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ABSTRACT

The blind source separation problem is to extract the
underlying source signals from a set of linear mix-
tures, where the mixing matrix is unknown. We con-
sider a two-stage separation process. First, a pri-
ori selection of a possibly overcomplete signal dictio-
nary (e.g. wavelet frame, learned dictionary, etc.) in
which the sources are assumed to be sparsely repre-
sentable. Second, unmixing the sources by exploiting
the their sparse representability. We consider the gen-
eral case of more sources than mixtures, but also de-
rive a more efficient algorithm in the case of a non-
overcomplete dictionary and equal numbers of sources
and mixtures. Experiments with artificial signals and
with musical sounds demonstrate significantly better
separation than other known techniques.

1. INTRODUCTION

In blind source separation an N-channel sensor signal
x(t) arises from M unknown scalar source signals s;(t),
linearly mixed together by an unknown N x M matrix
A, and possibly corrupted by additive noise &(t)

2(t) = As(t) + €(t) (1)

We wish to estimate the mixing matrix A and the M-
dimensional source signal s(¢). Many natural signals
can be sparsely represented in a proper signal dictio-
nary

K
si(t) =Y Cli i (t) (2)
k=1

The scalar functions ¢g(t) are called atoms or ele-
ments of the dictionary. These elements do not have
to be linearly independent, and instead may form
an overcomplete dictionary. Important examples are
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wavelet-related dictionaries (wavelet packets, station-
ary wavelets, etc., see for example [1, 2] and refer-
ences therein), or learned dictionaries [3, 4, 5]. Sparsity
means that only a small number of the coefficients Cjy,
differ significantly from zero.

We consider a two stage separation process. First, a
priori selection of a possibly overcomplete signal dictio-
nary in which the sources are assumed to be sparsely
representable. Second, unmixing the sources by ex-
ploiting their sparse representability.

In the discrete time case t = 1,2,...,T we use ma-
trix notation. X is an N x T matrix, with the i-th
component z;(t) of the sensor signal in row i, S is an
M x T matrix with the signal s;(¢) in row j, and ®
is a K x T matrix with basis function @ (t) in row k.
Equations (1) and (2) then take the following simple
form

X = AS+¢ (3)
S = C® (4)

Combining them, we get the following when the noise
is small
X ~ ACP

Our goal therefore can be formulated as follows:

Given the sensor signal matriz X and
the dictionary ®, find a mizring matriz
A and matriz of coefficients C' such that
X ~ AC® and C is as sparse as possible.

2. PROBABILISTIC FRAMEWORK

In order to derive a maximum a posteriori solution, we
consider the blind source separation problem in a prob-
abilistic framework [6, 7]. Suppose that the coefficients
Ci in source decomposition (4) are statistically inde-
pendent random variables with a probability density
function (pdf) of an exponential type

pi(Cix) o exp —B;h(Cir) (5)



This kind of distribution is widely used for modeling
sparsity [3, 5]. A reasonable choice of h(c) may be

hie) = |e'/" 721 (6)

or a smooth approximation thereof. Here we will use a
family of convex smooth approximations to the abso-
lute value

hi(e) = le| —log(1 + cf) (7)
ha(e) = Aha(e/A) (8)

with A a proximity parameter: hy(c) — |c| as A = 0F.

We also suppose a priori that the mixing matrix
A is uniformly distributed over the range of interest,
and that the noise £(¢) in (3) is a spatially and tem-
porally uncorrelated Gaussian process! with zero mean

and variance o2.

2.1. Maximum a posteriori approach

We wish to maximize the posterior probability

max P(4,0 | X) o max P(X | A,C)P(4)P(O)  (9)

where P(X | A,C) is the conditional probability of
observing X given A and C. Taking into account (3),
(4), and the white Gaussian noise, we get

Xt — (AC®);)?

202

P(X |AC) ocHexp—(

it

(10)

By the statistical independence of the coefficients Cy,
and (5), the prior pdf of C' is

C) o [[ exp(=B;1(Cjr)) (11)
7.k

If the prior pdf P(A) is uniform, it can be dropped?
from (9). In this way we are left with the problem

max P(X | 4,C)P(C). (12)

By substituting (10) and (11) into (12), taking the log-
arithm, and inverting the sign, we obtain the following
optimization problem

IEIH—IIAC‘P X%+ 8ih(Cr)  (13)

7.k

where [[A|lr = /3, ;A7 is the Frobenius matrix

norm.

IThe iid noise assumption is for simplicity of exposition and
can be easily removed.

20therwise, if P(A) is some other known function, we should
use (9) directly.

One can consider this objective as a generalization
of [5] by incorporating the matrix ®, or as a general-
ization of [1] by including the matrix A. One problem
with such a formulation is that it can lead to the de-
generate solution C' = 0 and A = oco. We can overcome
this difficulty in various ways. The first approach is to
force each row A; of the mixing matrix A to be bounded
in norm,

4] <1 i=1,...,N. (14)
The second way is to restrict the norm of the rows C}
from below

eyl > 1 J=L. M. (15)
A third way is to reestimate the parameters 3; based on
the current values of C;. For example, this can be done
using sampling variance as follows: for a given function
h(-) in the distribution (5), express the variance of Cj,
as a function f(8). An estimate of 3 can be obtained
by applying the corresponding inverse function to the
sampling variance,

Bj = Z (16)

In particular, when h(c) = |c|, var(c) = 2372 and

b= (17)

’ \/Kfl >k Cygk

Substituting (-) and 3 into (13), we obtain
23 1G]

VET O

This objective function is invariant to a rescaling of
the rows of C' combined with a corresponding inverse
rescaling of the columns of A.

I/I‘un —||AC<I> X||F+Z (18)

2.2. Experiment: more sources than mixtures

This experiment demonstrates that sources which have
very sparse representations can be separated almost
perfectly, even when they are correlated and the num-
ber of samples is small.

We used the standard wavelet packet dictionary
with the basic wavelet symmlet-8. When the signal
length is 64 samples, this dictionary consists of 448
atoms i.e. it is overcomplete by a factor of seven. Ex-
amples of atoms and their images in the time-frequency
phase plane [8, 2] are shown in Figure 1. We used the
ATOMIZER [9] and WAVELAB [10] MATLAB pack-
ages for fast multiplication by ® and ®7. We created



Figure 1: Examples of atoms: time-frequency phase
plane (left) and time plot (right.)
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]
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Figure 2: Sources, mixtures and reconstructed sources,
in both time-frequency phase plane (left) and time do-
main (right).

three very sparse sources (Figure 2, top), each com-
posed of only two or three atoms. The first two sources
have significant cross-correlation, equal to 0.34, which
makes separation difficult for conventional methods.
Two synthetic sensor signals (Figure 2, center) were
obtained as a linear mixture of the sources. In order to
measure the accuracy of the separation, we normalized
the original sources with ||S;||> = 1, and the estimated
sources with ||§J||2 = 1. The error was then computed
as B

155 — Sill2

1155112

We tested two methods with this data. The first
method used the objective function (13) and the con-
straints (15), while the second method used the objec-
tive function (18). As a tool for constrained optimiza-
tion we used the PBM method [11]. Unconstrained op-
timization was produced by the method of conjugate
gradients using the TOMLAB package [12]. The same
tool was used for internal unconstrained optimization

Error = -100% (19)

in PBM.

In all the cases we used hy(-) defined by (7) and
(8), with the parameter A\ = 0.01. Another parameter
02 = 0.0001. The resulting errors of the source esti-
mates were 0.09% and 0.02% by the first and the second
method respectively. The estimated sources are shown
in the bottom three traces of Figure 2. They are visu-
ally indistinguishable from the original sources, shown
in top three traces of Figure 2.

It is important to note the computational difficul-
ties of this approach. First, the objective functions
seem to have multiple local minima. For this reason, re-
liable convergence was achieved only when the search-
started randomly within 10%-20% distance from actual
solution (in order to get such an initial guess, one can
use a clustering-type algorithm, as in [13]).

Second, the method of conjugate gradients requires
a few thousand iterations to converge, which takes
about 5 min at Pentium 300 MHz processor even for
this very small problem®. In the remaning part of the
paper we present few other approaches, which help to
stabilize and accelerate optimization.

3. EQUAL NUMBER OF SOURCES AND
SENSORS: MORE ROBUST
FORMULATIONS

The main difficulty in a maximization problem like (13)
is the bilinear term AC®, which destroys the convexity
of the objective function and makes convergence unsta-
ble when optimization starts far from the solution. In
this section we consider more robust formulations for
the case when the number of sensors is equal to the
number of sources, N = M, and the mixing matrix is
invertible W = A1,

When the noise is small and the matrix A is far
from singular, WX gives a reasonable estimate of the
source signals S. Taking into account (4), we obtain
a least square term ||C® — W X]||%, so the separation
objective may be written

1
min §||C¢_WX||%+HZkﬂjh(Cjk) (20)
7,
We also need to add a constraint which enforces the

non-singularity of W. For example, we can restrict
from below its minimal singular value r,;, (W):

It can be shown, that in the noiseless case, o ~ 0,
the problem (20)—(21) is equivalent to the maximum a

30ur preliminary experiments with other algorithms (like
truncated Newton method) give a hope to reduce this timing
by an order of magnitude or more.
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Figure 3: Percent relative error of separation of the
artificial sparse sources recovered by (1) JADE, (2) Fast
ICA, (3) Bell-Sejnowski Infomax, (4) Equation 22.

posteriori formulation (13) with the constraint ||A[]s <
1. Another possibility for ensuring the non-singularity
of W is to subtract K log|det W[ from the objective

1
rvrl}iél —Klog|det W|+ §||C<I>—WX||%+,U Z Bih(Cjk)
S F
(22)
When the noise is zero and ® is the identity matrix, we
can substitute C' = WX and obtain the Bell-Sejnowski
Infomax objective [14]

mui/n —Klog|det W| + Z};ﬁjh((WX)jk) (23)
J»

Experiment: equal numbers of sources and sen-
sors

We created two sparse sources with strong cross-
correlation of 0.52. Separation, produced by mini-
mization of the objective function (22), gave an error
of 0.23%. Robust convergense was achieved when we

started from random uniformely distributed points in
C and W.

For comparison we tested the JADE [15, 16], Fas-
tICA [17, 18] and Bell-Sejnowski Infomax [14, 19] al-
gorithms on the same signals. All three codes were ob-
tained from the refereed websites and were used with
default setting of all parameters. The resulting relative
errors (Figure 3) confirm the significant superiority of
the sparse decomposition approach.

This still takes a few thousands conjugate gradi-
ent steps to converge (about 5 min on a Pentium 300
MHz). For comparision, JADE, FastICA and Infomax
take only few seconds. Below we will consider some
options for acceleration.

4. FAST SOLUTION IN
NON-OVERCOMPLETE DICTIONARIES

In important applications, the sensor signals may have
hundreds of channels and hundreds of thousands of
samples. This may make separation computationally
difficult. Here we present an approach which compro-
mises between statistical and computational efficiency.
In our experience this approach provides high quality
of separation in reasonable time.

Suppose that the dictionary is “complete,” i.e. it
forms a basis in the space of discrete signals. This
means that the matrix ® is square and non-singular.
As examples of such a dictionary one can think of
the Fourier basis, Gabor basis, various wavelet-related
bases, etc. We can also obtain an “optimal” dictionary
by learning from given family of signals [3, 4, 5].

Let us denote the dual basis

T=0"! (24)

and suppose that coefficients of decomposition of the

sources
C=SU (25)

are sparse and statistically independent. This assump-
tion is reasonable for properly chosen dictionaries, al-
though of course we would lose the advantages of over-
completeness.

Let Y be the decomposition of the sensor signals

Y =XU (26)

Multiplying both sides of (3) by ¥ from the right and
taking into account (25) and (26), we obtain

Y = AC+ ¢, (27)

where ( is decomposition of the noise

(=¢&v. (28)

Here we consider an “easy” situation, when ( is a white
noise, that requires orthogonality of ¥. We can see that
all the objective functions from the previous sections
remain valid if we remove from them @ (substituting
instead the identity matrix) and replace the sensor sig-
nal X by its decomposition Y. For example, maximum
a posteriori objectives (13) and (18) are transformed
into 1

min @IIAC—YII%+_X];ﬁjh(Cjk) (29)

3,

and

.1 > 23 5 1Ck]
i ?||AC—Y||F+Z

J \/K_l Dok ngk

(30)



The objective (22) becomes

. 1
min —K log | det W| + 5||C' -WY|%+ MZI;ﬂjh(Cjk)
Js
(31)
In this case we can further assume that the noise is zero.
substitute C' = WY and obtain the Bell-Sejnowski In-
fomax objective [14]

mui/n —K log |det W| + Z,; Bih(WY) k) (32)
7,

Also other known methods (for example, [20, 3]), which
normally assume sparsity of source signals, may be
directly applied to the decomposition Y of the sen-
sor signals. This may be more efficient than the tra-
ditional approach, and the reason is obvious: typi-
cally, a properly chosen decomposition gives signifi-
cantly higher sparsity than the raw signals had orig-
inally. Also, statistical independence of the coefficients
is a more reasonable assumption than statistical inde-
pendence of the raw signal samples.

Experiment: musical sounds

In our experiments we artificially mixed seven 5-second
fragments of musical sound recordings taken from com-
mercial digital audio CDs. Each of them included 40k
samples after down-sampling by a factor of 5.

The easiest way to perform sparse decomposition
of such sources is to compute a spectrogram, the coef-
ficients of a time-windowed discrete Fourier transform.
(We used the function SPECGRAM from the MAT-
LAB signal processing toolbox with a time window of
1024 samples.) The sparsity of the spectrogram coeffi-
cients (the histogram in Figure 4, right) is much higher
then the sparsity of the original signal (Figure 4, left)

In this case Y (26) is a real matrix, with sepa-
rate entries for the real and imaginary components
of each spectrogram coefficient of the sensor signals
X. We used the objective function (32) with 3; = 1
and hy(-) defined by (7),(8) with the parameter A =
10~*. Unconstrained minimization was performed by
a BFGS Quasi-Newton algorithm (MATLAB function
FMINU.)

This algorithm separated the sources with a relative
error of 0.67% for the least well separated source (error
computed according to (19).) We also applied the Bell-
Sejnowski Infomax algorithm [14] implemented in [19]
to the spectrogram coefficients Y of the sensor signals.
Separation errors were slightly larger: 0.9%, but the
computing time was improved (from 30 min for BFGS
to 5 min for Infomax).
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Figure 4: Histogram of sound source values (left) and
spectrogram coefficients (right), shown with linear y-
scale (top), square root y-scale (center) and logarithmic
y-scale (bottom).
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Figure 5: Percent relative error of separation of seven
musical sources. recovered by (1) JADE, (2) Fast ICA,
(3) Bell-Sejnowski Infomax, (4) Infomax, applied to the
spectrogram coefficients, (5) BFGS minimization of the
objective (32) with the spectrogram coefficients.

For comparison we tested JADE [15, 16], FastIca
[17, 18] and Infomax algorithms on the raw sensor sig-
nals. Resulting relative errors (Figure 5) confirm the
significant (by a factor of more than 10) superiority of
the sparse decomposition approach.

The method described in this section, that combines
spectrogram transformations with the Infomax algo-
rithm, is included by Scott Makeig into the ICA/EEG
toolbox [19].

5. CONCLUSIONS

We showed that the use of sparse decomposition in
a proper signal dictionary provides high-quality blind
source separation. The maximum a posteriori frame-
work gives the most general approach, which includes
the situation of more sources than sensors. Computa-
tionally more robust solutions can be found in the case
of an equal number of sources and sensors. We can also
extract the sources sequentially using quadratic pro-
gramming with non-convex quadratic constraints. Fi-
nally, much faster solution may be obtained using non-
overcomplete dictionaries. Our experiments with artifi-



cial signals and digitally mixed musical sounds demon-
strate a high quality of source separation, compared to
other known techniques.
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