggest that theere a P

conditions in which it is advantageous to assign a high ygnastrategles are found by exploring the parameter spaceghrou

to-noise ratio (SNR) to only one of the signals sshe computer_3|mulat|ons. We compare two different conditions
. g for allocation: one that requires fixing an SNR for each chan-
other one. Furthermore, comparison between the two alloca- T . o2
. . . S nel and maintaining it during estimation, and a second one
tion strategies shows that the dynamic strategy signifigant . . . ) . .
) . X . in which SNR is dynamically reassigned at each time step
improves estimation performance in low SNR scenarios when . . S L
X - . according to the changing uncertainties of the estimation f

the signals have similar dynamics.

each channel.

1. INTRODUCTION 2. TWO-CHANNEL MODEL

Kn.qwledge ?b"“t the dynamics of a random process anq ”Iﬂ our context, the problem of resource allocation can tedta
ability to assign more resources to represent featured@tin ¢ o) 10,5, Consider multiple independent noisy chanrrels i
est can be used to improve statistical inference of the Hndebarallel with a common power constraint. The goal is to dis-
lying process from noisy observations. This paper eVaj“atetribute the total power among the channels so as to minimize

d|ﬁgrent ][esou.rcg allocdanon ;tratlcegles for §|mulgar$§¢:]$tl— . some error function between the original signals and treeir e
mation of two independent signals contaminated With NOIS&; 4165 | the signals are known to have predictable dynam-

The dynamics of'the signals to be estimated are assum'ed to & an optimal strategy should presumably combine predic-
known, but the signals themselves argdenand only noisy 45, 5pq power allocation. For the remainder of this paper we

ObS?rvat;OQS al;e ava|l_able. Eesources In-our casre]z rZ:,B;tO Ll keep the power of the signals fixed and instead vary the
quality of the observation, where a constraint on the a noise level for each channel.

resources sets a limit on the average quality across clannel For our particular setup the goal is to estimate, at each

. Thls_problem IS m(_)tlvated by _studles of .botto.m—u_p _atten'time step, two independent binary signals each one contam-
tion, saliency and active perception [1-3], in which it is Ny jnateq py Gaussian noise. The signals are generated by a
pothesized that werientour senses towards features of inter'Markov process with known transition probabilities, and th
estin order to maximize the gathering of information reféva v jink hetween the two channels is a constraint on the tota
for a particular task. An analogy of the problem described inise of the system. The allocation problem consists of de-
this paper is that of a basketball player who has to keep trac&ﬁding how much of the total noise should be assigned to each

of other players in the court. To do this, he/she must decidgy,3nne| 5o that the average number of errors in either channe
where to look, how often to change gaze, and how to tracg% minimal
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Fig. 2. Fixed allocation. Average error as a function of noiseoréti Each panel presents results for a given SNR using one
pa and manyps. The dotted line corresponds to the performance of an efsirttzat ignores the dynamics of the signals. Gray
areas around the curves represent the standard error oftdue of the measurements.
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as having a common power source or a constant total signal-
to-noise ratio, is given by

2 2 2
Ototal = Oa + O (5)

N O/ Throughout the paper we refer to the ratio between noise
variances a8:
0= U_‘% (6)
s () o
\[/ \[/ Inference of the state (for each channel) at each fime
ChB . ) . L .
is done by calculating the maximum a-posteriori (MAP) esti-
@ mate for the individual state, given the observation segeen
§ilk] = argmax P(s;[k] = q | a;[0], . . ., Ti[k]) @)
qe{-1,1}
Fig. 1. Two channel Markov model. States; are binary Pls:ik] = a. 5 %
o e : ; _ (silk] = g, Zi0], - . - , Ti[k])
and the probability distribution of the observations gitke = argmax Pl i) (8)
statesp(z[x|sx]) is Gaussian. The sum of the observation a&{-1.1} T
noise across channels at each titris constant. Here we have writte; (] instead ofr;[x] SO we can write

expressions for the observations as probability mass func-

T; (a different one for each channel). To simplify the systenfions. The variables; (1] can be interpreted as discretized ver-
we make the transition matrices symmetric. The dynamic§iOns of the observations, and are only used for describiag t

can then be described by one variapj@er channel: algorithm, which is unaffected by this approximation. Sinc
the marginal of the observations does not affect the maximum
silkl € {—1,1}, i=A,B (1) the problem can be solved by finding the joint probability be-

tween the state at time and the observation sequence. This
value corresponds to the forward variallg:) described in

T, = L pi  1- p@] 2)  [5]. In vector form we have:
— P pi
pi = P Silk] = Si[k—1] (3) . _ P(Sl[k] = _17‘%2'[0]7 e 7572[’“])
( : = Psim = 1,&0,. ., 7i0) ©)
The observations are drawn from a Gaussian distribution & [¥] (10)
with mean equal to the current state for each channel: - Y ge 1.1y Gilkl(9)
ik ~ N (s8], 07) (4) &k = (T; ailk—11) © f(zlH, silk], 07) (11)

The constraint on the noise level, which can be interpreted with ;0] = 75 © f(x4[K], silk], 02) (12)



Here, ® denotes the element-by-element (or Hadamardaccording to the relative uncertainties of the two channals
product, 7; is a 2-element vector that represents the initialthis case, we define the certainty of our estimate as:
state probabilities, andl(x, s, 0?) is a 2-element vector con-
taining the likelihood (for each possible state) that thesia itk = 0.5 — o)™ (15)

2 came from the distribution defined in (4).

The estimation method described here maximizes the exvhere o;x)(") corresponds to the first element of the joint
pected number of correct individual states by choosing th@robability vectora;[x) for channeli at timek. This quan-
most likely state at each time step for each channel. Othelty represents how close to 1 is the probability of being in
optimality criteria imply different methodss.g, the Viterbi  one state, indicating a level of certainty about that estima
algorithm [6] finds the most likely state sequence for a giverFrom these values, we set the ratio at each time step as:
observation sequence. In this paper we will focus only on the

individual state MAP estimate described above. 1kl — oxk] [ Calk—1] ¢ (16)
Our goal is to evaluate the performance of this estima- ]l = o2k \ Calb—1]
tion method for different allocation strategies. Since we a ] ] _
interested in simultaneous tracking of the two channels, we And we want to find the optimal exponent:
measure performance by calculating the average number of . . & 2 9 2
time steps in which errors occur in either channel: ¢" —argminé St O =0} + 0% (47
£ = E[§A[k] £ Salk] V Selk] # SB[k]] (13) The exponend enables a non-linear relation between the

certainty ratio and the noise ratio at the next time step.eNot

whereE[] represents the expectation over time. A lowerthat this function includes the case in which the noise ratio

£ indicates better performance. is always 1 (ignoring the certainties) and the case in which
resources are completely moved from one channel to the other

at each time step.
3. ALLOCATION STRATEGIES

We explore two allocation methods: one in which the rétio 4. PERFORMANCE MEASUREMENTS

is set initially and maintained during estimation, and ame i . .
: . . 4.1. Fixed allocation

which the ratio can be changed at each time step.

The system was simulated using the fixed allocation method

for different transition probabilities and three SNR scé@m

(02 = 0.5,1,2). The average error was measured following

In the fixed case we want to find the constant réttbat min-  (13) as the noise rati6 is varied. Results fop, = 0.9 are

imizes the average errdr, given the system parameters andshown in Fig. 2. This figure includes the performance given

3.1. Fixed allocation

total noise power: by an estimator that assumes a white processan estima-
tor that ignores the dynamics of the system and simply sets a
0* =argmin€ St Opg = 0- + 02 (14)  decision boundary at;[x) = 0.
0=02/0g
One way to solve this problem is to derive an expressior Optimal noise ratio Performance increase
for the probability of making an error when estimating the 1 %|| P =08
statesP(8;[k] # s;[k]) at each time step for each channel 2 P, =09

i, calculate the expectation over time of errors made in ei
ther channel, and then solve the minimization problem eithe®
analytically or numerically. We take instead an empirigad a 1
proach in which we simulate the system for fixed valueg;of
ando?,,, and find the value of that gives minimal error. 0 %
Results for different noise ratibare compared tothe per- 0= =5~ s 0% 1 06 07 o8 o9 1
formance achieved by an estimator that assumes a white pr Pg Pg
cess and ignores the dynamics of the system.

0.5%

1) - E(8")

E(6=

Fig. 3. Optimal fixed allocation in high SNR+§,, = 0.5).

The left panel shows the value éfthat produces minimal
average error. The right panel shows the difference between
Many strategies for dynamic allocation could be consideredhe optimal error and the error achieved when both channels
Here we explore one in which the ratio is changed at each stegf€ assigned the same amount of noise.

3.2. Dynamic allocation
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Fig. 4. Dynamic allocation. Average error as a function of exparerEach panel presents results for a given SNR using one
pa and manyps. Gray areas represent the standard error of the mean at eatisipulated.

For each total noise level we obtained a different behaviorchannel with higher certainty.
In low SNR (right column of Fig. 2) the best strategy seemsto The extreme case as the exponent increases gives rise to
be assigning most resources to one of the channelgaesk- a strategy in which resources are completely shifted froen on
ing (estimate with very high observation noise) the other onechannel to the other at each time step. This is illustrated in
The curves confirm the intuition that more resources (loweFig. 5, which shows an example of the dynamic estimation
variance) should be assigned to the least predictable ehannprocedure forp = 20, p, = 0.9, p; = 0.8 ando2,, = 2.

In contrast, when the SNR is high, there is a non-extremélote the alternating behavior of in the lower panel of this
ratio at which the error is minimum. This ratio depends on thdigure.
relative values of the transition probabilities as showithia
left panel of Fig. 3. These results imply that when both chang 3. Comparison: fixedvs. dynamic
nels have identical dynamics it is optimal to split the resea
equally across the channels, which is not the case when tig addition, we want to compare the performance of fixed and
SNR is low. The right panel of Fig. 3 shows the differencedynamic strategies, and find those conditions in which one
between the error obtained with= 1 and the minimal er- 1S more advantageous than the other. for= 0.9, we can
ror. The improvement in performance when using the optimaq:alculate the minimal error achieved with each method and
ratio is lower than 1% for the transition probabilities simow Plot them as a function qf; (Fig. 6).
here. This implies that, when the SNR is high, it may not be Athigh SNRs, performance for both methods is very high
worth trying to find the optimal allocation ratio, but simply and relatively similar. In this case the error is already low

in contrast, there are significant differences in perforoean

from both methods and a clear region in which dynamic allo-
cation is better. This implies that in cases when the dynamic
4.2. Dynamic allocation of both channels is very similar it is better to switch fronmeon
channel to the other at each time step (best dynamic stjategy
The dynamic allocation method was evaluated using similathan to give all resources to only one channel and guess the
parameters to those for the fixed case but using instead tiféher (best fixed strategy). For this particular case, tfeg-av
exponenty as the abscissa, and calculating the rétip at ~ age error was lowered by 5%.
each time step. Results fpr = 0.9 and three SNR scenarios
are shown in Fig. 4. 5. DISCUSSION
For a high SNR ¢Z,, = 0.5), performance remained al-
most constant as the exponehtwas varied, tending to be The reader should note that the estimation procedure used in
lower for high values ofp. For a low SNR, the curves in- the simulations was not derived from the general optimiza-
dicate that better performance is achieved as the exposienttion problem described initially since a slightly diffetexrror
increased. This implies that even for very small difference measure was used. We limited ourselves to finding the opti-
between the certainties on state estimates, we shouldnassigal noise ratio for a given estimator, but a more general goal
all resources to only one channel: that with lower certaintywould be to devise a theory that encompasses both estimation
Thus, according to (16), a higher variance is assigned to thend allocation. The estimation method used here was sélecte
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Fig. 6. Performance comparison between fixed and dynamic
1F ‘ P allocation methods. All curves are calculated fgr= 0.9.
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0 5 10 15 20 25 30 35 40 function that describes how the quality of the observatien d
Time step (k) pends on gaze.

This study proposes a dynamic allocation method which
Fig. 5. Example of dynamic allocation. Top two panels yses a measurement of certainty to derive the noise ratio at
show the states and soft-estimates of channels A and B. Sofizch time step. The method was based on the idea that it is
estimates represent the probability of being in a particulaggyantageous to give more resources to uncertain targets si
state scaled to the range1,1]. Bottom panel displays the tney are harder to predict. This is clearly not the only possi
(normalized) amount of noise assigned to channel A at eaghle dynamic method and further work is necessary in order
time step. to find a more general solution by solving the optimization
problem over the space of possible dynamic strategies. Fur-
thermore, the dynamic solution described here does not take
into account the cost of reassigning resources. It coulthde t

for its simplicity and low storage requirements, and beeaus

the quantities it relies on relate directly to concepts @lafn  ;,qq ot switching back and forth between channels giees th

tainty gnd c_onﬂdence of the e_stlmat(_as. o lowest error, but is so expensive (in term of energy or other
Using different cost functions with problems similar to constraints) that becomes suboptimal.

the one described in this paper may yield significantly diffe
ent optimal strategies. For example, if our goal is to mazemi
the total channel capacity in a system of parallel chantieds,
solution corresponds to giving more resources to the cha

nel W't7h Ifoweﬁt ncc;nse, fpllowmg a plrocess callqefiter-flllmg rately. Furthermore, the allocation problem should beestat
(see [7] for the Gaussian case). In contrast, if one wants R a learning framework in which estimation of the paranmeter

rep r_eselnt a Gagssmn (\j/_ector_ W'thha ft|)xed number ?f bits ang done simultaneously (perhaps at a slower time-scal@) tha
minimal squared error distortion, the best strategy (froaeR estimation of the signals. Some researchers have investiga

Distorsion Theory, severse-water-fillind7]) assigns more similar ideas in the context of competitive allocation cirie-

bits to varlable_s W'th higher varianceg., to those affected_ ing between stimuli according to their relative uncertaint
more by quantization error. In these two examples, impigvin [8]

representation in any channel reduces the total erroritmct

balancing out errors in other channels. When using insteaﬁj‘ay provide further insight on the effects of the differeyg-s

B ot PO £ o parametrs (o ystem nose and ke precie
. o ) f the signals) on performance. An empirical approach like
has occurred in another channel. The intuition for the fixe 9 ) P P PP

. ) . e one used here may miss some of these details, due to the
allocation strategies found here for the low SNR case is thaﬁ1 y

making an error in either channel is expensive, and estimal |_m|ted sampling of the parameter space.
ing the channel with highes is easier than estimating other

channels; therefore, resources should be used to impreve es 6. CONCLUSIONS
timation of the least predictable channel.

One motive for approaching the problem of resource alThis paper presents an empirical evaluation of differeatst
location is to derive theories that predict strategies fiiva  gies for distributing noise across parallel Gaussian chksrin
perception. In this context, the noise constraint of a commoorder to minimize signal estimation error. Noise levelsaver
power source (total sum of variances) may not be appropriateonstrained by a total minimum system noise, and estimation
In the case of vision, for example, there may be a complewf the transmitted signals was done by finding the most prob-

Throughout the paper we assumed perfect knowledge of
the dynamics of the signals to be estimated. Further work is
necessary to evaluate the robustness of the fixed and dynamic
llocation strategies when parameters are not known accu-

Finally, an analytical solution for the optimal noise ratio
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