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ABSTRACT

This study evaluates various resource allocation strategies for
simultaneous estimation of two independent signals from noisy
observations. We focus on strategies that make use of the un-
derlying dynamics of each signal, exploiting the difference
in estimation uncertainty between them. This evaluation is
done empirically, by exploring the parameter space through
computer simulations. Two cases are studied: one in which
an initial allocation is maintained during estimation of the
variables, and one in which allocation can be dynamically
changed at each time step according to the uncertainty of the
estimate from each channel. The results suggest that there are
conditions in which it is advantageous to assign a high signal-
to-noise ratio (SNR) to only one of the signals andguessthe
other one. Furthermore, comparison between the two alloca-
tion strategies shows that the dynamic strategy significantly
improves estimation performance in low SNR scenarios when
the signals have similar dynamics.

1. INTRODUCTION

Knowledge about the dynamics of a random process and the
ability to assign more resources to represent features of inter-
est can be used to improve statistical inference of the under-
lying process from noisy observations. This paper evaluates
different resource allocation strategies for simultaneous esti-
mation of two independent signals contaminated with noise.
The dynamics of the signals to be estimated are assumed to be
known, but the signals themselves arehiddenand only noisy
observations are available. Resources in our case refer to the
quality of the observation, where a constraint on the available
resources sets a limit on the average quality across channels.

This problem is motivated by studies of bottom-up atten-
tion, saliency and active perception [1–3], in which it is hy-
pothesized that weorientour senses towards features of inter-
est in order to maximize the gathering of information relevant
for a particular task. An analogy of the problem described in
this paper is that of a basketball player who has to keep track
of other players in the court. To do this, he/she must decide
where to look, how often to change gaze, and how to track
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more than one player without having to look directly at any.
Good gazing strategies will presumably depend on the pre-
dictability and relevance of each of the targets being tracked.

These ideas are also related to the concept of bit alloca-
tion for signal coding and compression, in which a limited
number of bits is distributed between different features (e.g.
subbands) according to their perceptual relevance and statis-
tical characteristics [4].

After presenting the general problem of allocation in par-
allel channels, we describe the simple setup that will be the
core of this paper. We then evaluate the performance of the
allocator/estimator over different sets of parameters. Optimal
strategies are found by exploring the parameter space through
computer simulations. We compare two different conditions
for allocation: one that requires fixing an SNR for each chan-
nel and maintaining it during estimation, and a second one
in which SNR is dynamically reassigned at each time step
according to the changing uncertainties of the estimation for
each channel.

2. TWO-CHANNEL MODEL

In our context, the problem of resource allocation can be stated
as follows. Consider multiple independent noisy channels in
parallel, with a common power constraint. The goal is to dis-
tribute the total power among the channels so as to minimize
some error function between the original signals and their es-
timates. If the signals are known to have predictable dynam-
ics, an optimal strategy should presumably combine predic-
tion and power allocation. For the remainder of this paper we
will keep the power of the signals fixed and instead vary the
noise level for each channel.

For our particular setup the goal is to estimate, at each
time step, two independent binary signals each one contam-
inated by Gaussian noise. The signals are generated by a
Markov process with known transition probabilities, and the
only link between the two channels is a constraint on the total
noise of the system. The allocation problem consists of de-
ciding how much of the total noise should be assigned to each
channel so that the average number of errors in either channel
is minimal.

The system is illustrated in Fig 1. States variablessi are
binary and change according to transition probability matrices
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Fig. 2. Fixed allocation. Average error as a function of noise ratio θ. Each panel presents results for a given SNR using one
pA and manypB. The dotted line corresponds to the performance of an estimator that ignores the dynamics of the signals. Gray
areas around the curves represent the standard error of the mean of the measurements.
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Fig. 1. Two channel Markov model. Statess[k] are binary
and the probability distribution of the observations giventhe
statesp(x[k]|s[k]) is Gaussian. The sum of the observation
noise across channels at each timek is constant.

Ti (a different one for each channel). To simplify the system
we make the transition matrices symmetric. The dynamics
can then be described by one variablepi per channel:

si[k] ∈ {−1, 1}, i = A, B (1)

Ti =

[

pi 1 − pi

1 − pi pi

]

(2)

pi = P (si[k] = si[k−1]) (3)

The observations are drawn from a Gaussian distribution
with mean equal to the current state for each channel:

xi[k] ∼ N
(

si[k], σ2
i

)

(4)

The constraint on the noise level, which can be interpreted

as having a common power source or a constant total signal-
to-noise ratio, is given by

σ2
total = σ2

A + σ2
B (5)

Throughout the paper we refer to the ratio between noise
variances asθ:

θ ≡
σ2

A

σ2
B

(6)

Inference of the state (for each channel) at each timek

is done by calculating the maximum a-posteriori (MAP) esti-
mate for the individual state, given the observation sequence:

ŝi[k] = arg max
q∈{−1,1}

P (si[k] = q | xi[0], . . . , xi[k]) (7)

= arg max
q∈{−1,1}

P (si[k] = q, x̃i[0], . . . , x̃i[k])

P (x̃i[0], . . . , x̃i[k])
(8)

Here we have writteñxi[k] instead ofxi[k] so we can write
expressions for the observations as probability mass func-
tions. The variables̃xi[k] can be interpreted as discretized ver-
sions of the observations, and are only used for describing the
algorithm, which is unaffected by this approximation. Since
the marginal of the observations does not affect the maximum,
the problem can be solved by finding the joint probability be-
tween the state at timek and the observation sequence. This
value corresponds to the forward variableα[k] described in
[5]. In vector form we have:

αi[k] =

[

P (si[k] = −1, x̃i[0], . . . , x̃i[k])
P (si[k] = 1, x̃i[0], . . . , x̃i[k])

]

(9)

=
ᾰi[k]

∑

q∈{−1,1} ᾰi[k](q)
(10)

ᾰi[k] = (Ti αi[k−1]) � f(xi[k], si[k], σ2
i ) (11)

with ᾰi[0] = πi � f(xi[k], si[k], σ2
i ) (12)



Here,� denotes the element-by-element (or Hadamard)
product,πi is a 2-element vector that represents the initial
state probabilities, andf(x, s, σ2) is a 2-element vector con-
taining the likelihood (for each possible state) that the sample
x came from the distribution defined in (4).

The estimation method described here maximizes the ex-
pected number of correct individual states by choosing the
most likely state at each time step for each channel. Other
optimality criteria imply different methods,e.g., the Viterbi
algorithm [6] finds the most likely state sequence for a given
observation sequence. In this paper we will focus only on the
individual state MAP estimate described above.

Our goal is to evaluate the performance of this estima-
tion method for different allocation strategies. Since we are
interested in simultaneous tracking of the two channels, we
measure performance by calculating the average number of
time steps in which errors occur in either channel:

Ē = E
[

ŝA[k] 6= sA[k] ∨ ŝB[k] 6= sB[k]
]

(13)

whereE[·] represents the expectation over time. A lower
Ē indicates better performance.

3. ALLOCATION STRATEGIES

We explore two allocation methods: one in which the ratioθ

is set initially and maintained during estimation, and one in
which the ratio can be changed at each time step.

3.1. Fixed allocation

In the fixed case we want to find the constant ratioθ that min-
imizes the average error̄E , given the system parameters and
total noise power:

θ∗ = arg min
θ=σ2

A/σ2

B

Ē s.t. σ2
total = σ2

A + σ2
B (14)

One way to solve this problem is to derive an expression
for the probability of making an error when estimating the
statesP (ŝi[k] 6= si[k]) at each time stepk for each channel
i, calculate the expectation over time of errors made in ei-
ther channel, and then solve the minimization problem either
analytically or numerically. We take instead an empirical ap-
proach in which we simulate the system for fixed values ofpi

andσ2
total, and find the value ofθ that gives minimal error.

Results for different noise ratioθ are compared to the per-
formance achieved by an estimator that assumes a white pro-
cess and ignores the dynamics of the system.

3.2. Dynamic allocation

Many strategies for dynamic allocation could be considered.
Here we explore one in which the ratio is changed at each step

according to the relative uncertainties of the two channels. In
this case, we define the certainty of our estimate as:

ci[k] =
∣

∣

∣
0.5 − αi[k]

(1)
∣

∣

∣
(15)

whereαi[k]
(1) corresponds to the first element of the joint

probability vectorαi[k] for channeli at timek. This quan-
tity represents how close to 1 is the probability of being in
one state, indicating a level of certainty about that estimate.
From these values, we set the ratio at each time step as:

θ[k] =
σ2

A [k]

σ2
B [k]

=

(

cA [k−1]

cB[k−1]

)φ

(16)

And we want to find the optimal exponent:

φ∗ = arg min
φ

Ē s.t. σ2
total = σ2

A + σ2
B (17)

The exponentφ enables a non-linear relation between the
certainty ratio and the noise ratio at the next time step. Note
that this function includes the case in which the noise ratio
is always 1 (ignoring the certainties) and the case in which
resources are completely moved from one channel to the other
at each time step.

4. PERFORMANCE MEASUREMENTS

4.1. Fixed allocation

The system was simulated using the fixed allocation method
for different transition probabilities and three SNR scenarios
(σ2

total = 0.5, 1, 2). The average error was measured following
(13) as the noise ratioθ is varied. Results forpA = 0.9 are
shown in Fig. 2. This figure includes the performance given
by an estimator that assumes a white process,i.e. an estima-
tor that ignores the dynamics of the system and simply sets a
decision boundary atxi[k] = 0.
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Fig. 3. Optimal fixed allocation in high SNR (σ2
total = 0.5).

The left panel shows the value ofθ that produces minimal
average error. The right panel shows the difference between
the optimal error and the error achieved when both channels
are assigned the same amount of noise.
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Fig. 4. Dynamic allocation. Average error as a function of exponent φ. Each panel presents results for a given SNR using one
pA and manypB. Gray areas represent the standard error of the mean at each point simulated.

For each total noise level we obtained a different behavior.
In low SNR (right column of Fig. 2) the best strategy seems to
be assigning most resources to one of the channels andguess-
ing (estimate with very high observation noise) the other one.
The curves confirm the intuition that more resources (lower
variance) should be assigned to the least predictable channel.

In contrast, when the SNR is high, there is a non-extreme
ratio at which the error is minimum. This ratio depends on the
relative values of the transition probabilities as shown inthe
left panel of Fig. 3. These results imply that when both chan-
nels have identical dynamics it is optimal to split the resources
equally across the channels, which is not the case when the
SNR is low. The right panel of Fig. 3 shows the difference
between the error obtained withθ = 1 and the minimal er-
ror. The improvement in performance when using the optimal
ratio is lower than 1% for the transition probabilities shown
here. This implies that, when the SNR is high, it may not be
worth trying to find the optimal allocation ratio, but simply
distributing resources equally across the channels.

4.2. Dynamic allocation

The dynamic allocation method was evaluated using similar
parameters to those for the fixed case but using instead the
exponentφ as the abscissa, and calculating the ratioθ[k] at
each time step. Results forpA = 0.9 and three SNR scenarios
are shown in Fig. 4.

For a high SNR (σ2
total = 0.5), performance remained al-

most constant as the exponentφ was varied, tending to be
lower for high values ofφ. For a low SNR, the curves in-
dicate that better performance is achieved as the exponent is
increased. This implies that even for very small differences
between the certainties on state estimates, we should assign
all resources to only one channel: that with lower certainty.
Thus, according to (16), a higher variance is assigned to the

channel with higher certainty.
The extreme case as the exponent increases gives rise to

a strategy in which resources are completely shifted from one
channel to the other at each time step. This is illustrated in
Fig. 5, which shows an example of the dynamic estimation
procedure forφ = 20, pA = 0.9, pB = 0.8 andσ2

total = 2.
Note the alternating behavior ofσ2

A in the lower panel of this
figure.

4.3. Comparison: fixedvs. dynamic

In addition, we want to compare the performance of fixed and
dynamic strategies, and find those conditions in which one
is more advantageous than the other. ForpA = 0.9, we can
calculate the minimal error achieved with each method and
plot them as a function ofpB (Fig. 6).

At high SNRs, performance for both methods is very high
and relatively similar. In this case the error is already low
enough, leaving little room for improvement. For low SNRs
in contrast, there are significant differences in performance
from both methods and a clear region in which dynamic allo-
cation is better. This implies that in cases when the dynamics
of both channels is very similar it is better to switch from one
channel to the other at each time step (best dynamic strategy)
than to give all resources to only one channel and guess the
other (best fixed strategy). For this particular case, the aver-
age error was lowered by 5%.

5. DISCUSSION

The reader should note that the estimation procedure used in
the simulations was not derived from the general optimiza-
tion problem described initially since a slightly different error
measure was used. We limited ourselves to finding the opti-
mal noise ratio for a given estimator, but a more general goal
would be to devise a theory that encompasses both estimation
and allocation. The estimation method used here was selected
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for its simplicity and low storage requirements, and because
the quantities it relies on relate directly to concepts of uncer-
tainty and confidence of the estimates.

Using different cost functions with problems similar to
the one described in this paper may yield significantly differ-
ent optimal strategies. For example, if our goal is to maximize
the total channel capacity in a system of parallel channels,the
solution corresponds to giving more resources to the chan-
nel with lowest noise, following a process calledwater-filling
(see [7] for the Gaussian case). In contrast, if one wants to
represent a Gaussian vector with a fixed number of bits and
minimal squared error distortion, the best strategy (from Rate
Distorsion Theory, seeinverse-water-filling[7]) assigns more
bits to variables with higher variance,i.e., to those affected
more by quantization error. In these two examples, improving
representation in any channel reduces the total error function,
balancing out errors in other channels. When using instead
the cost function defined in this paper, improving estimation
of one channel will not decrease the total cost when an error
has occurred in another channel. The intuition for the fixed
allocation strategies found here for the low SNR case is that
making an error in either channel is expensive, and estimat-
ing the channel with higherp is easier than estimating other
channels; therefore, resources should be used to improve es-
timation of the least predictable channel.

One motive for approaching the problem of resource al-
location is to derive theories that predict strategies for active
perception. In this context, the noise constraint of a common
power source (total sum of variances) may not be appropriate.
In the case of vision, for example, there may be a complex
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Fig. 6. Performance comparison between fixed and dynamic
allocation methods. All curves are calculated forpA = 0.9.
Error bars correspond to the standard error of the mean.

function that describes how the quality of the observation de-
pends on gaze.

This study proposes a dynamic allocation method which
uses a measurement of certainty to derive the noise ratio at
each time step. The method was based on the idea that it is
advantageous to give more resources to uncertain targets since
they are harder to predict. This is clearly not the only possi-
ble dynamic method and further work is necessary in order
to find a more general solution by solving the optimization
problem over the space of possible dynamic strategies. Fur-
thermore, the dynamic solution described here does not take
into account the cost of reassigning resources. It could be the
case that switching back and forth between channels gives the
lowest error, but is so expensive (in term of energy or other
constraints) that becomes suboptimal.

Throughout the paper we assumed perfect knowledge of
the dynamics of the signals to be estimated. Further work is
necessary to evaluate the robustness of the fixed and dynamic
allocation strategies when parameters are not known accu-
rately. Furthermore, the allocation problem should be stated
in a learning framework in which estimation of the parameters
is done simultaneously (perhaps at a slower time-scale) than
estimation of the signals. Some researchers have investigated
similar ideas in the context of competitive allocation of learn-
ing between stimuli according to their relative uncertainties
[8].

Finally, an analytical solution for the optimal noise ratio
may provide further insight on the effects of the different sys-
tem parameters (total system noise and relative predictability
of the signals) on performance. An empirical approach like
the one used here may miss some of these details, due to the
limited sampling of the parameter space.

6. CONCLUSIONS

This paper presents an empirical evaluation of different strate-
gies for distributing noise across parallel Gaussian channels in
order to minimize signal estimation error. Noise levels were
constrained by a total minimum system noise, and estimation
of the transmitted signals was done by finding the most prob-



able input given the history of noisy observations. The alloca-
tion strategies made use of the knowledge about the dynamic
properties of the signals to be estimated.

Optimal strategies with respect to the error measure de-
fined above depend on the total amount of system noise, giv-
ing qualitatively different results for low and high SNRs. With
a fixed allocation and a low SNR, the best strategy is to give
most resources to the least predictable channel. At a high
SNR, performance can be slightly improved by choosing a
noise ratio close to one. When allowing dynamic allocation
at each time step, the optimal strategy is to rapidly switch
between the channels. This strategy, compared to a fixed al-
location, significantly increases performance in the low SNR
case when both channels have similar dynamic properties.
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