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ABSTRACT

The blind sour
e separation problem is to extra
t the

underlying sour
e signals from a set of linear mix-

tures, where the mixing matrix is unknown. We 
on-

sider a two-stage separation pro
ess. First, a pri-

ori sele
tion of a possibly over
omplete signal di
tio-

nary (e.g. wavelet frame, learned di
tionary, et
.) in

whi
h the sour
es are assumed to be sparsely repre-

sentable. Se
ond, unmixing the sour
es by exploiting

the their sparse representability. We 
onsider the gen-

eral 
ase of more sour
es than mixtures, but also de-

rive a more eÆ
ient algorithm in the 
ase of a non-

over
omplete di
tionary and equal numbers of sour
es

and mixtures. Experiments with arti�
ial signals and

with musi
al sounds demonstrate signi�
antly better

separation than other known te
hniques.

1. INTRODUCTION

In blind sour
e separation an N -
hannel sensor signal

x(t) arises fromM unknown s
alar sour
e signals s

i

(t),

linearly mixed together by an unknown N �M matrix

A, and possibly 
orrupted by additive noise �(t)

x(t) = As(t) + �(t) (1)

We wish to estimate the mixing matrix A and the M -

dimensional sour
e signal s(t). Many natural signals


an be sparsely represented in a proper signal di
tio-

nary

s

i

(t) =

K

X

k=1

C

ik

'

k

(t) (2)

The s
alar fun
tions '

k

(t) are 
alled atoms or ele-

ments of the di
tionary. These elements do not have

to be linearly independent, and instead may form

an over
omplete di
tionary. Important examples are
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wavelet-related di
tionaries (wavelet pa
kets, station-

ary wavelets, et
., see for example [1, 2℄ and refer-

en
es therein), or learned di
tionaries [3, 4, 5℄. Sparsity

means that only a small number of the 
oeÆ
ients C

ik

di�er signi�
antly from zero.

We 
onsider a two stage separation pro
ess. First, a

priori sele
tion of a possibly over
omplete signal di
tio-

nary in whi
h the sour
es are assumed to be sparsely

representable. Se
ond, unmixing the sour
es by ex-

ploiting their sparse representability.

In the dis
rete time 
ase t = 1; 2; : : : ; T we use ma-

trix notation. X is an N � T matrix, with the i-th


omponent x

i

(t) of the sensor signal in row i, S is an

M � T matrix with the signal s

j

(t) in row j, and �

is a K � T matrix with basis fun
tion '

k

(t) in row k.

Equations (1) and (2) then take the following simple

form

X = AS + � (3)

S = C� (4)

Combining them, we get the following when the noise

is small

X � AC�

Our goal therefore 
an be formulated as follows:

Given the sensor signal matrix X and

the di
tionary �, �nd a mixing matrix

A and matrix of 
oeÆ
ients C su
h that

X � AC� and C is as sparse as possible.

2. PROBABILISTIC FRAMEWORK

In order to derive a maximum a posteriori solution, we


onsider the blind sour
e separation problem in a prob-

abilisti
 framework [6, 7℄. Suppose that the 
oeÆ
ients

C

ik

in sour
e de
omposition (4) are statisti
ally inde-

pendent random variables with a probability density

fun
tion (pdf) of an exponential type

p

i

(C

ik

) / exp��

i

h(C

ik

) (5)



This kind of distribution is widely used for modeling

sparsity [3, 5℄. A reasonable 
hoi
e of h(
) may be

h(
) = j
j

1=



 � 1 (6)

or a smooth approximation thereof. Here we will use a

family of 
onvex smooth approximations to the abso-

lute value

h

1

(
) = j
j � log(1 + j
j) (7)

h

�

(
) = �h

1

(
=�) (8)

with � a proximity parameter: h

�

(
)! j
j as �! 0

+

.

We also suppose a priori that the mixing matrix

A is uniformly distributed over the range of interest,

and that the noise �(t) in (3) is a spatially and tem-

porally un
orrelated Gaussian pro
ess

1

with zero mean

and varian
e �

2

.

2.1. Maximum a posteriori approa
h

We wish to maximize the posterior probability

max

A;C

P (A;C j X) / max

A;C

P (X j A;C)P (A)P (C) (9)

where P (X j A;C) is the 
onditional probability of

observing X given A and C. Taking into a

ount (3),

(4), and the white Gaussian noise, we get

P (X j A;C) /

Y

i;t

exp�

(X

it

� (AC�)

it

)

2

2�

2

(10)

By the statisti
al independen
e of the 
oeÆ
ients C

jk

and (5), the prior pdf of C is

P (C) /

Y

j;k

exp(��

j

h(C

jk

)) (11)

If the prior pdf P (A) is uniform, it 
an be dropped

2

from (9). In this way we are left with the problem

max

A;C

P (X j A;C)P (C): (12)

By substituting (10) and (11) into (12), taking the log-

arithm, and inverting the sign, we obtain the following

optimization problem

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j;k

�

j

h(C

jk

) (13)

where kAk

F

=

q

P

i;j

A

2

ij

is the Frobenius matrix

norm.

1

The iid noise assumption is for simpli
ity of exposition and


an be easily removed.

2

Otherwise, if P (A) is some other known fun
tion, we should

use (9) dire
tly.

One 
an 
onsider this obje
tive as a generalization

of [5℄ by in
orporating the matrix �, or as a general-

ization of [1℄ by in
luding the matrix A. One problem

with su
h a formulation is that it 
an lead to the de-

generate solution C = 0 and A =1. We 
an over
ome

this diÆ
ulty in various ways. The �rst approa
h is to

for
e ea
h rowA

i

of the mixing matrix A to be bounded

in norm,

kA

i

k � 1 i = 1; : : : ; N: (14)

The se
ond way is to restri
t the norm of the rows C

j

from below

kC

j

k � 1 j = 1; : : : ;M: (15)

A third way is to reestimate the parameters �

j

based on

the 
urrent values of C

j

. For example, this 
an be done

using sampling varian
e as follows: for a given fun
tion

h(�) in the distribution (5), express the varian
e of C

jk

as a fun
tion f

h

(�). An estimate of � 
an be obtained

by applying the 
orresponding inverse fun
tion to the

sampling varian
e,

^

�

j

= f

�1

h

(K

�1

X

k

C

2

jk

) (16)

In parti
ular, when h(
) = j
j, var(
) = 2�

�2

and

^

�

j

=

2

q

K

�1

P

k

C

2

jk

(17)

Substituting h(�) and

^

� into (13), we obtain

min

A;C

1

2�

2

kAC��Xk

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(18)

This obje
tive fun
tion is invariant to a res
aling of

the rows of C 
ombined with a 
orresponding inverse

res
aling of the 
olumns of A.

2.2. Experiment: more sour
es than mixtures

This experiment demonstrates that sour
es whi
h have

very sparse representations 
an be separated almost

perfe
tly, even when they are 
orrelated and the num-

ber of samples is small.

We used the standard wavelet pa
ket di
tionary

with the basi
 wavelet symmlet-8. When the signal

length is 64 samples, this di
tionary 
onsists of 448

atoms i.e. it is over
omplete by a fa
tor of seven. Ex-

amples of atoms and their images in the time-frequen
y

phase plane [8, 2℄ are shown in Figure 1. We used the

ATOMIZER [9℄ and WAVELAB [10℄ MATLAB pa
k-

ages for fast multipli
ation by � and �

T

. We 
reated
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Figure 1: Examples of atoms: time-frequen
y phase

plane (left) and time plot (right.)
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Figure 2: Sour
es, mixtures and re
onstru
ted sour
es,

in both time-frequen
y phase plane (left) and time do-

main (right).

three very sparse sour
es (Figure 2, top), ea
h 
om-

posed of only two or three atoms. The �rst two sour
es

have signi�
ant 
ross-
orrelation, equal to 0.34, whi
h

makes separation diÆ
ult for 
onventional methods.

Two syntheti
 sensor signals (Figure 2, 
enter) were

obtained as a linear mixture of the sour
es. In order to

measure the a

ura
y of the separation, we normalized

the original sour
es with kS

j

k

2

= 1, and the estimated

sour
es with k

e

S

j

k

2

= 1. The error was then 
omputed

as

Error =

k

e

S

j

� S

j

k

2

kS

j

k

2

� 100% (19)

We tested two methods with this data. The �rst

method used the obje
tive fun
tion (13) and the 
on-

straints (15), while the se
ond method used the obje
-

tive fun
tion (18). As a tool for 
onstrained optimiza-

tion we used the PBM method [11℄. Un
onstrained op-

timization was produ
ed by the method of 
onjugate

gradients using the TOMLAB pa
kage [12℄. The same

tool was used for internal un
onstrained optimization

in PBM.

In all the 
ases we used h

�

(�) de�ned by (7) and

(8), with the parameter � = 0:01. Another parameter

�

2

= 0:0001. The resulting errors of the sour
e esti-

mates were 0.09% and 0.02% by the �rst and the se
ond

method respe
tively. The estimated sour
es are shown

in the bottom three tra
es of Figure 2. They are visu-

ally indistinguishable from the original sour
es, shown

in top three tra
es of Figure 2.

It is important to note the 
omputational diÆ
ul-

ties of this approa
h. First, the obje
tive fun
tions

seem to have multiple lo
al minima. For this reason, re-

liable 
onvergen
e was a
hieved only when the sear
h-

started randomly within 10%{20% distan
e from a
tual

solution (in order to get su
h an initial guess, one 
an

use a 
lustering-type algorithm, as in [13℄).

Se
ond, the method of 
onjugate gradients requires

a few thousand iterations to 
onverge, whi
h takes

about 5 min at Pentium 300 MHz pro
essor even for

this very small problem

3

. In the remaning part of the

paper we present few other approa
hes, whi
h help to

stabilize and a

elerate optimization.

3. EQUAL NUMBER OF SOURCES AND

SENSORS: MORE ROBUST

FORMULATIONS

The main diÆ
ulty in a maximization problem like (13)

is the bilinear term AC�, whi
h destroys the 
onvexity

of the obje
tive fun
tion and makes 
onvergen
e unsta-

ble when optimization starts far from the solution. In

this se
tion we 
onsider more robust formulations for

the 
ase when the number of sensors is equal to the

number of sour
es, N = M , and the mixing matrix is

invertible W = A

�1

.

When the noise is small and the matrix A is far

from singular, WX gives a reasonable estimate of the

sour
e signals S. Taking into a

ount (4), we obtain

a least square term kC� �WXk

2

F

, so the separation

obje
tive may be written

min

W;C

1

2

kC��WXk

2

F

+ �

X

j;k

�

j

h(C

jk

) (20)

We also need to add a 
onstraint whi
h enfor
es the

non-singularity of W . For example, we 
an restri
t

from below its minimal singular value r

min

(W ):

r

min

(W ) � 1 (21)

It 
an be shown, that in the noiseless 
ase, � � 0,

the problem (20){(21) is equivalent to the maximum a

3

Our preliminary experiments with other algorithms (like

trun
ated Newton method) give a hope to redu
e this timing

by an order of magnitude or more.
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Figure 3: Per
ent relative error of separation of the

arti�
ial sparse sour
es re
overed by (1) JADE, (2) Fast

ICA, (3) Bell-Sejnowski Infomax, (4) Equation 22.

posteriori formulation (13) with the 
onstraint kAk

2

�

1: Another possibility for ensuring the non-singularity

of W is to subtra
t K log j detW j from the obje
tive

min

W;C

�K log j detW j+

1

2

kC��WXk

2

F

+�

X

j;k

�

j

h(C

jk

)

(22)

When the noise is zero and � is the identity matrix, we


an substitute C =WX and obtain the Bell-Sejnowski

Infomax obje
tive [14℄

min

W

�K log j detW j+

X

j;k

�

j

h((WX)

jk

) (23)

Experiment: equal numbers of sour
es and sen-

sors

We 
reated two sparse sour
es with strong 
ross-


orrelation of 0.52. Separation, produ
ed by mini-

mization of the obje
tive fun
tion (22), gave an error

of 0.23%. Robust 
onvergense was a
hieved when we

started from random uniformely distributed points in

C and W .

For 
omparison we tested the JADE [15, 16℄, Fas-

tICA [17, 18℄ and Bell-Sejnowski Infomax [14, 19℄ al-

gorithms on the same signals. All three 
odes were ob-

tained from the refereed websites and were used with

default setting of all parameters. The resulting relative

errors (Figure 3) 
on�rm the signi�
ant superiority of

the sparse de
omposition approa
h.

This still takes a few thousands 
onjugate gradi-

ent steps to 
onverge (about 5 min on a Pentium 300

MHz). For 
omparision, JADE, FastICA and Infomax

take only few se
onds. Below we will 
onsider some

options for a

eleration.

4. FAST SOLUTION IN

NON-OVERCOMPLETE DICTIONARIES

In important appli
ations, the sensor signals may have

hundreds of 
hannels and hundreds of thousands of

samples. This may make separation 
omputationally

diÆ
ult. Here we present an approa
h whi
h 
ompro-

mises between statisti
al and 
omputational eÆ
ien
y.

In our experien
e this approa
h provides high quality

of separation in reasonable time.

Suppose that the di
tionary is \
omplete," i.e. it

forms a basis in the spa
e of dis
rete signals. This

means that the matrix � is square and non-singular.

As examples of su
h a di
tionary one 
an think of

the Fourier basis, Gabor basis, various wavelet-related

bases, et
. We 
an also obtain an \optimal" di
tionary

by learning from given family of signals [3, 4, 5℄.

Let us denote the dual basis

	 = �

�1

(24)

and suppose that 
oeÆ
ients of de
omposition of the

sour
es

C = S	 (25)

are sparse and statisti
ally independent. This assump-

tion is reasonable for properly 
hosen di
tionaries, al-

though of 
ourse we would lose the advantages of over-


ompleteness.

Let Y be the de
omposition of the sensor signals

Y = X	 (26)

Multiplying both sides of (3) by 	 from the right and

taking into a

ount (25) and (26), we obtain

Y = AC + � ; (27)

where � is de
omposition of the noise

� = �	 : (28)

Here we 
onsider an \easy" situation, when � is a white

noise, that requires orthogonality of 	. We 
an see that

all the obje
tive fun
tions from the previous se
tions

remain valid if we remove from them � (substituting

instead the identity matrix) and repla
e the sensor sig-

nal X by its de
omposition Y . For example, maximum

a posteriori obje
tives (13) and (18) are transformed

into

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j;k

�

j

h(C

jk

) (29)

and

min

A;C

1

2�

2

kAC � Y k

2

F

+

X

j

2

P

k

jC

jk

j

q

K

�1

P

k

C

2

jk

(30)



The obje
tive (22) be
omes

min

W;C

�K log j detW j+

1

2

kC �WY k

2

F

+ �

X

j;k

�

j

h(C

jk

)

(31)

In this 
ase we 
an further assume that the noise is zero.

substitute C = WY and obtain the Bell-Sejnowski In-

fomax obje
tive [14℄

min

W

�K log j detW j+

X

j;k

�

j

h((WY )

jk

) (32)

Also other known methods (for example, [20, 3℄), whi
h

normally assume sparsity of sour
e signals, may be

dire
tly applied to the de
omposition Y of the sen-

sor signals. This may be more eÆ
ient than the tra-

ditional approa
h, and the reason is obvious: typi-


ally, a properly 
hosen de
omposition gives signi�-


antly higher sparsity than the raw signals had orig-

inally. Also, statisti
al independen
e of the 
oeÆ
ients

is a more reasonable assumption than statisti
al inde-

penden
e of the raw signal samples.

Experiment: musi
al sounds

In our experiments we arti�
ially mixed seven 5-se
ond

fragments of musi
al sound re
ordings taken from 
om-

mer
ial digital audio CDs. Ea
h of them in
luded 40k

samples after down-sampling by a fa
tor of 5.

The easiest way to perform sparse de
omposition

of su
h sour
es is to 
ompute a spe
trogram, the 
oef-

�
ients of a time-windowed dis
rete Fourier transform.

(We used the fun
tion SPECGRAM from the MAT-

LAB signal pro
essing toolbox with a time window of

1024 samples.) The sparsity of the spe
trogram 
oeÆ-


ients (the histogram in Figure 4, right) is mu
h higher

then the sparsity of the original signal (Figure 4, left)

In this 
ase Y (26) is a real matrix, with sepa-

rate entries for the real and imaginary 
omponents

of ea
h spe
trogram 
oeÆ
ient of the sensor signals

X . We used the obje
tive fun
tion (32) with �

j

= 1

and h

�

(�) de�ned by (7),(8) with the parameter � =

10

�4

. Un
onstrained minimization was performed by

a BFGS Quasi-Newton algorithm (MATLAB fun
tion

FMINU.)

This algorithm separated the sour
es with a relative

error of 0.67% for the least well separated sour
e (error


omputed a

ording to (19).) We also applied the Bell-

Sejnowski Infomax algorithm [14℄ implemented in [19℄

to the spe
trogram 
oeÆ
ients Y of the sensor signals.

Separation errors were slightly larger: 0.9%, but the


omputing time was improved (from 30 min for BFGS

to 5 min for Infomax).
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Figure 4: Histogram of sound sour
e values (left) and

spe
trogram 
oeÆ
ients (right), shown with linear y-

s
ale (top), square root y-s
ale (
enter) and logarithmi


y-s
ale (bottom).
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Figure 5: Per
ent relative error of separation of seven

musi
al sour
es. re
overed by (1) JADE, (2) Fast ICA,

(3) Bell-Sejnowski Infomax, (4) Infomax, applied to the

spe
trogram 
oeÆ
ients, (5) BFGS minimization of the

obje
tive (32) with the spe
trogram 
oeÆ
ients.

For 
omparison we tested JADE [15, 16℄, FastI
a

[17, 18℄ and Infomax algorithms on the raw sensor sig-

nals. Resulting relative errors (Figure 5) 
on�rm the

signi�
ant (by a fa
tor of more than 10) superiority of

the sparse de
omposition approa
h.

The method des
ribed in this se
tion, that 
ombines

spe
trogram transformations with the Infomax algo-

rithm, is in
luded by S
ott Makeig into the ICA/EEG

toolbox [19℄.

5. CONCLUSIONS

We showed that the use of sparse de
omposition in

a proper signal di
tionary provides high-quality blind

sour
e separation. The maximum a posteriori frame-

work gives the most general approa
h, whi
h in
ludes

the situation of more sour
es than sensors. Computa-

tionally more robust solutions 
an be found in the 
ase

of an equal number of sour
es and sensors. We 
an also

extra
t the sour
es sequentially using quadrati
 pro-

gramming with non-
onvex quadrati
 
onstraints. Fi-

nally, mu
h faster solution may be obtained using non-

over
omplete di
tionaries. Our experiments with arti�-




ial signals and digitally mixed musi
al sounds demon-

strate a high quality of sour
e separation, 
ompared to

other known te
hniques.
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