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Abstract. The acoustic environment poses at least two important challenges.
First, animals must localise sound sources using a variety of binaural and monau-
ral cues; and second they must separate sources into distinct auditory streams (the
“cocktail party problem”). Binaural cues include intra-aural intensity and phase
disparity. The primary monaural cue is the spectral filtering introduced by the
head and pinnae via the head-related transfer function (HRTF), which imposes
different linear filters upon sources arising at different spatial locations.
Here we address the second challenge, source separation. We propose an algo-
rithm for exploiting the monaural HRTF to separate spatially localised acoustic
sources in a noisy environment. We assume that each source has a unique po-
sition in space, and is therefore subject to preprocessing by a different linear
filter. We also assume prior knowledge of weak statistical regularities present in
the sources. This framework can incorporate various aspects of acoustic transfer
functions (echos, delays, multiple sensors, frequency-dependent attenuation) in a
uniform fashion, treating them as cues for, rather than obstacles to, separation. To
accomplish this, sources are represented sparsely in an overcomplete basis. This
framework can be extended to make predictions about the neural representations
required to separate acoustic sources.

1 Introduction

Organisms exploit a variety of binaural and monoaural cues to separate acoustic sources,
a process sometimes referred to as “stream segregation” [1]. One set of cues that can
be used to separate sources is the differential filtering imposed by the head and pinnae
(the head-related transfer function, or HRTF) on sources at different positions in space
[2]. It is often reasonable to assume that sound arriving from different locations should
be treated as arising from distinct sources. While the importance of the HRTF in sound
localisation has been studied extensively, its role in source separation per se has not
received as much scrutiny.

Let us consider a formulation of source separation that includes the HRTF. Suppose
there are N acoustic sources xi(t) located at distinct positions in space. Associated
with each position is a distinct spectral filter, given by the corresponding head-related
transfer functions hi(t). The received signal y(t) is then the sum of the filtered signals

y(t) =

N∑

i=1

hi(t) ∗ xi(t) (1)
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where ∗ indicates convolution. Our goal is to recover the underlying sources xi(t) from
the observed signal y(t), using knowledge of the directional filters3 hi(t). Although the
HRTF can also be exploited in multi-sensor situations, in the present work we focus
only on the more difficult single-sensor case.

2 Monoaural separation using a weak prior

We solve this underdetermined system in a sparse separation framework, with L1-norm
optimisation as a sparseness measure [3–7]. The two-sensor underdetermined case has
been addressed in this context [8, 9] but separating multiple sources from a single sensor
is harder and requires stronger assumptions [10–13]. In this framework, we model the
i-th source xi(t) as a weighted sum of elements dj(t) from an overcomplete dictionary,

xi(t) =
∑

j

cij dj(t), (2)

where the weighting associated with dictionary element dj(t)’s contribution to source i
is cij , and the cij are assumed to be sparse.

In particular, the signals in the dictionary, dj(t), are chosen with two criteria in
mind. First, sources should be sparse when represented in this dictionary, meaning that
the coefficients cij required to represent xi(t) will have a distribution with more zeros
(and more large values) than might be naively expected. A common formalisation of this
assumption is that the distribution of coefficients is governed by a Laplacian distribution
(p(ci) ∝ e−|ci|); a Laplacian distribution has more elements close to zero (and far from
zero) than does a Gaussian with the same variance. Second, dictionary elements should
be chosen such that, following transformation by the HRTF, elements differ as much
as possible; this is equivalent to minimising the condition number of the matrix D

introduced below.
In what follows, we assume that each source appears at a unique position in space,

and that there is only a single source at each position. The components dj(t) of each
source might thus be subject to filtering by any of the HRTFs hi(t). We therefore con-
struct a new dictionary by applying each possible filter to each original element. We
denote the resulting dictionary elements

d′ij(t) = hi(t) ∗ dj(t). (3)

Note that the number of elements in the new d′ dictionary is equal to the number of
original dictionary elements times the number of sources N ; the original overcomplete
basis has now become “more overcomplete” by the factor N .

The source separation problem can now be cast as decomposing y(t) into this over-
complete dictionary by finding appropriate cij for

y(t) =
∑

ij

cij d′ij(t). (4)

3 The filter terms hi(t) may be interpreted to include not just the filtering of the head and pinnae,
but also the filter function of the acoustic environment, and the audiogram of the ear itself.
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Once the coefficients cij are known, the individual sources can be reconstructed directly
from the unfiltered elements dj(t) using Eq. 2.

Source separation thus requires estimating the coefficients cij . Let us define c as a
single column vector containing all the coefficients cij , with the elements indexed by
i, j, and D as a matrix whose k-th row holds the elements d′

ij(tk). The columns of D

are indexed by i and j, and the rows are indexed by k. Finally, let y be a column vector
whose elements correspond to the discrete-time sampled elements y(t). Thus y = Dc.

If the dictionary d′
ij(t) formed a complete basis, c would be given by c = D−1y.

However, by assumption the system is now underdetermined—many possible combi-
nations of sources yield the observed sensor data y(t)—so in order to specify a unique
solution we must have a way of choosing among them. We therefore introduce a reg-
ulariser that incorporates some weak prior information about the problem and renders
it well-posed [14]. Here we express the regulariser in terms of an easily stated condi-
tion on the norm of the solution vector c: Find the c that minimises the Lp norm ‖c‖p

subject to Dc = y, where ‖c‖p = (
∑

ij |cij |
p)

1

p .
Different choices for p correspond to different priors and so yield different solu-

tions c. A natural choice would seem to be p = 2, which corresponds to assuming that
the source coefficients cij were drawn from a Gaussian distribution; this is the solution
found by the the pseudo-inverse c = D∗y. However, this choice does not exploit the
sparseness assumption about the sources; rather, it seeks a solution in which the power
is spread across the sources (Figure 1). With p = 0 (‖c‖0 is the number of nonzero ele-
ments of c) we would exploit sparseness, but this can be a computationally intractable
combinatorial problem, and moreover the solution would not be continuous in y and
therefore not be robust to noise [15].

Instead, as shown in Figure 1, we use p = 1 (the L1-norm), which is equivalent to
a Laplacian prior on the coefficients c. That is, we solve

minimise
∑

ij

|cij | subject to y = Dc (5)

This has a single global optimum which can be found efficiently using linear program-
ming [3], and is continuous in y.

This algorithm can be sensitive to sensor and background noise, as it insists on
precisely accounting for the measured signal using some combination of dictionary ele-
ments, which can generate large artefacts. However, we can generalise the optimisation
problem to include a noise process (simulations not shown) by changing the goal to

minimise ‖c‖1 subject to ‖Dc − y‖p ≤ β (6)

where β is proportional to the noise level and p = 1, 2, or ∞. The Gaussian noise case,
p = 2, which can also be formulated as unconstrained minimisation, can be solved by
Semidefinite Programming [16], or mixed L1+L2 optimisation methods used in control
theory. Unfortunately these are too computationally burdensome for our purposes. Both
p = 1 and p = ∞ can be solved using linear programming. All these are qualitatively
similar, and in them all as β → 0 the noise is assumed to be very small, and the solutions
converge to that of the zero-noise solution, Eq. 5.
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Fig. 1. Minimising the L1-norm can provide a good and computationally tractable solution
to data generated by a sparse prior. In this example, three non-orthogonal basis vectors (black
arrows) are assumed, and each data point (black points) is generated by assuming only one non-
zero coefficient ci (the sparseness assumption), along with a small amount of noise. Since there
are three basis vectors in two dimensions, there are many possible solutions, and additional con-
straints are required to specify the solution. The red vectors illustrate solutions found for the red
point under three different constraints. (Right) Minimising the L0-norm of c finds the sparse so-
lution, but is computationally intractable (NP-complete). (Left) The L2-norm can be efficiently
minimised by the pseudoinverse, but yields a poor solution because it spreads the power across
multiple basis vectors, in violation of the sparseness assumption. (Centre) The minimum L1-norm
solution can be found efficiently using linear programming, and under suitable assumptions finds
a good approximation of the sparse solution.

Example: Harmonic comb prior We illustrate the algorithm with a simple exam-
ple. Suppose that the sources can be modelled as simple “musical instruments” playing
notes drawn from a 12-tone (Western) scale. Sources are defined by position—there
is by definition only a single source at a given position—but each source may play
more than one note simultaneously. Each note consists of a “harmonic comb”—a fun-
damental frequency F and its harmonics nF , n = 2, 3, . . ., with amplitudes 1/n. Each
dictionary element, then, is given by

di =
∑

n=1

1

n
sin(2π nFi t). (7)

where Fi = 2i/12F0 is the fundamental frequency of the i-th note in the equal-tempered
scale, and F0 is the frequency of the lowest note.

Figure 2 shows that such harmonic comb sources can be readily separated using
knowledge of the spectral filtering, provided that one searches for a sparse solution
vector c by minimising its L1-norm. In this example three sources were assumed, each
playing two “notes” selected from 72. Thus each source is fully described by the values
of the two non-zero coefficients.

The top graph of Figure 2 shows the difference between L1- and L2-norm minimi-
sation, in the absence of spectral filtering. The L2-norm solution fits the received signal
y(t) using coefficients cij distributed in a roughly Gaussian fashion, whereas the L1-
norm solution found by linear programming finds a sparse solution in which the only
non-zero dictionary coefficients correspond to notes actually present in at least one of
the sources. However in the absence of the HRTF, even the L1-norm solution has no
way to assign the notes to the appropriate sources, so it assumes that an equal fraction
of each note arises from each source. L1-norm optimisation thus finds a more inter-
pretable solution than L2-norm optimisation even without an HRTF, but due to lack of
any suitable cues it is equally unable to correctly separate the sources (see Table 1).



Monaural Source Separation using Spectral Cues 5

0 50 100 150 200 250
−1

0

1

2

3

4

source 1 source 2 source 3

no HRTF

dictionary element

co
ef

fic
ie

nt
 v

al
ue

0 50 100 150 200 250
−1

0

1

2

3

4

source 1 source 2 source 3

HRTF

dictionary element

co
ef

fic
ie

nt
 v

al
ue

Actual
L

2
L

1

Actual
L

2
L

1

Fig. 2. Spectral cues can be exploited by assuming a sparse prior. The input to the microphone
consisted of the sum of three sources (x-axis), each playing two notes but with different ampli-
tudes (y-axis). (Top) If no spectral filtering is applied, the algorithm minimising the L1-norm
of the solution c accounts for the signal using a small number of coefficients, but cannot assign
the correct amplitude to each source. It therefore assumes equal weight among the sources. By
contrast, minimising the L2-norm spreads the energy across many dictionary elements, leading
to an uninterpretable solution. (Bottom) When a different spectral filter is applied to each source
L1-norm minimisation finds the exact solution, while minimising the L2-norm yields a solution
that remains both uninterpretable and unseparated.

The lower graph of Figure 2 shows how the spectral filtering due to the HRTF
can enhance separation. In this case, the L1-norm constraint is able to separate the
sources almost perfectly, while the L2-norm solution remains poor (see Table 1.) This
example, although highly idealised, is intended to capture key features of many real-
world problems in which sources have characteristic spectrotemporal signatures. In this
framework, more sophisticated models of spectrotemporal structure can be readily ac-
commodated by adding dictionary elements.

3 Discussion

We have described an algorithm for using the head-related transfer function to improve
the separation of acoustic sources at different spatial locations. We show how, in cer-
tain special cases, the added cues provided by the HRTF permit otherwise unseparable
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Table 1. SNR in dB of sources recovered using the proposed algorithm, in a synthetic acoustic
environment with versus without an HRTF. Large positive numbers indicate better performance;
the best performance is achieved by the algorithm that exploits the HRTF and minimises the
L1-norm of the solution.

norm SNR without HRTF SNR with HRTF

L1 1.78 106.69
L2 −4.86 −5.19

sources to be separated. We also show how, in the more general case, the cues can be
used to improve separation.

The novel contribution of this work is a specific proposal for how the HRTF can be
used for source separation, a process related to but distinct from localisation. It has long
been known that the HRTF provides important cues for localisation [17–20]. Acoustic
sources that bypass the HRTF (e.g. those presented with headphones) are typically per-
ceived inside the head, unlike real sounds which are perceived outside the head [20, 21].
The HRTF is not, however, strictly required for localisation; under some conditions, bin-
aural cues are sufficient to localise sounds even in the absence of the HRTF. Conversely,
source separation can occur even without spatial cues, for example when selecting out
the individual instruments of a concerto presented over a single speaker. Nevertheless,
it is clear that the HRTF cues, when present, help in source separation [2].

The present formulation can be readily extended to include binaural information.
Each HRTF function is made single-input two-output, and the lengths of the column
vectors corresponding to the post-HRTF dictionary elements d′

ij and the data vector y

are doubled. In this way, intra-aural time and level disparity can be used to separate
sources. Information from two (or more) sensors can thus be naturally incorporated
into the present framework. Similarly, although presented here as a batch algorithm, an
online variant which gradually estimates coefficients as the signal becomes available
would be straightforward to develop.

3.1 Assumptions about the HRTF

One of the main limitations of the present algorithm is that it requires that the precise
HRTF hi(t) associated with each source be known. This requires knowing both the
dependence of HRTF on spatial position, and the spatial position of each source.

The first assumption, that organisms learn their own HRTF, is reasonable and sup-
ported by extensive experimental evidence [22–24]. When hi(t) is interpreted to include
not only the HRTF but also the properties of the acoustic environment (reverberations,
etc.) then this assumption becomes considerably stronger. Animals have, however, been
shown to estimate some properties of their acoustic environments quite quickly [25].

The second assumption, that the precise positions of each source are known, is
more restrictive. There are, however, several ways in which the source positions might
be determined. One possibility is that they might be established by prior or additional
knowledge, perhaps using visual information. Indeed, the spatial cues provided by vi-
sion can override those inferred from audition, as demonstrated by the “ventriloquist
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effect.” A second possibility is that the positions of the sources could be established
through auditory preprocessing, using for example the binaural cues available to the
auditory brainstem. Finally, the positions of the sources, as well as the properties of the
acoustic environment, could be jointly estimated along with the content of each source;
this joint estimation might be made easier by moving the head slightly so as to perturb
the HRTFs by some known angle without changing the source positions.

3.2 The signal dictionary and neural representations

We have not considered the question of how an appropriate signal dictionary might be
obtained. Fortunately there is a rich literature on finding a basis matched (in the sense
of yielding sparse representations) to an ensemble of signals [5, 26, 27].

The algorithm was developed here in the signal processing framework, with lit-
tle attention to possible neural implementation. However, overcomplete representations
have been suggested for visual areas V1 [27] and IT [28]. Signal dictionaries have been
interpreted in terms of models of receptive fields, and receptive field properties have
been predicted from the principles of sparse representations [26, 29]. Similarly, the sig-
nal elements derived from optimising the matrix D for separating ensembles of natural
sounds filtered through the HRTF offers predictions for auditory representations. The
extension of such models to auditory cortex is intriguing [30].
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